
Progress In Electromagnetics Research B, Vol. 9, 263–279, 2008

ANALYTICAL FORMULAE FOR RADAR CROSS
SECTION OF FLAT PLATES IN NEAR FIELD AND
NORMAL INCIDENCE

P. Pouliguen and R. Hemon †

Centre d’Electronique de l’Armement
Division CGN
35170 Bruz, France

C. Bourlier

IREENA
Polytech’Nantes
La Chantrerie, rue C. Pauc, 44306 Nantes cedex 3, France

J. F. Damiens

Centre d’Electronique de l’Armement
Division CGN
35170 Bruz, France

J. Saillard

IREENA
Polytech’Nantes
La Chantrerie, rue C. Pauc, 44306 Nantes cedex 3, France

Abstract—Radar Cross Section is most of the time defined in far
field. In that case, RCS is totally independent of the range between
the radar and the target. However, in several kinds of military
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1. INTRODUCTION

In many operational military scenarios, it can be very useful to
deal with the near-field scattering characteristics of the targets. For
example, in naval electronic warfare, battleships are most of the times
observed in the near-field zone of seekers. Below the Fraunhofer limit,
RCS depends on the range between the target and the radar and needs
to be evaluated versus this parameter.

To the authors knowledge, very few works are published on near-
field RCS computation. Vogel et al. [1] have proposed a Physical
Optics (PO) approximation in the near-field region. The surface
of the target is approximated by flat surface patches sized in such
a way that for each individual patch the far-field approximation
applies. Then, the integration over each meshing element is carried
out analytically. The reflection from the entire object is calculated
by vectorial summation of all individual elementary reflections. More
recently, Legault et al. [2] have implemented such a technique to
compute RCS of vessels in realistic configurations. In these both works
the near-field RCS is defined as the far-field RCS, simply omitting the
limit R → ∞. To simulate the radar returns of an airborne target
from mid-course to end-game, the NcPTD and Npatch codes [3, 4] have
been developed, based on PO/PTD and shooting and bouncing rays
methods. Pouliguen et al. have also proposed method [5, 6] to calculate
near-field RCS, based on PO and the division of the target surface in
sub-surfaces (triangular meshes), in such a way that all the elementary
surfaces are located in the far field of the transmitter and the receiver.
Also, a new definition of near-field RCS has been proposed, using the
transmitter generator voltage rather than the electric field incident on
the target surface. This definition allows considering very naturally
the non uniform magnitude and phase of the incident EM field on the
target surface.

Moreover, unlike the far-field, no simple analytical formulae exist
to calculate near-field RCS of simple shaped targets such as plates,
discs. Previous works [6, 7] have focused on particular phenomena
appearing on monostatic RCS of perfectly conducting flat circular and
square plates, when these targets are observed in near-field and for a
normal incidence. These phenomena are the periodic or the pseudo-
periodic behaviour of the monostatic RCS versus the frequency and
also that their maximum values, at a given range as the frequency
varies, are only dependant of the observation range and always appear
in near-field. This paper proposes simple and approximated analytical
formulae to express monostatic near-field RCS of perfectly conducting
flat plates observed in normal incidence. Thus, some of the phenomena
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shown just numerically in [6, 7] are here more rigorously demonstrated.

2. NEAR-FIELD RCS

In the following, we consider an isotropic antenna radiation in order
to focus only on the spherical wave effects. In near-field, the exact
expression of RCS (1) relates the electric and magnetic fields scattered
by the target

{
�Es; �Hs

}
with the electric and magnetic fields incident

on the target surface
{
�Eis; �His

}
,

σ = 4πR2

∣∣∣ �Es ∧ �H∗
s

∣∣∣∣∣∣ �Eis ∧ �H∗
is

∣∣∣ . (1)

Relation (1) is difficult to apply because it needs to consider the electric
and magnetic fields incident on each point of the target surface. So,
a first approximation consists in supposing that the EM field radiated
by the antenna has a spherical wave structure, locally plane on the
target surface, which allows expressing the incident magnetic field in
function of the incident electric field. Then, considering the electric
field incident on the target in function of the generator voltage Vi (see
relation (A9) in appendix A), we obtain the more tractable relation to
calculate near-field RCS

σ ≈ 4πR4Z0

∣∣∣ �Es ∧ �H∗
s

∣∣∣
|Vi|2

. (2)

In the same way, a second approximation is to consider that the
scattered EM wave front has a spherical structure, locally plane on
the receiving antenna. In that case, the relation (2) can be also
approximated by (3) and (4),

σ ≈ 4πR4

∣∣∣ �Es

∣∣∣2
|Vi|2

, (3)

σ ≈ 4πR4Z2
0

∣∣∣ �Hs

∣∣∣2
|Vi|2

. (4)
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3. ANALYTICAL FORMULAE OF MONOSTATIC
NEAR-FIELD RCS OF FLAT PLATES IN NORMAL
INCIDENCE

We consider the case of flat plates observed in normal incidence (Radar
axis parallel to Z axis), as illustrated on Figure 1. The e−jωt time factor
has been assumed and suppressed. To demonstrate the remarkable
behaviors shown in [6] and [7], we consider the expression of the
magnetic field scattered by a perfectly conducting target, obtained
from Stratton-Chu integral equation [8] simplified thanks to Physical
Optics approximations [9]. Then, applying it to the particular case of
a flat surface, we obtain (see appendix A)

�Hs ≈ −j Vi

λZ0

∫∫
S

[
(r̂ · n̂) ĥi −

(
r̂ · ĥi

)
n̂
] ej2kr

r2
dS, (5)

with

r =
∣∣∣�R− �ρ

∣∣∣ =
√
R2 + ρ2.

In monostatic condition, as r̂ · ĥi = 0, Equation (5) becomes:

�Hs ≈ −j Vi

λZ0

∫∫
S

(r̂ · n̂) ĥi
ej2kr

r2
dS. (6)

Figure 1. Geometry of the backscattering by a flat plate in near field.
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Figure 2 shows the monostatic near-field RCS of a perfectly
conducting square plate of side a = 0.30 m, versus frequency, observed
at the range R = 1 m, calculated using the PO integral (6) in solid
line and using the Finite Element Method (FEM) in dashed line. The
two methods show a very good correlation, particularly for frequencies
superior to 2 GHz, which validates the PO approach. One observes
some differences at low frequencies (in and below the resonance region:
F ≤ 2 GHz; a/λ ≤ 2) due to the limit of PO validity.

Figure 2. Near-field RCS of a metallic square plate of side 0.30 m
versus frequency at R = 1 m Comparison between PO (solid line) and
FEM (dashed line).

One considers the target size enough small to verify ρ2 	 R2 and
to allow the following approximations:

for the amplitude terms r≈R, r̂ · n̂ ≈ 1 and ĥi ≈ Ĥi, (7a)
for the phase term r≈R+ρ2/2R in cylindrical coordinates, (7b)

r≈R+(x2+y2)/2R in Cartesian coordinates.
(7c)

These approximations are not a great constraint; for example if R = 3a
the minimum value of the quantity r̂ · n̂ is equal to 0.986 and the
maximum value of r = 3.0414a is approximated by r = 3a for the
amplitude term and by r = 3.0417a for the phase term.
A. The circular plate case

For the disc of radius a and surface S, considering cylindrical
coordinates and substituting approximations (7a) and (7b) in (6), a
more compact form is found to describe the backscattered magnetic
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field

�Hs ≈ −j 2πViĤie
j2kR

λZ0R2

a∫
0

ρ ejk ρ2

R dρ. (8)

Integrating (8) by parts and using (4) leads to the simple formula of
the near-field RCS

σ ≈ 2πR2

{
1 − cos

(
ka2

R

)}
. (9)

This formula confirms the periodic behavior of RCS versus frequency
and the empirical formulae established in [6] and [7]. For example (9)
shows that the maximum RCS of the disc, at a specified range R as
the frequency varies, is equal to

σmax ≈ 4πR2. (10)

Moreover we remark that when R tends toward infinity, relation (9)
tends toward the well known formula

σ
R→∞−→ 4πS2

λ2
. (11)

Figures 3 and 4(a) illustrate the validity of the simple formula
(9). On Figure 3(a), the RCS of a perfectly conducting disc of radius
a = 0.30 m is plotted versus range R at 15 GHz, calculated using the
PO integral and also the analytical formula (9). On Figure 3(b), the
RCS of the same target is plotted versus frequency at R = 5 m and at
R = 10000 m, calculated with the PO integral and (9). We note a good
accuracy of the RCS calculated using the analytical formula (9), versus
range and frequency, except a slight shift due to the approximations
(7).

Figure 4(a) is a zoom on the Figure 3(a) between ranges 0.5 m and
3 m. Its analyze confirms a shift versus range and an error on RCS
maximum levels, which decrease as the range R increases, according
to the approximations (7) done on the amplitude and phase terms in
(6). The accuracy becomes quite acceptable as R becomes greater than
three times the target diameter 2a; in that case the shift is lower than
5 percent of the range.

At lower distances, to enhance accuracy, it is necessary to maintain
higher order terms in the phase approximation. For example, if we
express the distance r in the phase term as the Taylor series expansion:

r ≈ R+ ρ2/2R− ρ4/8R3 + ρ6/16R5 − 5ρ8/128R7, (12)
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(a)

(b)

Figure 3. Monostatic RCS of a disc of radius 0.30 m at normal
incidence (a) Above: RCS versus range at F = 15 GHz (b) Below:
RCS versus frequency at ranges 5 m and 10000 m.

one obtains the following expression of the backscattered magnetic
field:

�Hs ≈ −j 2πViĤie
j2kR

λZ0R2

a∫
0

ρe
jk

(
ρ2

R
− ρ4

4R3 + ρ6

8R5 −
5ρ8

64R7

)
dρ. (13)

Then, integrating (13) by parts and using (4), we obtain the following
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(a)

(b)

Figure 4. Monostatic RCS of a disc of radius 0.30 m, at normal
incidence, zoom versus range at F = 15 GHz (a) Above: analytical
formula (9) (b) Below: analytical formula (14).

relation for the near-field RCS:

σ ≈ πR2




1 +
1(

1 − a2

2R2
+

3a4

8R4
− 5a6

16R6

)2

−2
cos

(
ka2

R

(
1 − a2

4R2
+

a4

8R4
− 5a6

64R6

))

1 − a2

2R2
+

3a4

8R4
− 5a6

16R6


 . (14)
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Figure 4(b) shows the same result than given on Figure 4(a), but
computed with the formula (14). It confirms that conserving more
terms in the phase expansion allows achieving a better accuracy. We
particularly observe a significant reduction of the shift which becomes
lower than 2.5 percent of the range on the total range domain analyzed.

We also notice that in both cases, formula (9) and (14) describe an
identical accuracy on maxima RCS levels. The error on RCS maxima is
less than 1 dB as R becomes greater than 1.5 times the target diameter
2a. To ameliorate this accuracy, it would be convenient to maintain
higher order terms also in the amplitude approximations (7).
B. The rectangular plate case

For the rectangular plate of sides a and b, considering Cartesian
coordinates and substituting approximations (7a) and (7b) in (6), the
backscattered magnetic field is expressed as follows

�Hs ≈ −j ViĤie
j2kR

λZ0R2

a/2∫
−a/2

ejk x2

R dx

b/2∫
−b/2

ejk y2

R dy. (15)

Then, applying the stationary phase method [10] to evaluate these
integrals (see appendix B) leads to

�Hs≈−j ViĤie
j2kR

λZ0R2

(√
Rλ

2
ej π

4 −j 2R
ka

ej ka2

4R

)
·
(√

Rλ

2
ej π

4 −j 2R
kb

ejk b2

4R

)
.

(16)

For the square plate of side a, putting (16) in (4) and developing allow
writing the monostatic near-field RCS under the analytical form

σ ≈ 4πR2

{
1
4

+ 2X +X2 −X sin
(

1
πX

)

−
√

2X (1 + 2X) sin
(
π

4
− 1

2πX

)}
, (17)

with

X =
Rλ

π2a2
.

This formula confirms the pseudo-periodic behavior of RCS versus
frequency and the empirical formulae published in [6] and [7].

In [6], it is shown numerically that the three first maxima of the
square plate near-field RCS are:

σ1
max ≈ 32

π
R2, σ2

max ≈ 2πR2, σ3
max ≈ 17

π
R2. (18)
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In the same way, in [6] it is shown numerically that the three first
minima of the square plate near-field RCS are:

σ1
min ≈ π

3
R2, σ2

min ≈ π

2
R2, σ3

min ≈
√
πR2. (19)

We also observe that when the frequency F tends toward infinity and
when the range keeps a finite value R, the relation (17) tends toward
the following formula:

σ
F→∞−→ πR2. (20)

Figure 5 allows analyzing the validity of the simple formula (17).
Figure 5(a) presents the RCS of a perfectly conducting square

plate of side a = 1 m, versus range R, at 15 GHz, calculated with the
PO integral and with the analytical formula (17). Figure 5(b) shows
the RCS of the same target versus frequency at R = 18 m, calculated
using the PO integral and using (17), then at R = 10000 m (far field)
calculated with PO. In both cases, one notes a good accuracy of the
analytical formula (17) with the following restrictions:
- When the range becomes important, the RCS calculated with the
analytical relation diverges from the PO integration result. Numerical
computations show that to obtain RCS accuracy better than 1 dB with
(17) it is necessary to verify the criterion:

R < 0.0932
π2a2

λ
. (21)

When the frequency becomes low (below 5GHz), the RCS calculated
with the analytical relation diverges also from the PO integration
result.

These upper and lower bounds of validity isversus range and
frequency are due to the fact that (17) has been established considering
only the first term of the asymptotic expansion of the Fresnel
integral (B7) which appears when the magnetic field expression (15) is
developed using the stationary phase method [10]. This approximation
is only valid for large arguments of the Fresnel integral; but when
the range becomes large, or when the frequency becomes low, this
argument becomes small and it’s necessary to keep other terms.
Keeping the two first terms of the asymptotic expansion of the Fresnel
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(a)

(b)

Figure 5. Monostatic RCS of a square plate of side a = 1 m at normal
incidence (a) Above: RCS versus range at F = 15 GHz (b) Below: RCS
versus frequency at ranges 18 m and 10000 m.

integral leads to the following backscattered magnetic field:

�Hs ≈ −j ViĤie
j2kR

λZ0R2

(√
Rλ

2
ej π

4 − j
2R
ka

ej ka2

4R

(
1 − j

λR

πa2

))

×
(√

Rλ

2
ej π

4 − j
2R
kb

ejk b2

4R

(
1 − j

λR

πb2

))
. (22)

Then, a more accurate analytical expression for the near field RCS of
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Figure 6a. Monostatic RCS of a square plate of side 1 m at normal
incidence, versus range at F = 15 GHz — PO integration in solid line
— formula (23) in dashed line.

5 10 15 20 25 30 35 40
Frequency (GHz)

40
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20

R
C

S
 (

dB
sq

m
)

....      PO integration                                   D=18m          Max=35.19 dB                   Fmax=7.9 GH
+++    Analytical formula                               D=18m          Max=35.68 dBsqm             Fmax=7 GH
____  Analytical formula with more terms     D=18m          Max=35.55 dBsqm             Fmax=8 GH

Figure 6b. Monostatic RCS of a square plate of side 1 m at normal
incidence versus frequency at 18 m — PO integration in dashed line —
formula (17) in cross — formula (23) in solid line.

the rectangular plate is obtained using (22) and (4)

σ ≈ 4π
λ2

∣∣∣∣∣
(√

Rλ

2
ej π

4 − j
2R
ka

ej ka2

4R

(
1 − j

λR

πa2

))

×
(√

Rλ

2
ej π

4 − j
2R
kb

ejk b2

4R

(
1 − j

λR

πb2

))∣∣∣∣∣
2

(23)
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Figure 6a presents the RCS of a perfectly conducting square plate of
side a = b = 1 m versus range R at 15 GHz, calculated with the PO
integral and also with the analytical formula (23). One observes a
significant reduction of the error; now the criterion (21) gives RCS
accuracy better than 0.3 dB.
- Numerical computations, with (17) and (23), show an error inferior to
1 dB as R becomes greater than three times the target size. This lower
bound of validity versus R is mainly due to the phase and amplitude
approximations (7). So, it is almost the same for the plate and the
disc. Therefore, these results can be enhanced if the amplitude and
phase approximations (7) are limited.

4. CONCLUSION

A method based on Physical Optics has been developed to calculate the
near-field RCS of targets in the high frequency limit. Then, analytical
relations have been established to approximate the monostatic near-
field RCS of circular and square flat metallic plates observed in normal
incidence. Some validity domains and asymptotic limits are established
for these formulae. These new expressions demonstrate the remarkable
phenomena already underlined in [6, 7], as the periodic behavior versus
frequency of the near-field RCS of a metallic circular plate, and also
the dependence of its maximum RCS which is only function of the
observation range. Future works will focus on finding such analytical
formulae valid in oblique incidence, for flat plates and for other simple
shapes. Also we will try to limit some approximations, done on
amplitude and phase terms, in order to enhance the accuracy for very
low ranges.

APPENDIX A.

The magnetic field scattered by an obstacle of surface S is deduced
from the Magnetic field integral equation (MFIE) [8, 9]

�Hs =
1
4π

∫∫
S

(
jωε �Mφ+ �J ∧∇′φ+

j

ωµ

[
�M · ∇′

]
∇′φ

)
ds (A1)

with the �M = �E ∧ n̂ and �J = n̂ ∧ �H the magnetic and electric
currents induced on S, and with the total EM fields �E = �Ei + �Es

and �H = �Hi + �Hs, where { �Ei, �Hi} and { �Es, �Hs} are respectively the
incident and scattered EM fields.
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φ = ejkr

r is the Green function and its gradient

∇′φ = −∇φ = −
(
jk − 1

r

)
· r̂ (A2)

Using the relation [�L · ∇′]∇′φ = ∇′[�L · ∇′φ], one shows that[(
�J

�M

)
· ∇′

]
∇′φ=

[
−(1 − jkr)

(
�J

�M

)
+(3−j3kr−k2r2)

{
r̂ ·

(
�J

�M

)}
r̂

]
φ

r2

(A3)

Then, replacing (A2) and (A3) in (A1), one obtains

�Hs =
j

4πωµ

∫∫
S

[
(−1 + jkr + k2r2) �M − (k2r2 + jkr)Z �J ∧ r̂

+ (3 − j3kr − k2r2)(r̂ · �M)r̂
] φ

r2
ds (A4)

Considering the surface S is such that its radii of curvature at all
points are much larger than the wavelength [9], it allows approximating
it at any point as an infinite plane tangent to the surface at that
point. Moreover, if S is perfectly electric conducting, the magnetic
and electric currents induced on S are

�J = 2n̂ ∧ �Hi (A5)
�M = 0 (A6)

Putting (A5) and (A6) in (A4) leads to

�Hs ≈
−j

2πωµ

∫∫
S

[
(k2r2 + jkr)Z0(n̂ ∧ Ĥi) ∧ r̂

] φ

r2
ds (A7)

and supposing kr � 1 allows to write

�Hs ≈
−j
λ

∫∫
S

[
(�n ∧ Ĥi) ∧ r̂

]
φds (A8)

The incident magnetic field can be expressed

�Hi =
Vi

Z0

ejkr

r
ĥi (A9)

with Vi the generator voltage.
Finally, substituting (A9) in (A8) and using the vectorial identity

(â ∧ b̂) ∧ ĉ = (ĉ · â)b̂− (ĉ · b̂)â lead to

�Hs ≈ −j Vi

λZ0

∫∫
S

[
(r̂ · n̂)ĥi − (r̂ · ĥi)n̂

] ej2kr

r2
ds (A10)
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APPENDIX B.

We need to solve an integral of the form

I =
∫ b2

b1

f(x)ejkg(x)dx (B1)

where f(x) = 1, g(x) = x2/R, b1 = −a/2 and b2 = a/2.
The stationary phase approximation [10] allows expressing this

integral as

I = I0 − 2Ia/2 (B2)

with

I0 =

√
2π

k|g′′(x0)|
f(x0) exp

{
j
[
kg(x0) +

π

4
sgn(g′′(x0))

]}
(B3)

Ia/2 = U(−ε)I0 + εf(a/2) exp
{
jkg(a/2) ∓ jv2

}
×

√
2

k|g′′(a/2)|F ∓ (v)
{
g′′(α)

> 0
< 0

}
(B4)

where x0 is a first order stationary phase point defined by g′(x0) =
0 and g′′(x0) �= 0: Here x0 = 0. ε = sgn(a/2 − x0), v =√

k
2|g′′(a/2)| |g′(a/2)| and U(x) is the unit step function, i.e., U = 1

for x ≥ 0 and zero otherwise.
F±(x) =

∫ ∞
x e±jt2dt is the Fresnel integral defined for real

arguments,
We have g(x0) = g′(x0) = 0, g′′(x0) = 2/R, g(a/2) =

a2/4R, g′(a/2) = a/R, g′′(a/2) = 2/R, v =
√

ka2

4R , which give

I0 =

√
Rλ

2k
ej π

4 (B5)

Ia/2 =

√
R

k
F ±

(√
ka2

4R

)
(B6)

For large arguments of the Fresnel integral, its asymptotic expansion
is

F±(x) ≈ 1
2x

exp
{
±j

(
x2 +

π

2

)} ∞∑
m=0

j∓m

(
1
2

)
m

x−2m (B7)



278 Pouliguen et al.

where (
1
2

)
0

= 1,
(

1
2

)
m

=
1
2

(
1
2

+ 1
)
· · ·

(
1
2

+m− 1
)

Substituting the Fresnel integral by its asymptotic expansion in (B6),
we get

Ia/2 =

√
R

k


1

2

√
4R
ka2

exp
{
j

(
ka2

4R
+
π

2

)} ∞∑
m=0

j−m

(
1
2

)
m

(√
ka2

4R

)−2m



(B8)

Then, limiting the asymptotic expansion to the first term (m = 0) and
to the second term (m = 1), we find

Im=0
a/2 = j

R

ka
exp

{
j

(
ka2

4R

)}
(B9a)

Im=1
a/2 = j

R

ka
exp

{
j

(
ka2

4R

)} (
1 − j

λR

πa2

)
(B9b)

Combining (B9a) and (B9a) with (B5) and (B2) gives finally

Im=0 =

√
Rλ

2k
ej π

4 − j
2R
ka

exp
{
j

(
ka2

4R

)}
(B10a)

Im=1 =

√
Rλ

2k
ej π

4 − j
2R
ka

exp
{
j

(
ka2

4R

)} (
1 − j

λR

πa2

)
(B10b)
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