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DETERMINATION OF THE FREQUENCY-AMPLITUDE
RELATION FOR NONLINEAR OSCILLATORS WITH
FRACTIONAL POTENTIAL USING HE’S ENERGY
BALANCE METHOD
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Abstract—A He’s Energy balance method (EBM) is used to calculate
the periodic solutions of nonlinear oscillators with fractional potential.
Some examples are given to illustrate the effectiveness and convenience
of the method. We find this EBM works very well for the whole range
of initial amplitudes, and the excellent agreement of the approximate
frequencies and periodic solutions with the Exact or other analytical
solutions has been demonstrated and discussed. Comparison of the
result obtained using this method with that obtained by Exact or
other analytical solutions reveal that the EBM is very effective and
convenient and can therefore be found widely applicable in engineering
and other science.

1. INTRODUCTION

Nonlinear oscillator models have been widely used in many areas of
physics and engineering and are of significant importance in mechanical
and structural dynamics for the comprehensive understanding and
accurate prediction of motion. The study of nonlinear oscillators is
of interest to many researchers and various methods of solution have
been proposed. Surveys of the literature with numerous references,
and useful bibliographies, have been given by Nayfeh [1], Mickens [2],
Jordan and Smith [3] and more recently by He [4].
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Various approaches, including the Non-preservative methods [4],
homotopy perturbation method [5–9], Lindstedt- Poincaré method [10–
12], parameter-expansion method [13–16], Parameterized perturbation
method [17, 18], multiple scale method [19–22], and the harmonic
balance method (HBM) [23–26] have been developed to study the
nonlinear oscillators.

Recently, some approximate variational methods, including
approximate energy method [27–31], variational iteration method [32–
36] and variational approach [37–40], to solution, bifurcation, limit
cycle and period solutions of nonlinear equations have been given
much attention. Among these methods, the EBM is considered to
be one of powerful methods capable of handling strongly nonlinear
behaviors and, it can converge to an accurate periodic solution for
smooth nonlinear systems.

The main objective of this paper is to approximately solve
nonlinear oscillators with fractional potential by applying the Energy
balance method (EBM), and to compare the approximate frequency
obtained with the exact one and with other approximate frequency
obtained applying the variational approach solution [4] to the same
nonlinear oscillators. As we can see, the results presented in this Letter
reveal that the method is very effective and convenient for nonlinear
oscillators with fractional terms.

2. DESCRIPTION OF ENERGY BALANCE METHOD

In the present paper, we consider a general nonlinear oscillator in the
form [29]:

u′′ + f(u(t)) = 0 (1)

in which u and t are generalized dimensionless displacement and time
variables, respectively. Its variational principle can be easily obtained:

J(u) =
∫ t

0

(
−1

2
u′2 + F (u)

)
dt (2)

Where T = 2π/ω is period of the nonlinear oscillator, F (u) =
∫

f(u)du.
Its Hamiltonian, therefore, can be written in the form:

H =
1
2
u′2 + F (u) + F (A) (3)

Or:
R(t) =

1
2
u′2 + F (u) − F (A) = 0 (4)
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Oscillatory systems contain two important physical parameters, i.e.,
the frequency ω and the amplitude of oscillation, A. So let us consider
such initial conditions:

u(0) = A, u′(0) = 0 (5)

We use the following trial function to determine the angular frequency
ω:

u(t) = A cos(ωt) (6)

Substituting (6) into u term of (4), yield:

R(t) =
1
2
ω2A2 sin2 ωt + F (A cos ωt) − F (A) = 0 (7)

If, by chance, the exact solution had been chosen as the trial function,
then it would be possible to make R zero for all values of t by
appropriate choice of ω. Since Eq. (5) is only an approximation to
the exact solution, R cannot be made zero everywhere. Collocation at
ωt = π/4 gives:

ω =

√
2(F (A) − F (A cos ωt))

A2 sin2 ωt
(8)

Its period can be written in the form:

T =
2π√

2(F (A) − F (A cos ωt))
A2 sin2 ωt

(9)

3. NUMERICAL EXAMPLES

Example 1. To illustrate the basic procedure of the present method,
we consider an u1/3 force nonlinear oscillator [4]:

d2u

dt
+ εu1/3 = 0, (10)

with the initial conditions

u(0) = A,
du

dt
(0) = 0. (11)

For this problem, f(u) = u1/3 and F (u) = 3
4εu4/3.

Its variational principle can be easily obtained:

J(u) =
∫ t

0

(
−1

2
u′2 +

1
3
εu4/3

)
dt (12)
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Its Hamilton, therefore, can be written in the form

H =
1
2
u′2 +

3
4
εu4/3 =

3
4
εA4/3, (13)

or
1
2
u′2 +

3
4
εu4/3 − 3

4
εA4/3 = 0, (14)

In Eqs. (13) and (14) the kinetic energy (E) and potential energy
(T ) can be respectively expressed as E = u′2/2, T = 3εu4/3/4.
Throughout the oscillation, it holds that H = E + T = constant.

Substituting (6) into (14), we obtain :

R(t) =
1
2
A2ω2 sin2 ωt +

3
4
ε(A cos ωt)4/3 − 3

4
εA4/3 = 0, (15)

We obtain the following result:

ω =
1
2

√(
−6ε (A cos ωt)4/3 + 6εA4/3

)
A sinωt

, (16)

with T = 2π
ω , yield:

T =
4πA sinωt√(

−6ε(A cos ωt)4/3 + 6ε4/3
) . (17)

If we collocate at ωt = π/4, we obtain:

ω =

√
6

(
−(21/3)εA4/3 + 2A4/3

)
2A

, (18)

with T = 2π
ω , yield:

T =
4πA√

6
(
−(21/3)εA4/3 + 2A4/3

) . (19)

Example 2. Consider a more complex example in form [4]:

u′′ + au + bu3 + cu1/3 = 0, u(0) = A, u′(0) = 0, (20)

For this problem, f(u) = au+bu3+cu1/3 and F (u) = au2

2 +bu4

4 +3εu4/3

4 .
Its variational form reads

J(u) =
∫ t

0

(
−1

2
u′2 + a

u2

2
+ b

u4

4
+ 3ε

u4/3

4

)
dt (21)
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Substituting u(t) = A cos ωt into (21) and with T = 2π
ω , we obtain the

following results:

R(t) =
1
2
A2ω2 sin2 ωt +

1
2
aA2 cos2 ωt +

1
4
bA4 cos4 ωt

+
3
4
cA4/3 cos4/3 ωt − αA2

2
− bA4

4
− 3cA4/3

4
= 0, (22)

ω =

√
4aA2sin2ωt+4bA4 sin2ωt−2bA4sin4ωt−6c(A cosωt)4/3+6cA4/3

2A sinωt
,

(23)

T =
4πA sinωt√

4aA2sin2ωt+4bA4 sin2ωt−2bA4sin4ωt−6c(A cosωt)4/3+6cA4/3
.

(24)
From (23), (24) and ωt = π/4, we have:

ω =

√
4aA2 + 3bA4 − 6c21/3A4/3 + 12cA4/3

2A
, (25)

with T = 2π
ω , yield:

T =
4πA√

4aA2 + 3bA4 − 6c21/3A4/3 + 12cA4/3
. (26)

If we collocate at ωt = π/4 and with T = 2π
ω , we obtain:

ω =

√
A2 + 2γ

(√
4 + 2A2 − 2

√
1 + A2

)
A

, (27)

T =
2πA√

A2 + 2γ
(√

4 + 2A2 − 2
√

1 + A2
) . (28)

4. DISCUSSION OF EXAMPLES

The exact frequency ωex for Example 1, governed by Eq. (10) can be
derived as shown in Eq. (29) and the variational approach frequency
ωva for Example 2, governed by Eq. (20) can be derived as shown in
Eq. (30) [4].

ωex =
1.070451ε1/3

A1/3
, (29)

ωva =
√

a +
3
4
bA2 + 1.15959526696393cA−2/3, a = b = c �= 0. (30)
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The corresponding analytical approximation results of above examples,
are tabulated in Tables 1, 2, 3, 4, and 5.

Table 1. Comparison between analytical and the Exact solutions for
Example 1, when ε = 10.0, 1.0.

0.1= 1.0=
A

0.1 0.7178240235 0.7292897765 0.5938 % 2.269958874 2.306216768 1.572 %
0.5 0.4197860355 0.4264912487 0.5938 % 1.327480002 1.348683748 1.572 %
1 0.3331843972 0.3385063283 0.5938 % 1.053621576 1.070451000 1.572 %
5 0.1948474174 0.1979597017 0.5938 % 0.6161616353 0.6260035423 1.572 %

10 0.1571207194 0.1580592379 0.5938 % 0.4890478141 0.4968593409 1.572 %
50 0.09188475413 0.09243360305 0.5938 % 0.2859968965 0.2905651053 1.572 %
100 0.07292897765 0.07336459936 0.5938 % 0.2269958874 0.2306216768 1.572 % 
500 0.04264912487 0.04290387799 0.5938 % 0.1327480002 0.1348683748 1.572 % 
1000 0.03385063283 0.03405283051 0.5938 % 0.1053621576 0.1070451000 1.572 % 

ex ex exω ω ωω ω ex ex exω ω ωω ω

εε

Table 2. Comparison between analytical and the Exact solutions for
Example 1, when ε = 10.0, 100.0.

10.0= 100.0=
A

ex ex ex

0.1 7.178240235 7.292897765 1.572 % 22.69958874 23.06216768 1.572 %
0.5 4.197860355 4.264912487 1.572 % 13.27480002 13.48683748 1.572 %
1 3.331843972 3.385063283 1.572 % 10.53621576 10.70451000 1.572 %
5 1.948474174 1.979597017 1.572 % 6.161616353 6.260035423 1.572 %

10 1.546504978 1.571207194 1.572 % 4.890478141 4.968593409 1.572 %
50 0.9044015966 0.9188475413 1.572 % 2.859968965 2.905651053 1.572 %
100 0.7178240235 0.7292897765 1.572 % 2.269958874 2.306216768 1.572 % 
500 0.4197860355 0.4264912487 1.572 % 1.327480002 1.348683748 1.572 % 
1000 0.3331843972 0.3385063283 1.572 % 1.053621576 1.070451000 1.572 % 

ω ω ωω ω ex ex exω ω ωω ω

εε

Table 3. Comparison between EBM and the Variational approach for
Example 2, when a = b = c = 1.

1a b c= = =
A

va

0.1 2.481977697 2.527818119 
0.5 1.717469987 1.740184688 
1 1.691188466 1.705753577 
5 4.486608425 4.488493734 
10 8.731504325 8.732114705 
50 43.31375987 43.31380196 
100 86.60861115 86.06862442 
500 433.0138769 433.0138778 

1000 866.0259875 866.0259878 

ω ω
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Table 4. Comparison between EBM and the Variational approach for
Example 2, when a = c = 1, b = 10.

1 , 10a c b= = =
A

va

0.1 2.495538677 2.541134480 
0.5 2.153416624 2.171576097 
1 3.100019100 3.107988943 
5 13.74334949 13.74396508 
10 27.40784254 27.40893700 
50 136.9345895 136.9346028 
100 273.8631986 273.8632027 
500 1369.306765 1369.306765 

1000 2738.612972 2738.612972 

ω ω

Table 5. Comparison between EBM and the Variational approach for
Example 2, when a = b = 1, c = 10.

1 , 10a b c= = =
A

va

0.1 7.248077875 7.404805496 
0.5 4.336995685 4.426615803 
1 3.584854846 3.653211282 
5 4.852478915 4.869882959 
10 8.853907480 80859925071 
50 43.32225689 43.32267763 
100 86.61128835 86.61142093 
500 433.0140600 433.0140692 

1000 866.0260450 866.0260481 

ω ω

In Example 1, it is seen from the Table. 1, that the error
percentage of EBM is 0.5983% for ε = 0.1. So from the Tables 1 and
2, the error percentage of the EBM are 1.572% for ε = 1.0, 10.0, 100.0.

For Example 2, In case a = 1, c = 0, Eq. (20) reduces to the
well-known Duffing equation, and its approximate frequency reads:

ω =
2πA√

1 + 3/4bA2
. (31)

With the Exact solution is:

ωex =
2

π
√

1 + bA2

∫ π/2

0

dx√
1 − k sin2 x

, a = c = 0, (32)
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(a) ε = 0.1, A = 10 (b) ε = 1.0, A = 10

(c) ε = 10.0, A = 10 (d) ε = 100, A = 10

Figure 1. Comparison of the approximate solution (EBM) with the
Exact solution for Example 1.

Where k = 0.5bA2/(1 + bA2).
What is rather surprising about the remarkable range of validity

of (31) with is that the approximate frequency, Eq. (31), as b → ∞ is
also of high accuracy.

lim
b→∞

ωex

ω
=

√
3

π

∫ π/2

0

dx√
1 − 0.5 sin2 x

= 0.9294. (33)
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(a) α = c = 1, b = 10, A = 10 (b) α = c = 1, b = 10, A = 10

Figure 2. Comparison of the approximate solution (EBM) with the
Variational approach solution for Example 2.

Therefore, for any value of b > 0, it can be easily proved that the
maximal relative error of the frequency (31) is less than 7.6%, i.e.,
|ω − ωex|/ωex < 7.6%.

In case a = 0, c = 0, Eq. (20) becomes

u′′ + bu3 = 0, (34)

Its frequency, then, reads

ω =
√

3
4
bA2 = 0.866b1/2 (35)

Its exact frequency [4] is ωex = 0.8472b1/2A. Therefore, its accuracy
reaches 2.2%. In case a = b = 0, Eq. (20) turns out to be Eq. (10).

To further illustrate and verify the accuracy of this approximate
analytical approach for Example 1, comparison of this analytical
method with the Exact solution are presented in Figs. 1(a)–(d), for
ε = 0.1, 1.0, 10.0, 100.0.

Figs. 2(a), (b) represent the corresponding displacement u(t) in
Example 2, for A = 10, a = b, c = 10. Apparently, it is confirmed
that the analytical approximations show excellent agreement with the
exact or other analytical approximation solutions.
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5. CONCLUSION

We used a very simple but effective method (EBM) for nonlinear
oscillators. The method consists of a combination of He’s variational
approach, to determine frequency and amplitude of the system. These
examples have shown that the approximate analytical solutions are
in excellent agreement with the corresponding exact solutions. The
method can be easily extended to any nonlinear oscillator without any
difficulty. Moreover, the present work can be used as paradigms for
many other applications in searching for periodic solutions of nonlinear
oscillations and so can be found widely applicable in engineering and
science.
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