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Abstract—This paper links joint direction of arrival (DOA) and
frequency estimation problem to the trilinear model and derives a novel
blind joint angle and frequency estimation algorithm. The proposed
algorithm has better performance than ESPRIT algorithm. Our
proposed algorithm is thought of as a generalization of ESPRIT. The
useful behavior of the proposed algorithm is verified by simulations.

1. INTRODUCTION

Antenna array has been used in many fields such as radar, sonar,
communications, seismic data processing, and so on [1–12]. The
direction-of-arrival (DOA) estimation [13–19] of signals impinging on
an array of sensors is a fundamental problem in array processing.
The problem of joint DOA and frequency estimation arises in the
applications of radar, wireless communications. For example, these
parameters can be applied to locate the mobiles and to allocate
pilot tones in space division multiple access systems. Furthermore,
a precise estimation of these parameters is helpful to attain a better
channel estimate and thus enhances the system performance. Optimal
techniques based on maximum likelihood [20] are often applicable
but might be computationally prohibitive. Some ESPRIT-based
joint angle and frequency estimation methods have been proposed
in [21–27]. Zoltowski [21] discusses this problem in the context
of radar applications. Pro-ESPRIT is proposed to estimate angle
and frequency. Haardt [22] discusses the problem in the context of
mobile communications for space division multiple access applications.
Their method is based on Unitary-ESPRIT, which involves a certain
transformation of the data to real valued matrices. Multi-resolution
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ESPRIT is used for joint angle frequency estimation in [23]. ESPRIT
method is used for frequency and angle estimation under uniform
circular array in [25, 26]. The others joint angle and frequency
estimation method is proposed in [28, 29]. ESPRIT method algorithm
requires eigen-value decomposition (EVD) to the cross spectral matrix
or singular value decomposition (SVD) to the received data. EVD
or SVD needs high computational complexity. ESPRIT ideas have
revolutionized sensor array signal processing. Interestingly, a general
principle underlying ESPRIT has flourished independently in other
scientific fields and disciplines, where it is commonly referred to in a
variety of ways, including trilinear model or trilinear decomposition.
Trilinear decomposition-based joint angle and frequency estimation for
uniform linear array is investigated in this paper.

It was known that most of signal processing methods are based
on the theory of matrix, or the bilinear model. In general, matrix
decomposition is not unique, since inserting a product of an arbitrary
invertible matrix and its inverse in between two matrix factors
preserves their product. Matrix decomposition can be unique only if
one imposes additional problem-specific structural properties including
orthogonality, Vandermonde, Toeplitz, constant modulus or finite-
alphabet constraints. Compared to the case of matrices, trilinear model
or trilinear decomposition has a distinctive and attractive feature: it
is often unique [30]. The uniqueness of trilinear decomposition is of
great practical significance, which is crucial in many applications such
as psychometrics [31] and chemistry [32–34]. Trilinear decomposition
is thus naturally related to linear algebra for multi-way arrays.
Trilinear decomposition in signal processing fields can be thought of
as a generalization of ESPRIT and joint approximate diagonalization
ideas [35, 36].

Our work links the uniform linear array parameter estimation
problem to the trilinear model and derives a novel blind angle and
frequency estimation algorithm. The proposed algorithm has better
performance than ESPRIT, and supports small sample sizes. This
method relies on a fundamental result of Kruskal [30] regarding the
uniqueness of low-rank three-way data decomposition. This method is
an iterative algorithm, which does not need EVD or SVD, and only
requires fewer iterations for convergence.

This paper is structured as follows. Section 2 develops data
model. Section 3 deals with trilinear decomposition and discusses
identifiability issues. The blind joint angle and frequency estimation
method is proposed in Section 4. Section 5 presents simulation results.
Section 6 summarizes our conclusions.

Denote: We denote by (.)∗ the complex conjugation, by (.)T the
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matrix transpose, and by (.)H the matrix conjugate transpose. The
notation (.)+ refers to the Moore-Penrose inverse (pseudo inverse).
‖ ‖F stands for Frobenious norm.

2. THE DATA MODEL

There are K sources to reach uniform linear array with M elements.
Suppose that the ith source has a carrier frequency of fi. The signal
received at the mth antenna is

xm(t) =
K∑

i=1

ej2π(m−1)dfi sin(θi)/csi(t) (1)

where θi is direction of arrival (DOA) of the ith signal, d is array
spacing. si(t) is the narrow-band signal of the ith source.

In order to estimate frequency, we add the delayed outputs τp, p =
1, 2, . . . , P for the received signal of array antenna, as shown in Fig. 1.
We suppose that 0 < τ1 < τ2 < . . . < τP < 1/max(fi).

1τ
0 ( )X t

1τ1τ

1( )X t
2τ 2τ 2τ

2 ( )X t

Pτ Pτ Pτ
( )PX t

Figure 1. The received signal with delayed output.

The delayed signal for (1) with delay τp is

xm(t− τp) =
K∑

i=1

ej2π(m−1)dfi sin(θi)/csi(t− τp)

=
K∑

i=1

ej2π(m−1)dfi sin(θi)/csi(t)e−j2πfiτp (2)

where c is velocity of light.
We assume that channel state information is constant for N

symbols. The received signal of array antennas can be denoted as

X0(t) = AS (3)
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where the source matrix S and the direction matrix A are shown as
follows

S = [ s1 s2 · · · sK ]T ∈ C
K×N (4)

A =




1 1 · · · 1

e−
j2πdf1 sin θ1

c e−
j2πdf2 sin θ2

c · · · e−
j2πdfK sin θK

c

...
...

. . .
...

e−
j2π(M−1)df1 sin θ1

c e−
j2πd(M−1)f2 sin θ2

c · · · e−
j2πd(M−1)fK sin θK

c




∈ C
M×K (5)

The delayed signal for (3) with τp can be denoted as

Xp = AΦpS (6)

where

Φp =



e−j2πf1τp

e−j2πf2τp

e−j2πfKτp


 ∈ C

K×K (7)

Define the delay matrix as

Φ =




1 1 · · · 1
e−j2πf1τ1 e−j2πf2τ1 · · · e−j2πfKτ1

...
...

. . .
...

e−j2πf1τP e−j2πf2τP · · · e−j2πfKτP


 ∈ C

P+1×K (8)

Eq. (6) is also denoted as

Xp = ADp+1(Φ)S, p = 0, 1, . . . , P (9)

where Dm(.) is to extract the mth row of its matrix argument and
constructs a diagonal matrix out of it. When p = 0, Xp|p=0 = X0,
that is to say, τp|p=0 = 0.

In the presence of noise, the received signal model becomes

X̃p = Xp + Wp = ADp+1(Φ)S + Wp, p = 0, 1, . . . , P (10)

where Wp, the M ×N matrix, is the received noise corresponding to
the pth slice.
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The signal in (9) is also denoted through rearrangements

xm,n,p =
K∑

f=1

am,fsn,fφp,f

m = 1, . . . ,M ; n = 1, . . . , N ; p = 0, 1, . . . , P (11)

where am,f stands for the (m, f) element of A matrix, and similarly
for the others. The signal in (11) is a sum of triple products; it is well
known as the trilinear model or trilinear decomposition. The trilinear
model X reflects three different kinds of diversity available: spatial,
temporal and delay diversity. Another view, Xp = ADp+1(Φ)S,
p = 0, 1, . . . , P , can be interpreted as slicing the 3-D data in a
series of slices (2-D data) along the spatial direction. Meanwhile, the
symmetry of the trilinear model in (11) allows two more matrix system
rearrangements, for which we have

Yn = ΦDn

(
ST

)
AT , n = 1, 2, . . . , N (12)

where Yn is the nth slice in the temporal direction. Similarly

Zm = STDm(A)ΦT , m = 1, 2, . . . ,M (13)

where Zm is the pth slice in spatial direction.

3. TRILINEAR MODEL AND ITS DECOMPOSITION

3.1. Trilinear Decomposition

TALS (Trilinear Alternating Least Square) algorithm is the common
data detection method for trilinear model [30]. The basic idea of
TALS is as follows: (a) Each time, update a matrix using least squares
conditioned on previously obtained estimates of the remaining matrix;
(b) proceed to update another matrix; (c) repeat until convergence.
TALS algorithm is discussed in detail as follows.

According to (9), it is rewritten as



X0

X1
...

XP


 =




AD1(Φ)
AD2(Φ)

...
ADP+1(Φ)


S (14)
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Least squares (LS) fitting is

min
A,S,Φ

∥∥∥∥∥∥∥∥∥




X̃0

X̃1
...

X̃P


 −




AD1(Φ)
AD2(Φ)

...
ADP+1(Φ)


S

∥∥∥∥∥∥∥∥∥
F

(15)

where ‖ ‖F stands for the Frobenius norm. X̃p, p = 0, 1, . . . , P are the
noisy slices.

Least squares update for S is

Ŝ =




ÂD1

(
Φ̂

)

ÂD2

(
Φ̂

)
...

ÂDP+1

(
Φ̂

)




+ 


X̃0

X̃1
...

X̃P


 (16)

where [.]+ stands for pseudo-inverse. Â and Φ̂ denote previously
obtained estimates of A and Φ, respectively.

Similarly, from the second way of slices: Yn = ΦDn(ST )AT ,
n = 1, 2, . . . , N , which is rewritten as




Y1

Y2
...

YN


 =




ΦD1

(
ST

)
ΦD2

(
ST

)
...

ΦDN

(
ST

)


AT (17)

LS fitting is

min
A,S,Φ

∥∥∥∥∥∥∥∥∥∥




Ỹ1

Ỹ2

...
ỸN


 −




ΦD1

(
ST

)
ΦD2

(
ST

)
...

ΦDN

(
ST

)


ATT

∥∥∥∥∥∥∥∥∥∥
F

(18)

where Ỹn, n = 1, 2, . . . , N are the noisy slices. And the LS update for
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A is

ÂT =




Φ̂D1

(
ŜT

)

Φ̂D2

(
ŜT

)
...

Φ̂DN

(
ŜT

)




+ 


Ỹ1

Ỹ2
...

ỸN


 (19)

where Ŝ and Φ̂ denote previously obtained estimates of S and Φ,
respectively.

Finally, from the third way of slices: Zm = STDm(A)ΦT , m =
1, 2, . . . ,M . And then LS update for Φ is

Φ̂T =




ŜTD1

(
Â

)

ŜTD2

(
Â

)
...

ŜTDM

(
Â

)




+ 


Z̃1

Z̃2
...

Z̃M


 (20)

where Z̃m,m = 1, 2, . . . ,M are the noisy slices. Â and Ŝ denote
previously obtained estimates of A and S, respectively.

According to (16), (19) and (20), matrices S, A and Φ are updated
with conditioned least squares, respectively. The matrix update will
stop until convergence.

TALS algorithm is optimal when noise is additive i.i.d.
Gaussian [36]. TALS algorithm has several advantages: it is easy
to implement, guarantee to converge and simple to extend to higher
order data. The shortcomings are mainly in the occasional slowness of
the convergence process [37]. In this paper, we use the COMFAC
algorithm [38] for trilinear decomposition. COMFAC algorithm is
essentially a fast implementation of TALS, and can speeds up the LS
fitting. COMFAC algorithm is essentially a fast implementation of
TALS, and can speeds up the LS fitting. COMFAC compresses the
three-way data into a smaller three-way data. After fitting the model
in the compressed space, the solution is decompressed to the original
space. This is followed by a few TALS steps in uncompressed space.
Usually, the decompressed model is close to the LS solution, hence
smaller TALS steps are sufficient for this refinement stage.

3.2. Identifiability

The k-rank concept is very important in the trilinear algebra.
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Definition1 [30]: Consider a matrix A ∈ C
I×J . If rank(A) =

r, then A contains a collection of r linearly independent columns.
Moreover, if every l ≤ J columns of A are linearly independent, but
this does not hold for every l + 1 columns, then A has k-rank kA = l.
Note that kA ≤ rank(A), ∀A.

Theorem1 [30]: Zm = STDm(A)ΦT , m = 1, 2, . . . ,M , where
A ∈ C

M×K , S ∈ C
K×N , Φ ∈ C

P+1×K , considering that A is a matrix
with Vandermonde characteristic, if

kST + min(M + kΦ, 2K) ≥ 2K + 2 (21)

then A, Φ and S are unique up to permutation and scaling of
columns, that is to say, any other triple Ā, Φ̄, S̄ that construct Zm,
m = 1, 2, . . . ,M , is related to A, Φ and S via

Ā = AΠ∆1, Φ̄ = ΦΠ∆2, S̄T = STΠ∆3 (22)

where Π is a permutation matrix, and ∆1,∆2,∆3 are diagonal scaling
matrices satisfying ∆1∆2∆3 = I.

Scale ambiguity and permutation ambiguity are inherent to the
separation problem. This is not a major concern. Permutation
ambiguity can be resolved by resorting to a priori or embedded
information. The scale ambiguity can be resolved using automatic
gain control, normalization and differential encoding/decoding.

In our present context, for source-wise independent source signals,
kST = min(N,K); for source-wise independent delay, kΦ = min(P +
1,K), and therefore, Eq. (21) becomes

min(N,K) + min((M + min(P + 1,K), 2K) ≥ 2K + 2 (23)

For the received noisy signal, we use trilinear decomposition to
get the estimated the direction matrix Â and the delay matrix Φ̂,
Â = AΠ∆1 + N1, Φ̂ = ΦΠ∆2 + N2, where N1, N2 are noises.

4. JOINT ANGLE AND FREQUENCY ESTIMATION

We can use trilinear decomposition to attain the direction matrix A
and the delay matrix Φ, and then angle and frequency are estimated
according to least square principle.

4.1. Frequency Estimation

Define the delay vector g(fi) as

g(fi) =
[
1, e−j2πfiτ1 , . . . , e−j2πfiτP

]T
(24)
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g(fi) is the ith column of the delay matrix Φ. According to (24), we
get

h = −imag(ln(g(fi))) (25)

where ln(.) is natural logarithm; imag(.) is to get imaginary part of a
complex number. Eq. (25) becomes h = [0, 2πfiτ1, . . . , 2πfiτP−1]T .

Assuming the estimated delay vector is ĝ(fi) (the ith column
of the estimated delay matrix Φ̂). ĝ(fi) is processed through
normalization, which also resolves the scale ambiguity, and then
normalized sequence is processed to attain ĥ according to (25). Finally
we use lease squares principle to estimate fi. Least squares fitting is

P1b = ĥ (26)

where

P1 =




1
1
...
1

0
2πτ1

...
2πτP


 , b =

[
b0
fi

]

The least square solution for b is
[
b̂0
f̂i

]
=

(
PT

1 P1

)−1
PT

1 ĥ (27)

4.2. Angle Estimation

Define the direction vector for DOA θi as

a (θi) =
[
1, e−j2πdfi sin θi/c, . . . , e−j2π(M−1)dfi sin θi/c

]T
(28)

According to (28)
u = −imag(ln(a(θi))) (29)

Eq. (29) becomes u = [0, 2πdfi sin θi/c, . . . , 2πd(M−1)fi sin θi/c]T . We
use least squares principle to estimate sin θi, and then estimate θi.

Assuming the estimated direction vector is â(θi) (the ith column
of the estimated direction matrix Â). The normalization for â(θi)
is processed, and then normalized sequence is processed to attain û
according to (29). Finally we use lease squares principle to estimate
sin θi. Least squares fitting is

P2e = û (30)
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where

P2 =




1
1
...
1

0
2πdf̂i/c

...
(M − 1)2πdf̂i/c


 , e =

[
e0
e1

]

where f̂i is the estimated frequency through (27). e1 is the estimated
value of sin θi.

The least square solution for e is[
ê0
ê1

]
=

(
PT

2 P2

)−1
PT

2 û (31)

DOA estimation is shown as follows

θ̂i = sin−1 (ê1) (32)

4.3. Joint Angle and Frequency Estimation Algorithm

In sum, trilinear decomposition-based joint angle and frequency
estimation method for uniform linear array (Trilinear-JAFE) is
presented in this paper. This algorithm firstly uses trilinear
decomposition to attain the direction matrix and the delay matrix, and
then uses least square principle to estimate frequency, finally estimates
angle according to the estimated direction matrix and frequency.

5. SIMULATION RESULTS

Let X̃p = ADp+1(Φ)S + Wp, the received noisy data, for p =
0, 1, . . . , P , where Wp are the additive Gaussian white noise (AWGN)
matrices. We define the sample SNR

SNR = 10 log10

P∑
p=0

‖ADp+1(Φ)S‖2
F

P∑
p=0

‖Wp‖2
F

dB (33)

We present Monte Carlo simulations that are to assess the angle
and frequency estimation performance of Trilinear-JAFE algorithm.
The number of Monte Carlo trials is 1000. 16-element-uniform linear
array is used in the simulations.

Note that
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N is the number of snapshots.
K is the number of the sources.
P is the number of delay-outputs for received signal of array
antennas.

Define RMSE =
√

1
1000

∑1000
m=1 [am − a0]

2, where ae is the
estimated angle/frequency, and a0 is the perfect angle/frequency.
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Figure 2. Angle-frequency scatter, SNR = 33 dB.

Simulation 1: The performance of our proposed algorithm is
investigated. P = 2, K = 3 and N = 50 in this simulation. Their
DOAs are 10◦, 20◦ and 30◦, and their carrier frequencies are 500 KHz,
800 KHz and 900 KHz. Fig. 2 shows the performance of our proposed
algorithm with SNR = 33 dB. From Fig. 2, we find that our proposed
algorithm works well.
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Figure 3. Angle-frequency estimation performance comparison.
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Simulation 2: We compare our proposed algorithm with
ESPRIT method. ESPRIT method is a multidimensional signal
subspace methods and belongs to the same general class of subspace
fitting methods. Trilinear-JAFE can be thought of as a generalization
of ESPRIT. K = 3 and N = 50 in this simulation. From Fig. 3, we
find that our proposed algorithm has better angle-frequency estimation
performance than ESPRIT method.
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Figure 4. Angle-frequency estimation with different P .

Simulation 3: The performance of our proposed algorithm with
different P is investigated. K = 3 and N = 50 in this simulation.
Fig. 4 presents the frequency and angle estimation performance with
different P . From Fig. 4, we also find that the angle-frequency
estimation performance of Trilinear-JAFE algorithm is improved with
P increasing. When P increases, that is to say delay diversity gain
increases, the performance of Trilinear-JAFE algorithm is improved.
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Figure 5. Angle-frequency estimation with different snapshot N .
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Simulation 4: Trilinear-JAFE algorithm performance under
different snapshots N is investigated in this simulation. P = 2
and K = 3 in this simulation. Fig. 5 shows the angle-frequency
estimation performance under different N . From Fig. 5, we find
that the angle-frequency estimation performance of Trilinear-JAFE
algorithm is improved with N increasing.

Simulation 5: The performance of Trilinear-JAFE algorithm
under different source number K is investigated in the simulation.
P = 2, N = 50 in this simulation. The source number K is set 2, 3
and 4. Trilinear-JAFE algorithm has the different performance under
different source number, as shown in Fig. 6. From Fig. 6, we find
that angle and frequency estimation performance of Trilinear-JAFE
algorithm degrades with the increasing of the source number K.
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Figure 6. Angle-frequency estimation with different sources.

6. CONCLUSION

Our work links the uniform linear array parameter estimation problem
to the trilinear model and derives a novel blind joint angle and
frequency estimation algorithm. The proposed algorithm has better
performance than ESPRIT. This method relies on a fundamental result
of the uniqueness of low-rank three-way data decomposition. Our
proposed algorithm is thought of as a generalization of ESPRIT, and
has wider application. An advantage of our proposed algorithm over
the classical subspace based algorithms, such as ESPRIT and MUSIC,
is that it does not apply any eigenvalue decomposition to the cross
spectral matrix or singular value decomposition to the received data.
Our proposed method is an iterative algorithm, and it only requires
fewer iterations for convergence.
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