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Abstract—Method of Moments (MOM) combining with the Kirchhoff
Approximation(KA) for analysis of the problem of optical wave
scattering by a stack of two one-dimensional Gaussian rough interfaces
is solved. The scattered field from the upper interface is solved
by MOM and the transmitted field from the lower one is expressed
from the Kirchhoff approximation where the multiple scattering
phenomenon is neglected. The advantage of this hybrid method is
that it is more exact than Kirchhoff approximation. The two rough
interfaces separate three lossless and homogeneous media. The bistatic
scattered field and the scattering coefficient are derived in this paper
for vertical and horizontal polarizations. The influence of the relative
permittivity, the height rms and the correlative length, the average
heights between the two interfaces on the bistatic scattering coefficient
is discussed in detail. The application of this work is the study of
electromagnetic modeling of oil slicks on ocean surfaces.

1. INTRODUCTION

The study of electromagnetic/optical wave scattering from rough
layered structures has been the subject of intensive investigation for
its application in a number of important research areas [1–6], such
as the remote sensing, either by radar or optical imagery, ocean
engineering, the design of optical scanning instrument for use in the
semiconductor industry as well as the surface optics. The remote
sensing can be used for detection and monitoring of possible oil spill
on ocean surfaces. However, other phenomena may lead to the same
effects on measurements. Electromagnetic modeling of oil slicks could
be an efficient mean to discriminate oil from lookalikes. In order to
validate such environmental alterations on measurements, we focus on
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the study of waves scattering from rough surfaces, in microwaves as
well in optics domains. Electromagnetic models [7] for rough surfaces
scattering have been developed for several years; however, these models
generally consider only a single layer [8, 9], that is to say one rough
interface. Their extension to multilayer separated by rough interfaces
have been studied analytically [10, 11]; In this paper, we are interested
in a numerical approach, using the hybrid method combining Method
of Moments (MOM) with the first-order Kirchhoff approximation (KA)
where the multiple scattering phenomenon is neglected. In this work,
the considered multilayer consists of two one-dimensional Gaussian
rough interfaces. The KA is used for the calculation of the transmitted
field from the lower rough surface and the MOM for the calculation
of the scattered field from the upper rough surface due to the incident
field. We consider both the transverse magnetic (VV) and transverse
electric (HH) solution to the hybrid method. The paper is organized
as follows: the theoretical formulation of method of moments is firstly
developed, and the transmitted fields from lower surface is derived
using the Kirchhoff approximation [12–15], then the numerical results
on the scattering coefficient of the two-layer model are given and
discussed.

2. THE THEORETICAL FORMULA FOR THE
SCATTERING MODEL

According to Fig. 1, the considered multilayer consists of two one-
dimensional Gaussian rough interfaces. The upper one S0, separates
a lossless homogeneous dielectric medium Ω0(ε0, µ0), with relative
permittivity ε0 = 1 and permeability µ0 = 1, from a lossless medium
Ω1(ε1, µ1 = µ0). This homogeneous medium fills a layer separated
from the semi-infinite lower medium Ω2(ε2, µ2 = µ0) by another rough
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Figure 1. Geometric model of a stack of two one-dimensional
Gaussian rough interfaces.
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surface S1. Each boundary is invariant with respect to any translation
along the y axis. The height profiles of S0 and S1 are given by
z0 = f0(x) and z1 = f1(x) respectively. d is the average height between
the two Gaussian rough interfaces.

For the case of a two media problem where the lower medium (Ω1)
has permittivity ε1, the dual integral equation is needed. Let ψ0(r),
ψ1(r) be the field in Ω0 and Ω1, respectively. The fields in Ω0 and Ω1

satisfy the following equations:
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Note that G0(r, r′) and G1(r, r′) are the Green’s functions for Ω0 and
Ω1, respectively.
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where r is on the rough surface. The field ψ0(r), ψ1(r) satisfies the
following equation based on boundary condition:

ψ0(r) = ψ1(r) |r ∈ S0 (4)

n̂ · ∇ψ0(r) =
ε0
ε1

n̂ · ∇ψ1(r) |r ∈ S0 (5)

where the normal vector on the rough surface n̂ = − f ′√
1+f ′2

x̂ +
1√

1+f ′2
ẑ. The rough surface is discretized along the x axis and MOM

with point-matching is used. We can obtain the matrix equation from
(1)–(2) as follows [16]:[

A B
C ρD

]
·
[
V1(x)
V2(x)

]
=

[
ψi(x)

0

]
(6)

where V1(x) = ψ0(r) |r ∈ S0 , V2(x) = u(x) =
√

1 + (df0

dx )2(n̂ ·
∇ψ0(r)) |r ∈ S0 , ρ = ε1/ε0 for vertical polarization. The elements
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of the matrix are shown below [17]:
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where ∆lm = ∆x
√

1 + (f ′0(xm))2, γ = 1.78107, e = 2.71828138
and the wave number of Ω0 and Ω1 are k0 = ω

√
µ0ε0, k1 =

ω
√
µ1ε1, respectively. f ′0(x) and f ′′0 (x) are the first- and second-order

differential of rough surface height function, respectively, and the detail
expressions of κ, κN , κ1, κ1N are given in [15]. After solving the
matrix Eq. (5), we can obtained the ψ0(r) and n̂ · ∇ψ0(r) without
considering the transmitted field from Ω1. In order to calculate the
total field ψ(r) of every point on the upper rough surface S0 with
considering the transmitted field ψtr

10(r), it is necessary to derive the
value of the transmitted fields ψtr

10(r) of every point. In the following,
the Kirchhoff approximation is applied to derive the transmitted fields.
The transmitted fields ψtr

10(r2) into Ω0 at the points C(r2) due to the
rough upper and lower interfaces is calculated, as represented in Fig. 2.

We consider that the upper and lower rough surfaces have on
every point a large radius of curvature relative to the wavelength of
the incident fields, λ0 and n1λ0, respectively, n1 being the index of
refraction in Ω1. Under the condition, the tangent plane hypothesis is
valid and Fresnel laws can be locally applied. Thus, at the point A(r0)
on S0, we consider the transmitted light ψtr

01. The transmitted field
ψtr

01 into Ω1 due to the incident field ψi(r0) is by

ψtr
01(r0) = T01(r0)ψi(r0) (8a)

n̂0 · ∇ψtr
01(r0) = T01(r0)

∂ψi(r0)
∂n0

(8b)

where Tij = ρij (1 + Rij ) is the Fresnel transmission coefficient. For
horizontal polarization ρij = 1 and for vertical polarization ρij =
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and εi(j) is the relative permittivity of the medium Ωi(j) and θk=0,1,2

represents the local incidence angle as it is shown in Fig. 2. The
transmitted beam from A(r0) will intercept the lower interface at point
B(r1). It can be easily located with the Fresnel law:
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1√
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Figure 2. Kirchhoff approximation.

Finally, the transmitted field ψtr
10(r2) at C are [12]
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In order to find the transmitted fields ψtr
10(r), the phase shift

between the field inA(r0) and C(r2) should be obtained. It is necessary
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to determine numerically the locations of the points B and C for each
point A(r0). It is easy for us to obtain the numerical point Bnum and
Cnum using some simple method. Finally, ∆ϕ is estimated by [12]

∆ϕ = k
√
ε1 (ABnum +BnumCnum) (12)

Then we can get ψtr
10(r) and n̂ · ∇ψtr

10(r) for each point from
Eq. (11). After obtaining ψ0(r) and n̂ · ∇ψ0(r) with MOM. Finally,
the values ψ0(r) and ψtr

10(r) (if it exists) are added at each point of S0,
the total fields of each point of S0 is

ψ(r) = ψ0(r) + ψtr
10(r) |if exist (13)

Notice that we calculate the Eq. (13) is to trace the ray reflected
from the lower surface which means that in some regions of the upper
surface there may be high density of such rays and other regions will
have low density. This may be mainly due to the fact that in this paper,
we are interested in the one-order Kirchhoff approximation where
the multiple scattering phenomenon is neglected and to reduce the
complexity of the hybrid method, the subsequent interactions between
the two surfaces are ignored. Furthermore, these factors may introduce
an error in the calculations especially for the calculation of the very
rough layers. For the scattering computation, the two-layer surface
realizations are needed at a set of P points with spacing ∆x over length
L = P∆x. Realizations with the desired properties can be generated
at points xp = p∆x(p = 1, . . . , P ) using [14]

f0,1(xp) =
1
L

P
2
−1∑
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2

F (Ki) exp(jKixp) (14)

where f0,1(xp) represents the height profiles of S0 and S1, respectively.
For i ≥ 0,
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√
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{
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and, for i < 0, F (Ki) = F (K−i)∗. Ki = 2πi/L and each time N(0, 1)
appears, which indicates an independent sample taken from a zero
mean, unit variance Gaussian distribution. For the present work, the
rough surface model used in scattering model is generated randomly
with a Gaussian roughness spectrum, i.e., [14]
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(
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2
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√
π
)
e−K2

i l20,1/4 (16)
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where δ0,1 represents the rms height of the upper and lower surface (S0

and S1), respectively as well as the correlation length l0,1. Eq. (14) is
computed with a fast Fourier transform (FFT). We can choose different
values of the parameters (δ0,1 and l0,1) for upper and lower Gaussian
rough surface.

It should be noted that, in numerical simulation of scattering from
rough surface, the tapered wave described by the tapering parameter g
has been employed to guard against the edge effects associated with the
illuminated finite surface L. The tapered incident wave illuminating
the composite model is given by [17]

ψi (r) = exp (−jk0 (x sin θi − z cos θi) (1 + w (r)))

exp

(
−

(
x+ z tan θi

g

)2
)

(17)

where g is the tapering parameter, θi is the incident angle. The
additional factor in the phase, w (r) is inserted such that ψi(r) obeys
the wave equation to a higher order. The choice of w (r) is expressed
as
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[
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g
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− 1

]

(kg cos θi)
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Then we can write the analytical expression of the scattered field
due to the rough upper and lower interfaces using Huygens’s principle
(ψ(r0) represents the total field on S0)

ψs(r) =
∫

S0

[ψ(r0)n̂ · ∇G0(r, r0) −G0(r, r0)n̂ · ψ(r0)]ds0 (19)

The bistatic RCS σ(θs) in the direction ks is then calculated on the
far field as in [17]:
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3. NUMERICAL RESULTS AND DISCUSSIONS

In all the following numerical implementations, both the relevant
parameters of the Gaussian rough surface are measured in incident
wavelength λ and the rough surface is created by 100 Monte Carlo
realizations in the following numerical simulations. The average height
between the two interfaces is d = 5λ for the scattering plots in Fig. 3–6.

In the Fig. 3(a), We first illustrate the rough surface scattering
from a two-layered Gaussian rough interfaces with the same parameters
by the hybrid method and KA. The bistatic scattering coefficient of this
two-layered Gaussian rough surface are computed by using the classical
KA and the hybrid method, respectively. It is found that the scattering
pattern by the hybrid method is in good agreement with that by KA
near the specular angular range and there is great difference in the
larger scattering angles. This indicates that the hybrid method is more
exact than KA. We next illustrate in Fig. 3(b) rough surface scattering
from a single- and two-layered system with Gaussian rough interfaces
with the same parameters. It is easy for us to find that the bistatic
scattering coefficient from two-layered system is larger than that from
the single-layered system on the most scattering angles except for the
specular direction. For the plot 1 in Fig. 3(b), the computing time of
the numerical simulations is 65 s. Here, the rough surface is created
by 1 Monte Carlo realization and the dominant frequency of CPU is
1.4 GHz.

To further explore the important scattering characteristic of the
two-layer Gaussian rough surface model, the dependency of the bistatic
scattering coefficient on relative permittivity ε2 is plotted for horizontal
polarization by the hybrid algorithm in Fig. 4. The incident angles
are θi = 20◦. The height rms of the upper and lower rough surface
are 0.1λ and the correlative length 1.2λ, respectively. It is observed
that the bistatic scattering cross section of layered model increases
with increasing ε2. It should be pointed out that as for the case
of ε2 = ε1, the two-layer media can be regarded as the single-layer
media, and the total scattered field in Ω0 only corresponds to the
scattered field ψsc

00(r0) in S0 due to the incident field. As for the case
of ε2 �= ε1 is concerned, the total scattered fields in Ω0 consists of
ψsc

00(r0) in S0 and ψtr
10(r) due to S1, which results that the bistatic

scattering coefficient of layered model increases with the larger value
of the relative permittivity ε2 in the lower media.

In Fig. 5, the effect of the height rms on the bistatic scattering
coefficient of the two-layer Gaussian rough surface with the same
parameters (δ0 = δ1, l0 = l1) is examined. The incident angles are
θi = 5◦. The relative permittivity of Ω1 and Ω2 are ε1 = 2.5, ε2 = 3.0,
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Figure 3b. The bistatic scattering coefficient of the single and two-
layer model.

respectively. The correlative length is 1.5λ. It is observed that the
bistatic scattering coefficient increases with increasing δ over the most
angular range except for the specular direction. It is mainly due to
the fact that the two-layer rough surface can be regarded as two flat
interfaces for the small value height rms, which results in the obvious
peaks on the specular direction (corresponding to the strong coherent
scattering) and weak incoherent scattering in the angular range far
from the specular direction.

In Fig. 6, the influence of the correlative length on the bistatic
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scattering coefficient of the two-layer Gaussian rough surface with
the same parameters (δ0 = δ1, l0 = l1) for horizontal polarization is
depicted. The incident angles are θi = 10◦. The relative permittivity
of Ω1 and Ω2 are as same as ones in Fig. 5. The rms height of S0 and
S1 are both 0.2λ. It can be seen that the bistatic scattering coefficient
increases by keeping the rms height constant and by decreasing the
correlation length, the electromagnetic roughness is constant, but the
rms slope increases, leading to a higher angular spreading of the
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scattered energy. This implies a decrease of the scattered energy in
the specular direction and a increase of the incoherent scattering (the
heavy line shown as in Fig. 6). The rough surface scattering from two-
layered system with the different heights d between the two interfaces
for horizontal polarization are also present in Fig. 7. The height rms
of the upper and lower rough surface are both 0.3λ and the correlative
length 1.5λ, respectively. The incident angle is θi = 10◦ and the relative
permittivity of Ω1 and Ω2 are as same as those in Fig. 6. It is found
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that the bistatic scattering coefficient is not sensitive to the varying of
the average height between the two interface.

4. CONCLUSION

To investigate the bistatic scattering from a stake of two one-
dimensional Gaussian rough surface, a hybrid algorithm combining the
method of moments with the Kirchhoff Approximation is developed.
This approach presents overcomes the problem of inaccuracy when
using the first-order Kirchhoff Approximation in some degree due to the
fact that the scattered fields from the upper rough sea surface is solved
by the MOM. The advantage of this hybrid method is performed in the
numerical results compared with that by KA. Finally, the influence of
the relative permittivity, the height rms and the correlative length, the
average heights between the two interfaces on the bistatic scattering
coefficient is discussed in detail. It is remained for us to calculate
the scattering from two-layer lossy dielectric rough surface using this
hybrid method which has more significance.
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