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Abstract—A modal-expansion method is proposed for the analysis of
a monopole antenna in a vibrating reverberation chamber. Inside the
chamber, electromagnetic fields are expanded using modal functions.
Mode matching process is applied to enforce the boundary conditions
at regional interfaces. Boundary conditions on the four side walls of the
chamber are imposed by the point matching method. Combining these
two matching processes, a set of matrix equations are obtained and
the expansion coefficients can then be determined accordingly. The
loss from the chamber walls is accounted for through homogeneous
material filling. The input impedance and scattering parameter of
a monopole in a reverberation chamber are computed and statistical
analysis of the scattering parameter is conducted when one of its walls
is vibrating.

1. INTRODUCTION

Electromagnetic reverberation enclosures [1] are preferred tools for
electromagnetic shielding and interference testing [2]. An interesting
and meaningful topic on reverberation chamber (RC) is to extend its
application potentials. Compared with the anechoic chamber (AC), RC
requires lower cost and smaller size. Therefore, antenna measurement
in RC attracts much interest recently. It has been shown that RC
can be an alternative to AC for measuring radiation efficiency of small
antennas and radiated power of mobile terminals [3]. Measurement of
an antenna’s free-space input impedance was conducted by Kildal et
al. [4] in RC. Moreover, the Rayleigh distributed fading environment
in RC can be used for measurement of multiple-input multiple-output
(MIMO) antennas [5, 6], which extends its potential beyond what is
possible in AC.
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In RC, statistical electromagnetic environment is created through
changing the boundary conditions continuously. Variation of boundary
condition is generally implemented using a rotating stirrer. Although
a rotating stirrer works well, it is still meaningful to study new
approaches of stirring to simplify the design of RC. Moreover,
measurement of small antennas may not need a large working volume.
Therefore, alternative methods of stirring have been proposed, such
as, electronic stirring [7–9], position stirring [8], vibrating intrinsic
reverberation chamber (VIRC) [10] and vibrating reverberation
chamber (VRC) [11, 12]. The VRC is a metallic cavity with one of
its walls vibrating. The boundary conditions change continuously as
the vibrating wall vibrates. To investigate the effectiveness of this
newly proposed stirring approach, it is very important to have an
analysis tool. With a two-dimensional model, the analysis of VRC was
conducted using the geometrical optics method in [11]. Kouveliotis et
al. [12] extended that work to three-dimensional structures, but they
simply assumed a transmitted wave instead of using a practical antenna
as the excitation. In [9], the modal-expansion method was used to
investigate the effectiveness of source stirring. However, the authors
didn’t take the effect of the transmitting antenna into consideration.
Most previous work provided analysis of these new types of RC, but
little attention was paid to the problem of antennas in RC. In the
past three years, Kildal et al. [8, 13] analyzed a dipole in RC using the
cavity Green’s function, which ingeniously avoided the discretization
of the chamber walls, but the computation of cavity Green’s function
is complex. Furthermore, the position stirring adopted by Kildal is not
very practical, because it is difficult to implement in reality. In [14],
Nie et al. modeled a monopole in shielded enclosures using the method
of moment, but the discretization of enclosure walls leads to a large
system of equations.

The modal-expansion method, shown to be efficient and accurate,
is widely used in analysis of antennas [15–18] and waveguide [19, 20].
Based on modal-expansion method, this paper introduces a realistic
and rigorous analysis of a monopole in vibrating reverberation
chamber. The whole structure is divided into three regions and
electromagnetic fields in each region are expanded using modal
functions derived from Helmholtz equation. Across the interfaces
of these regions, mode matching process is applied to enforce the
boundary conditions. Then, the point matching method is used to
impose boundary conditions on the cavity walls. Combining these
two matching processes, we can derive a set of matrix equations with
regard to the unknown field expansion coefficients. Once they are
solved, input impedance and scattering parameter of the monopole
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can then be computed. In the above procedure, the monopole and
the cavity walls are treated as perfect electric conductor (PEC). To
account for the metallic loss, the homogenous loss model by Kildal [8]
is adopted here. To the authors’ best knowledge, although the modal-
expansion method has been applied to the analysis of a reverberation
chamber, most of the previous work simply assumed an empty chamber
and ignored the transmitting antenna. This paper aims to provide a
rigorous analysis of a monopole in the vibrating reverberation chamber.

The rest of this paper is organized as follows. In Section 2,
formulations of field expansion, matching processes and the loss model
are presented. Section 3 presents the verification of the proposed
method and statistical analysis of the S -parameter at the monopole
feed.

2. FORMULATION

2.1. Field Expansions

The general arrangement of a vibrating reverberation chamber (VRC)
is depicted in Fig. 1. A monopole, excited through a coaxial waveguide,
is fixed on the bottom wall of a metallic chamber. The right side wall,
called the vibrating wall, vibrates to change the boundary condition
and hence the field distribution inside the chamber. In this paper,

Figure 1. Demonstration of a monopole antenna in a vibrating
reverberation chamber.
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(a) View from the front

(b) View from the top

Figure 2. Analysis model of a vibrating reverberation chamber
excited by a monopole antenna.

excitation of the monopole is represented using the delta gap source
model, whose equivalence to the coaxial waveguide excitation has been
demonstrated in [21]. The analysis model of this VRC is shown in
Fig. 2, where the whole structure of interest is divided into three
regions: I, II and III. To obtain the field expansions in each region,
we start from the Hertzian electric vector potential function �F e, which
satisfies the following Helmholtz equation:

∇2 �F e + ω2µε�F e = 0 (1)

Using the method of separation of variables, we can obtain the
expression of �F e. The magnetic vector potential function �F h also
satisfies the same Helmholtz equation and can be solved similarly. The
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expressions of these two vector potential functions are of the form:

�F e =
N∑

n=0

M∑
m=−M

[
ae

mnJm(knρ) + bemnYm(knρ)
]
cos

nπz

d
ejmφ�iz (2a)

�F h =
N∑

n=0

M∑
m=−M

[
ah

mnJm(knρ) + bhmnYm(knρ)
]
sin

nπz

d
ejmφ�iz (2b)

where kn =
√
k2

0 − (nπ/d)2, k2
0 = ω2µε and d is the height of the

corresponding region. Jm and Ym are the mth order first and second
kinds Bessel functions, respectively. In regions I and II, which contain
the axis ρ = 0, the expansion coefficients of Ym should be zero.
Moreover, it is reasonable to assume axial symmetry in regions I
and II since the radius of the monopole is rather small. From the
vector potential functions, field expansions can be obtained using the
relationships between them, which can be found in [22] and are hence
omitted here.

For the excitation gap region I, the gap height is rather small,
so variation along the z-direction can be ignored and only field
components EI

z and HI
φ are non-zero, which are

EI
z =

AI

jωε0

J0(k0ρ)
J0(k0a)

(3a)

HI
φ =

AI

k0

J ′
0(k0ρ)

J0(k0a)
(3b)

For region II between the top end of the monopole and the top
wall, we have

EII
z = − 1

jωε0

NII∑
n=0

kII
n εna

IIe
n

h2

J0(kII
n ρ)

J ′
0(kII

n a)
cos

nπ(z − ha)
h2

(4a)

EII
φ = jωµ0

NII∑
n=1

εna
IIh
n

kII
n h2

J ′
0(k

II
n ρ)

J0(kII
n a)

sin
nπ(z − ha)

h2
(4b)

EII
ρ =

1
jωε0

NII∑
n=1

nπεna
IIe
n

(h2)2
J ′

0(k
II
n ρ)

J ′
0(kII

n a)
sin

nπ(z − ha)
h2

(4c)

HII
z =

NII∑
n=1

εna
IIh
n

h2

J0(kII
n ρ)

J0(kII
n a)

sin
nπ(z − ha)

h2
(4d)
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HII
φ =

NII∑
n=0

εna
IIe
n

h2

J ′
0(k

II
n ρ)

J ′
0(kII

n a)
cos

nπ(z − ha)
h2

(4e)

HII
ρ =

NII∑
n=1

nπεna
IIh
n

kII
n (h2)2

J ′
0(k

II
n ρ)

J0(kII
n a)

cos
nπ(z − ha)

h2
(4f)

where εn =
[

1, for n = 0
2, for n > 0

]
.

For region III, similar to [18], normalization is applied to the
modal functions to avoid overflow of function values. The new modal
functions are

U1mn(ρ) =
Jm(kIII

n ρ)Ym(kIII
n a) − Ym(kIII

n ρ)Jm(kIII
n a)

Jm(kIII
n a2)Ym(kIII

n a) − Ym(kIII
n a2)Jm(kIII

n a)

U2mn(ρ) =
Jm(kIII

n ρ)Ym(kIII
n a2) − Ym(kIII

n ρ)Jm(kIII
n a2)

Jm(kIII
n a)Ym(kIII

n a2) − Ym(kIII
n a)Jm(kIII

n a2)

U3mn(ρ) =
Jm(kIII

n ρ)Y ′
m(kIII

n a) − Ym(kIII
n ρ)J ′

m(kIII
n a)

J ′
m(kIII

n a2)Y ′
m(kIII

n a) − Y ′
m(kIII

n a2)J ′
m(kIII

n a)

U4mn(ρ) =
Jm(kIII

n ρ)Y ′
m(kIII

n a2) − Ym(kIII
n ρ)J ′

m(kIII
n a2)

J ′
m(kIII

n a)Y ′
m(kIII

n a2) − Y ′
m(kIII

n a)J ′
m(kIII

n a2)

where a2 is a constant chosen to be a little larger than the largest
distance from the origin to the cavity walls, J ′

m and Y ′
m represent the

derivatives of the mth order first and second kinds Bessel functions,
respectively. With these modal functions, electromagnetic fields in
region III are expressed as

EIII
z =

1
jωε0

NIII∑
n=0

MIII∑
m=−MIII

εn
h
Be

mn(ρ) cos
nπz

h
ejmφ (5a)

EIII
φ = − 1

jωε0ρ

NIII∑
n=1

MIII∑
m=−MIII

jmnπεn
(kIII

n h)2
Be

mn(ρ) sin
nπz

h
ejmφ

+jωµ0

NIII∑
n=1

MIII∑
m=−MIII

εn
h
Ch

mn(ρ) sin
nπz

h
ejmφ (5b)
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EIII
ρ = − 1

jωε0

NIII∑
n=1

MIII∑
m=−MIII

nπεn
kIII

n h2
Ce

mn(ρ) sin
nπz

h
ejmφ

−jωµ0

ρ

NIII∑
n=1

MIII∑
m=−MIII

jmεn
hkIII

n

Bh
mn(ρ) sin

nπz

h
ejmφ (5c)

HIII
z =

NIII∑
n=1

MIII∑
m=−MIII

kIII
n εn
h

Bh
mn(ρ) sin

nπz

h
ejmφ (5d)

HIII
φ =

1
ρ

NIII∑
n=1

MIII∑
m=−MIII

jmnπεn
h2kIII

n

Bh
mn(ρ) cos

nπz

h
ejmφ

−
NIII∑
n=0

MIII∑
m=−MIII

εn
kIII

n h
Ce

mn(ρ) cos
nπz

h
ejmφ (5e)

HIII
ρ =

NIII∑
n=1

MIII∑
m=−MIII

nπεn
h2

Ch
mn(ρ) cos

nπz

h
ejmφ

+
1
ρ

NIII∑
n=0

MIII∑
m=−MIII

jmεn
h(kIII

n )2
Be

mn(ρ) cos
nπz

h
ejmφ (5f)

where

Be
mn(ρ) = aIIIe

mn U1mn(ρ) + bIIIe
mn U2mn(ρ),

Bh
mn(ρ) = aIIIh

mn U3mn(ρ) + bIIIh
mn U4mn(ρ),

Ce
mn(ρ) = aIIIe

mn U ′
1mn(ρ) + bIIIe

mn U ′
2mn(ρ),

Ch
mn(ρ) = aIIIh

mn U ′
3mn(ρ) + bIIIh

mn U ′
4mn(ρ).

2.2. Matching Processes

Imposing continuity boundary conditions across the interface ρ = a,
i.e.,

EIII
z =


 EI

z , z ∈ [0, h1]
0, z ∈ [h1, ha]

EII
z , z ∈ [ha, h]


 (6a)

EIII
φ =


 EI

φ, z ∈ [0, h1]
0, z ∈ [h1, ha]

EII
φ , z ∈ [ha, h]


 (6b)
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HIII
z = HII

z , z ∈ [ha, h] (6c)

HIII
φ = HII

φ , z ∈ [ha, h] (6d)

and invoking Galerkin’s method, we obtain matrix equations (7)

BIIIe
p = Mc

IA
Iζp + Mc

IIV
IIAIIeζp (7a)

Ye
pB

IIIe
p + BIIIh

p = Ms
IIV

IIhAIIhζp (7b)

AIIhζp = (Ms
II)

T
(
Yhh

p AIIIh
p + Zhh

p BIIIh
p

)
(7c)

AIIeζp = (Mc
II)

T

(
Yhe

p AIIIh
p + Zhe

p BIIIh
p

+Yee
p AIIIe

p + Zee
p BIIIe

p

)
(7d)

where AIIe, AIIh, AIIIh
p , BIIIh

p , AIIIe
p and BIIIe

p are vectors with
elements of aIIe

n , aIIh
n , aIIIh

pl , bIIIh
pl , aIIIe

pl and bIIIe
pl , respectively, and p

is a given value of index for the φ-directed modal function. Enforcing
boundary conditions that tangential electric field components must
vanish along the four side chamber walls, matrix equation (8) is
obtained using the point matching method.

SAAIIIe + SBBIIIe = 0 (8a)

SAeAIIIe + SBeBIIIe = SAhAIIIh + SBhBIIIh (8b)

where AIIIe, BIIIe, AIIIh and BIIIh are vectors with elements of
aIIIe

mn , bIIIe
mn , aIIIh

mn and bIIIh
mn , respectively. Elements of all the matrices

appearing in Equations (7) and (8) are elucidated in the Appendix
for convenience. It should be noted that the field expansions are
orthogonalized using the z-directed modal functions before invoking
the point matching process so that the computation is simplified to
one-dimension. After some manipulations, we have[

I − (Ms
II)

T
(
Zhh

0 − Yhh
0 Kh

0

)
Ms

IIV
IIh

]
AIIh

= (Ms
II)

T Yhh
0 Ke

0

(
Mc

IA
I + Mc

IIV
IIAIIe

)
(9a)[

I − (Mc
II)

T (Yee
0 K0 + Zee

0 )Mc
IIV

II
]
AIIe

= (Mc
II)

T (Yee
0 K0 + Zee

0 )Mc
IA

I (9b)

where the subscript 0 means p = 0 in (7), K = −
(
SA

)−1 SB,
Ke =

(
SAh

)−1 (
SAeK + SBe

)
and Kh = −

(
SAh

)−1 SBh. K0, Ke
0

and Kh
0 , extracted from K, Ke and Kh, respectively, represent the
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relationships between AIIIe
p , BIIIe

p , AIIIh
p and BIIIh

p for p = 0. From
Equation (9), AIIe and AIIh can be solved and then all the other
expansion coefficients can be obtained from (7a), (7b), (8a) and (8b).
It should be noted that, the matrices in (8) are block-diagonal matrices,
whose inversion can be computed very efficiently in a block-by-block
manner.

2.3. Loss Model

In the previous derivations, the monopole and chamber walls are
taken as perfect electric conductor (PEC). To account for the metallic
loss, the homogeneous loss model [8] is adopted here. In this model,
a constant finite conductivity σ is introduced in the volume of the
chamber and then the complex wavenumber is

k = ω
√
µ0(ε0 − jσ/ω) (10)

where ω is the angular frequency, σ is related to the mode bandwidth
�f1 by

�f1 = σ/(2πε0) (11)

This loss model can be applied to the proposed modal-expansion
method easily by computing the wavenumber using (10). σ can be
determined by (11) and �f1 is set to 5 MHz for the model used in [8].

3. VALIDATION AND NUMERICAL RESULTS

The proposed method is firstly validated against a 3-D MoM
software [23]. After validation, the code is used to investigate the
statistical property of the monopole’s S -parameter in this section.

3.1. Validation

The first example is a 14.4 cm× 14.4 cm× 14.4 cm metallic cavity with
a 5-cm long monopole placed at the bottom centre of the cavity. Fig. 3
demonstrates the input impedance results of the monopole. The right
side wall of the cavity is set to be the vibrating wall. Fig. 4 and Fig. 5
show the input impedance when the vibrating wall moves outwards and
inwards by 0.4 cm. The agreement between the proposed method and
the software is very good in all cases. In these simulations, N III = 45,
N II is chosen according to the convergence criteria [18]. 2M III + 1
equals to the number of points matched across the side walls, which
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(a) Input resistance

(b) Input reactance

Figure 3. Input impedance of a 5 cm-long monopole placed at the
bottom centre of a 14.4 cm×14.4 cm×14.4 cm vibrating reverberation
chamber. The chamber was loaded with a small homogenous loss
represented by a conductivity of σ = 0.001 S/m through the cavity.
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(a) Input resistance

(b) Input reactance

Figure 4. Input impedance of the monopole when the vibrating wall
is moved outwards by 0.4 cm.

are sampled following a density of ten points per wavelength [24] across
the φ direction.

Another example is a rectangular chamber of dimensions 0.779 m×
1.052 m× 1.682 m, which are the same as those used in [8]. A 12.5-cm
long monopole is placed at the bottom centre of the chamber. The
input impedance of the monopole from 0.5 to 0.7 GHz is demonstrated
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(a) Input resistance

(b) Input reactance

Figure 5. Input impedance of the monopole when the vibrating wall
is moved inwards by 0.4 cm.

in Fig. 6–Fig. 8. For this example N III = 100 is chosen and the other
truncated numbers are determined as described above. The loss of the
filling material is determined by (11) to give a bandwidth of 5 MHz,
as suggested by [8]. In Fig. 6–Fig. 8, the peak values of resistance
correspond to the resonant frequencies where strong coupling between
the monopole and the cavity occurs. It is observed that, the effect of
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Figure 6. Input impedance of a 12.5 cm-long monopole placed at the
bottom centre of a 0.779 m×1.052 m×1.682 m vibrating reverberation
chamber. The uniform loss is set to give mode bandwidth of �f1 =
5 MHz.

Figure 7. Input impedance of the monopole when the vibrating wall
is moved outwards by 1 cm.

the vibrating stirring is more significant at higher frequency. This is
reasonable because the electrical size of cavity dimension’s variation is
larger at higher frequency.
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Figure 8. Input impedance of the monopole when the vibrating wall
is moved inwards by 1 cm.

Figure 9. Statistical distribution of |S11| of a 5 cm-long monopole
placed at the bottom centre of a 14.4 cm× 14.4 cm× 14.4 cm vibrating
reverberation chamber.

3.2. Statistical Analysis of S-Parameter

The statistical behavior of the monopole’s S -parameter is investigated
when the chamber vibrates. The characteristic impedance is 50 Ω
because the excitation model is equivalent to a coaxial waveguide.
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Figure 10. Statistical distribution of S11 of a 12.5 cm-long monopole
placed at the bottom centre of a 0.779 m×1.052 m×1.682 m vibrating
reverberation chamber.

For the first example, the loss parameter is the same as that used in
previous simulations. At the frequency f = 1.69 GHz, 100 simulations
are conducted. In each simulation, the length of the chamber l is
changing and equal to l0 +�l, where l0 is 14.4 cm and �l is a random
variable uniformly distributed in [−0.4 cm, 0.4cm]. Fig. 9 gives the
statistical distribution of the magnitude of S11. The y-axis values are
probabilities from zero to one, though the scale is not linear. The
distance between tick marks is the distance between quantiles of the
distribution. In the plot, a line is drawn between the first and third
quartiles in the data. If the data falls near the line, the samplings obey
the Rayleigh distribution well. It is observed that, most of the points
are located near to the line. However, marks deviate from the line when
the magnitude of S11 approaches one. This is because the resistance of
the antenna is very small except when strong coupling occurs between
the monopole and the cavity, as can be seen from Fig. 3–Fig. 5. If
strong coupling doesn’t occur, the strong reflection of the cavity walls
determines the magnitude of S11, the randomness of which is hence
destroyed.

For the second example, 100 simulations are conducted at the
frequency f = 0.6 GHz and the statistical behaviour of |S11| is
demonstrated in Fig. 10. In these 100 simulations, the original length
of the chamber l0 is 0.779 m and the perturbation �l is a random
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variable uniformly distributed in [−0.01 m, 0.01 m]. Similarly with the
previous case, most marks fall near the straight line except the last a
few ones, which correspond to large values of |S11|. This is also caused
by the strong reflection of the cavity, which destroys the randomness
of |S11| at large values.

4. CONCLUSIONS

A modal expansion method has been developed for the rigorous
analysis of a monopole in a vibrating reverberation chamber. The loss
of the chamber has been taken into account using the homogeneous
loss model. The validity of the proposed method have been verified by
comparing our results with those obtained from alternative numerical
methods. Statistical analysis of the monopole’s S -parameters has also
been conducted to demonstrate the capability of the method. It is
found that the S -parameter doesn’t obey the Rayleigh distribution
very well under strong reflection. This situation may change if the
antenna is properly loaded, as the case in [8].

APPENDIX A. DEFINITION OF MATRICES IN (7)

The elements of matrices occurring in (7) are as follows:

M c
I(m) = Ic

I(m), M c
II(m,n) = Ic

II(m,n), (A1a)

V II
(m,n) = −kII

n εn
h2

J0(kII
n a)

J ′
0(kII

n a)
ζ(m,n), (A1b)

Ic
I(l) =

∫ h1

0
cos

lπz

h
dz

=


 h1, for l = 0

h

lπ

[
sin

(
lπh1

h

)]
, otherwise


 , (A1c)

Ic
II(l,n) =

∫ h

ha

cos
lπz

h
cos

nπ(z − ha)
h2

dz

=




h2 for l = n = 0

− lπ

h
sin

(
lπha

h

)
(lπ/h)2 − (nπ/h2)

2 otherwise


 . (A1d)

M s
II(m,n) = Is

II(m,n), (A2a)
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Is
II(l,n) =

∫ h

ha

sin
lπz

h
sin

nπ(z − ha)
h2

dz

=
−nπ

h2
sin

(
lπha

h

)
(lπ/h)2 − (nπ/h2)

2 (A2b)

Y e
p(m,n) =

1
k2

0a

jpnπ

(kIII
n )2 h

ζ(m,n), (A2c)

V IIh
(m,n) =

εn
kII

n h2

J ′
0(k

II
n a)

J0(kII
n a)

ζ(m,n). (A2d)

Y hh
p(m,n) =

kIII
n εn
h

U3pn(a)ζ(m,n), (A3a)

Zhh
p(m,n) =

kIII
n εn
h

U4pn(a)ζm,n. (A3b)

Y he
p(m,n) =

1
a

jpnπεn
h2kIII

n

U3pn(a)ζ(m,n), (A4a)

Zhe
p(m,n) =

1
a

jpnπεn
h2kIII

n

U4pn(a)ζ(m,n), (A4b)

Y ee
p(m,n) = − εn

kIII
n h

U ′
1pn(a)ζ(m,n), (A4c)

Zee
p(m,n) = − εn

kIII
n h

U ′
2pn(a)ζ(m,n). (A4d)

APPENDIX B. DEFINITION OF MATRICES IN (8)

Matrices in (8) are block-diagonal and the lth block is given as follows,

SA
l(m,n) = U1pl(ρm)ejpφm (B1a)

SB
l(m,n) = U2pl(ρm)ejpφm (B1b)

where p = n−MIII .
On the walls x = 0 and x = l,

SAe
l(m,n) = − 1

k2
0

lπ

kIII
l h

[
jp

kIII
l ρm

U1pl(ρm) + tanφmU ′
1pl(ρm)

]
ejpφm (B2a)

SBe
l(m,n) = − 1

k2
0

lπ

kIII
l h

[
jp

kIII
l ρm

U2pl(ρm) + tanφmU ′
2pl(ρm)

]
ejpφm (B2b)
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SAh
l(m,n) =

[
U ′

3pl(ρm) − jp tanφm

kIII
l ρm

U3pl(ρm)
]
ejpφm (B2c)

SBh
l(m,n) =

[
U ′

4pl(ρm) − jp tanφm

kIII
l ρm

U4pl(ρm)
]
ejpφm (B2d)

where p = n−MIII .
On the walls y = 0 and y = w,

SAe
l(m,n) =

1
k2

0

lπ

kIII
l h

[
jp tanφm

kIII
l ρm

U1pl(ρm) − U ′
1pl(ρm)

]
ejpφm (B3a)

SBe
l(m,n) =

1
k2

0

lπ

kIII
l h

[
jp tanφm

kIII
l ρm

U2pl(ρm) − U ′
2pl(ρm)

]
ejpφm (B3b)

SAh
l(m,n) = −

[
tanφmU ′

3pl(ρm) +
jp

kIII
l ρm

U3pl(ρm)
]
ejpφm (B3c)

SBh
l(m,n) = −

[
tanφmU ′

4pl(ρm) +
jp

kIII
l ρm

U4pl(ρm)
]
ejpφm (B3d)

where p = n−MIII .
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