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Abstract—The purpose of this paper is to introduce the concept of
fractals and its use in antenna arrays for obtaining multiband property.
One type of fractals namely, Cantor set is investigated. Cantor set
is used in linear array antenna design. Therefore, this array know
fractal Cantor linear array antenna. A comparison with conventional
non-fractal linear array antenna is made regarding the beamwidth,
directivity, and side lobe level. MATLAB programming language
version 7.2 (R2006a) is used to simulate the fractal and conventional
non-fractal linear array antenna and their radiation pattern.

1. INTRODUCTION

In many applications, it is necessary to design antennas with very
directive characteristics (very high gains) to meet the demands of
long distance communication; this can be accomplished by antenna
array [1]. The increasing range of wireless telecommunication
services and related applications is driving the attention to the
design of multifrequency (multiservice) and small antennas. The
telecom operators and equipment manufacturers can produce variety
of communications systems, like cellular communications, global
positioning, satellite communications, and others, each one of this
systems operates at several frequency bands. To give service to the
users, each system needs to have an antenna that has to work in
the frequency band employed for the specific system. The tendency
during last years had been to use one antenna for each system, but
this solution is inefficient in terms of space usage, and it is very
expensive. The variety of communication systems suggests that there
is a need for multiband antennas. The use of fractal geometry is a
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new solution to the design of multiband antennas and arrays. Fractal
geometries have found an intricate place in science as a representation
of some of the unique geometrical features occurring in nature. Fractal
was first defined by Benoit Mandelbrot [2] in 1975 as a way of
classifying structures whose dimensions were not whole numbers.
These geometries have been used previously to characterized unique
occurrences in nature that were difficult to define with Euclidean
geometries, including the length of coastlines, the density of clouds,
and branching of trees [3]. Fractals can be divided into many types,
as shown in Fig. 1.

(a) (b) (c)

(d)

Figure 1. Three fractal examples. (a) Sierpinski gasket. (b) Koch
snowflake. (c) Tree. (d) Cantor set.

2. CONVENTIONAL LINEAR ARRAY ANTENNA

An array is usually comprised of identical elements position in a regular
geometrical arrangement. A linear array of isotropic elements N ,
uniformly spaced a distance d apart along the z-axis, is shown in
Fig. 2 [4].

The array factor corresponding to this linear array may be
expressed in the form [1, 5]

AF (ψ) =
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where,
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AF (ψ) = the array factor
d = spacing between adjacent elements in the array
α = the progressive phase shift between elements
k = 2π

λ = the wave number
θ = elevation angle

3. FRACTAL LINEAR ARRAY ANTENNA

Fast recursive algorithms for calculating the radiation patterns of
fractal arrays have recently been developed in [6–8]. These algorithms
are based on the fact that fractal arrays can be formed recursively
through the repetitive application of a generating array. A generating
array is a small array at level one (P = 1) used to recursively construct
larger arrays at higher levels (i.e., P > 1). In many cases, the
generating subarray has elements that are turned on and off in a
certain pattern. A set formula for copying, scaling, and translating
of the generating array is then followed in order to produce a family
of higher order arrays.

The array factor for a fractal antenna array may be expressed in
the general form [6–8]

AFP =
P∏

p=1

GA
(
δp−1ψ

)
(4)

where GA (ψ) represents the array factor associated with the
generating array. The parameter δ is a scaling or expansion factor that
governs how large the array grows with each successive application of
the generating array and P is a level of iteration.

Figure 2. Linear array geometry of uniformly spaced isotropic
sources.
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This arrays become fractal-like when appropriate elements are
turned off or removed, such that

an =
{

1 if element n is turned on
0 if element n is turned off

One of the simplest schemes for constructing a fractal linear array
follows the recipe for the cantor set [9]. Cantor arrays own also
multiband properties, so it has multi frequencies (Fn):

Fn =
F0

δn
n = 0, 1, 2, . . . , P − 1 (5)

where F0 is the design frequency.

iteration 0

iteration 2

iteration 1

iteration 4

iteration 3

Figure 3. The first four iterations in the construction of the Cantor
set array.

The basic Cantor array, as shown in Fig. 3 may be created by
starting with a three element generating subarray, and then applying
it repeatedly over P scales of growth. The generating subarray in
this case has three uniformly spaced elements, with the center element
turned off or removed, i.e., 101. The Cantor array is generated
recursively by replacing 1 by 101 and 0 by 000 at each level of the
construction. Table 1 provides the array pattern for the first four
levels of the Cantor array.

The array factor of the three element generating subarray with
the representation 101 is

GA (ψ) = 2 cos (ψ) (6)

which may be derived from Eq. (1) by setting N = 1, a0 = 0.
Substituting Eq. (6) into Eq. (4) and choosing an expansion factor of
three (δ = 3), the results in an expression for the Cantor array factor
given by

AFP (ψ) =
P∏

p=1

GA
(
3p−1ψ

)
= 2

P∏
p=1

cos
(
3p−1ψ

)
(7)
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Table 1. First four levels of the fractal Cantor linear array.

P Elements array Pattern
Active

Elements
Total

Elements
1 101 2 3
2 101000101 4 9
3 101000101000000000101000101 8 27

4

101000101000000000
101000101000000000

00000000000000000010
1000101000000000101000101

16 81

4. COMPUTER SIMULATION RESULTS

In this work, MATLAB programming language version 7.2 (R2006a)
used to simulate and design the conventional and fractal linear array
antenna and their radiation pattern. Let, a linear array will be
design and simulate at a frequency F0 equal to 8100 MHz, (then
the wavelength λ0 = 0.037 m), with quarter-wavelength (d = λ0/4)
spacing between array elements and 16 active elements in the array and
progressive phase shift between elements (α) equal to zero. The level
four of Cantor linear array (101) have the number of active elements of
16 and the total elements number of 81. This array will operate at four
frequencies depending on the Eq. (5). These frequencies are 8100 MHz,
2700 MHz, 900 MHz, and 300 MHz. Depending on the frequencies
of the fractal Cantor linear array will be design and simulate of
conventional linear array antenna then compare the radiation field
pattern properties for them. The array factor for fractal and linear
array antenna is plotted with uniformly amplitude distribution which
they are feeding to active elements. The field patterns are illustrating
as shown in Fig. 4 and Fig. 5. While, the values of the side lobe level,
half power beamwidth, and directivity are illustrating in Table 2 and
Table 3.
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Table 2. SLL, D, and HPBW for fractal linear array antenna.

F (MHz) D (dB) HPBW (degree) SLLmax (dB)
8100 12.0436 2.0233 −5.451
2700 9.1969 6.0721 −5.446
900 6.204 18.2852 −5.446
300 3.1848 56.9372 −∞

Table 3. SLL, D, and HPBW for conventional linear array antenna.

F (MHz) D (dB) HPBW (degree) SLLmax (dB)
8100 9.1202 12.7372 −13.148
2700 4.6369 38.8742 −13.593
900 0.893 — −∞
300 0.106 — −∞

MHzF 9002 = MHzF 3003 =

MHzF 81000 = MHzF 27001 =

Figure 4. Array factor of a fractal Cantor linear array antenna.
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                        MHzF 81000 =                                                         MHzF 27001 =

MHzF 9002 = MHzF 3003 =

Figure 5. Array factor of a conventional non-fractal linear array
antenna.

5. CONCLUSION

At design frequency F0 = 8100 MHz, the field pattern for conventional
linear array antenna has the side lobes and narrow beam width, in other
word, the system work as a normal array antenna. But at frequencies
very low from the design frequency such as 300 MHz, the array antenna
operates as a point source. While fractal linear array antenna at all
frequencies not operates as a point source so we conclude that the
fractal Cantor linear array have capable to operating in multiband
while, the conventional linear array have not capable to operate in
multiband. Also the field pattern of the fractal linear array antenna
have high side lobe level, lower half power beam width and high
directivity, while, the conventional linear array antenna have lower
side lobe level, high half power beam width and lower directivity.
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