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Abstract—A new iterative technique based on the T -matrix approach
is proposed for the electromagnetic scattering by dielectric cylinders,
in particular cylinders with large aspect ratios. For such cases the
conventional T -matrix approach fails. We use hypothetic surfaces to
divide a cylinder into a cluster of N identical sub-cylinder, for each the
T matrix can be directly calculated. Since any two neighboring sub-
cylinder are touching via the division interface, the conventional multi-
scatterer equation method is not directly applicable. The coupling
among sub-cylinder and boundary conditions at the interfaces are
taken care of in our approach. The validity of the proposed method is
demonstrated through agreement between theoretical predictions and
numerical simulations as well as measurements for scattering from
dielectric circular cylinders with finite length. The results clearly
demonstrate that the new iterative technique can extend regular T -
matrix approach to solve cylindrical cases with large aspect ratio.

1. INTRODUCTION

There has been growing interest in the investigation of vegetation
using polarimetric remote sensing techniques. During the past several
decades, a number of theoretical models have been constructed to
study the scattering mechanisms in the vegetation medium and are
very useful for forest stand or short crops [1–5]. Usually, these
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approaches treat the vegetation medium as a random collection of
discrete scatterers with different sizes, shapes and orientations. For
instance, the branches and trunks are usually modelled as finite
dielectric cylinders, and in coniferous vegetation needles are used to
model leaves. Determining the electromagnetic properties of those
key constituents such as branches and trunks requires knowledge of
the scattering properties of dielectric cylinders [6–19]. In addition,
in studying scattering and absorption of electromagnetic waves from
ice needles in clouds, the dielectric cylinder are also used to model
those needles [20]. Thus, finding an effective method to calculate
the electromagnetic scattering by dielectric finite cylinders motivated
many authors. Because an exact analytical solution for the scattering
from finite cylinders does not exist, several approximations have been
proposed [21–24]. Among them is the generalized Rayleigh-Gans
(GRG) approximation, which was widely applied in the studies of the
vegetation samples [22, 23]. It approximates the induced current in a
finite cylinder by assuming infinite length. Therefore, this method is
valid for a needle shaped scatterer with radius much smaller than the
wavelength. Whereafter, Stiles and Sarabandi [24] proposed a more
general solution for long and thin dielectric cylinders of arbitrary cross
section, but still limited to small cross sections. Nevertheless, it should
be noted that the solutions of such approximate methods in general
fail to satisfy the reciprocity theorem.

In a more general setting, a semi-analytical method named T -
matrix approach, originally introduced by Waterman [25] and is based
on the extended boundary condition method (EBCM), is one of
the most powerful and widely used tools for rigorously computing
volume electromagnetic scattering based on Maxwell’s equations and
has been applied to particles of various shapes, such as spheroids,
finite cylinders, Chebyshev particles, cubes, clusters of spheres, and so
on [26–31]. In applying extended boundary condition to calculate the
T matrix that relates the exciting field and scattered field, the exciting
field is assumed to be inside the inscribing sphere and the scattered field
outside the circumscribing sphere, respectively. However, for particles
with extreme geometries represented by very large aspect ratios,
regular EBCM is reported to suffer from convergence problems [32].
Physically, this ill-conditioning procedure stems from the fact that,
since the exciting field is assumed to be inside the inscribing sphere,
for cases of extreme geometries, the exciting fields will not be accurate
representative of surface currents. Nor will the scattered fields.

One approach for overcoming the problem of numerical instability
in computing the T matrix for spheroids with large aspect ratio is the
so-called iterative extended boundary condition method (IEBCM) [33].
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The main feature of this technique is to represent the internal
field by several subregion spherical function expansions centered
along the major axis of the prolate spheroid. The contiguous
subregional expansions are linked to each other by being matched in
the overlapping zones. The set of unknown expanded coefficients of
internal field can be determined by using the point-matching method
(PMM). It has been reported that in some spheroidal cases, the use of
IEBCM instead of the regular EBCM allows to more than quadruple
the maximum convergent size parameter. However, because the first
step in this procedure is to approximate the highly lossy dielectric
object with a perfectly conducting object of the same shape for its
initial solution, it is restricted by the conductivities of the dielectric
particles and the maximum convergent size parameter of EBCM for
such perfectly conducting object. Moreover, as pointed in [34], PMM
is less flexible in terms of applications to different particle shapes due
to the fact that, the more the particle’s geometry departs from that of
a sphere, the more unsuitable the expansions of the fields in spherical
vector wave functions. Thus, elongated particles require the use of
specially adapted PMM implementations with longer computation
time and higher computer-code complexity. Another similar technique
using PMM to solve scattering from particles enclosed by smooth
surfaces is the general multipole technique (GMT), which represents
electromagnetic field vectors by multiple spherical expansions about
several expansion origins which are located at appropriate positions
in the interior region [35]. The GMT has been successfully used for
particles with smooth surfaces, such as hemispherically or spherically
capped cylinders, yet there are issues when it is used in the scattering
computations of finite cylinders with flat ends reported. Recently,
null field method with discrete sources (NF-DS) is proposed to deal
with the instability of conventional EBCM [36–39]. Its numerical
stability is achieved at the expense of considerable increase in computer
complexity, and the resolution of this method can be affected by the
localization of the sources.

In this paper, we propose a new iterative technique applicable
for electromagnetic scattering by finite dielectric cylinders with large
aspect ratio. With the understanding that for such cylinders a direct
application of the EBCM often leads to numerical instability, the
procedure starts by dividing the cylinder into several identical sub-
cylinder to reduce the aspect ratio for each part to which the EBCM
can be applied. A subtle technical issue arises here: since any two
neighboring sub-cylinder are touching via the division interface, the
conventional multi-scatterer equation method is not directly applicable
because it requires that the circumscribing spheres of the sub-cylinder
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exclude each other [40]. Rather, boundary conditions at the division
interface need to be satisfied and carefully incorporated into the EBCM
formalism. The subtlety lies in the fact that boundary conditions
at the division interfaces are point-wise while the EBCM is in an
integral form. For such concern, we introduce some intermediate
variables that have specific meanings, where the boundary conditions
are incorporated. Moreover, since these variables are expressed in
terms of surface integrals, the drawbacks of PPM inherent in IEBCM or
GMT is avoided. The intercoupling relations of multipole expansions
for sub-cylinder are constructed with the help of translational addition
theorems and can be solved iteratively. The impact of translational
addition theorem on the convergence property of the resulting linear
system is also carefully treated in the iterative procedure.

2. T -MATRIX APPROACH

In T -matrix approach, the incident, scattered, and internal fields are
expressed in terms of the spherical harmonics, respectively
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where RgM̄mn, RgN̄mn, M̄mn and N̄mn are the vector spherical waves
respectively as defined in [41]. A list of variables used in this paper is
provided at the end of the paper in Table 3 for referential convenience.
Owing to the linearity of Maxwell’s equations and boundary conditions,
the linear relation between the scattered field coefficients āsca on one
hand and the incident field coefficients āinc on the other hand is given
by the system transfer operator T as follows [25]:

āsca = ¯̄T āinc. (2)

Eq. (2) is a cornerstone of the T -matrix formulation. Because the T
matrix includes the full information about the wave scattering and
absorption properties of a particle at a given wavelength, all quantities
of interest in remote sensing, such as the amplitude scattering matrix,
the scattering cross section as well as the expansion coefficients of the
Stokes scattering matrix can be expressed in terms of the T matrix.
This is a important advantage of the T -matrix approach.
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The widely utilized scheme for computing the T matrix for simple
particles is based on EBCM, which is also called the null field approach.
As an alternative to solve the surface integral equation, EBCM
assumes an inscribing sphere and a circumscribing sphere with their
centers at the origin contained within the scatterer, then applies the
extended boundary condition inside the inscribing sphere and outside
the circumscribing sphere, respectively. Rather than considering the
coupling of the incident and scattered fields directly, the coupling
between the incident and internal represented by the RgQ matrix, and
scattered and internal fields represented by the Q matrix is explicitly
treated. In the EBCM, expressions for matrices RgQ andQ are derived
from an integral equation approach which can be found in [41]. Then
the T matrix can be easily obtained from the following relation between
the RgQ matrix and Q matrix

¯̄T = −Rg ¯̄Q
t ·

(
¯̄Q

t
)−1

(3)

where the subscript t represents the transpose of matrix.
An another important advantage of the T -matrix approach is that,

unlike many other methods of calculating scattering where the entire
calculation needs to be repeated for each new incident field, the T
matrix only needs to be calculated once because it is independent of
any specific incident field. Moreover, utilizing geometrical symmetries
of particles can drastically reduce CPU-time requirements. Therefore,
for a scatterer with moderate aspect ratio, T -matrix approach is
a very effective technique for scattering computation, especially for
calculating the scattering properties of an ensemble of randomly
oriented particles. Fig. 1 clearly demonstrates the accuracy of T -matrix
approach predictions against experimental benchmarks reported by
Allen and McCormick [42], where the parameters of two samples are
listed in Table 1 and the imaginary part of dielectric constant is 0.036i.
The maximum diameter and maximum length of the samples are 2a
and 2c, respectively.

Table 1. Parameters for the samples.

Sample � �

ka 0.305 0.609
c/a 2.500 2.503

Re(ε) 3.16 3.14
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Figure 1. Backscattering cross section comparisons between T -
matrix approach and measurements of dielectric cylinders excited by
a circularly polarized plane wave.

3. TRANSLATIONAL ADDITION THEOREM

Translational addition theorem is a powerful analytic tool to solve
theoretically for the scattering properties of multiple scatterers. Since
the early studies of Friedman and Russek [43] in the 1950s, considerable
efforts have been devoted to the formulation and evaluation of the
scalar addition coefficients.

Consider now coordinate systems i and j having the same spatial
orientation and denote by r̄ji the vector pointing to the origin of
coordinate system j from the origin of coordinate system i as illustrated
in Fig. 2. Specifically, for r̄j = r̄i + r̄ji, where (rj , θj , ϕj), (ri, θi, ϕi)
and (rji, θji, ϕji) are their respective spherical coordinates, the scalar
translational addition theorem for the solid translation from the
coordinate system i to the coordinate system j can be expressed as:

ψmn(rj , θj , ϕj) =
∑
µ,ν

ψµν(ri, θi, ϕi)Cmn
µν (rji, θji, ϕji), (4)

where the scalar wave function is

ψmn(r, θ, φ) = Pm
n (cos θ)zn(kr)eimφ. (5)

Here a time dependence of e−iωt is assumed and Pm
n is the associated

Legendre function. zn is appropiately selected between the following
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Figure 2. Translation of coordinates from origin i to origin j.

two functions: the spherical Bessel function of the first kind jn or the
spherical Hankel function of the first kind h(1)

n . The scalar translational
coefficient is given as [43, 44]

Cmn
µν (rji, θji, φji) = (−1)mi(ν−n)(2ν + 1)

∑
p

ipa(m,n,−µ, ν, p)

×Pm−µ
p (cos θji)zp(krji)ei(m−µ)φji (6)

where a(m,n, µ, ν, p) is the Gaunt coefficient, which was first
introduced by Gaunt [45] in his study of the atomic structure of helium
triplets. In 1971, Bruning and Lo [46] derived a recursive scheme
to calculate the Gaunt coefficients for the vector addition theorem
efficiently for a special case of bi-sphere scattering problem in which
the translation was along the z axis. However, the calculation of
the required number of Gaunt coefficients represents a tremendous
expenditure of effort when the truncation number is large. An
alternative is the recursive approach devised by Mackowski [47]. By
utilizing the recurrence relations for the scalar translational addition
coefficients [48] and the starting expression C00

µν , the scalar addition
coefficients can be obtained for all values of m, n, µ and ν.

For the case of vector spherical wave functions, the vector addition
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theorems have the form[
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for the condition r̄i < r̄ji, where the vector spherical waves with
and without the prefix Rg stand for regular and outgoing waves,
respectively.

Cruzan formulated the vector translation coefficients using the
Wigner 3j symbols [49] as

Amn
µν = (−1)µ iν−n 2ν + 1

2ν(ν + 1)

∑
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p (cos θji) exp[i(m− µ)φji], (9)
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a(m,n,−m, ν, p, p− 1) = (2p+ 1)
[
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(n−m)!(ν +m)!
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×
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n ν p
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)
. (10)

Later Tsang and Kong [50] reported a sign error in Cruzan’s translation
formulas.
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In addition, both Stein [44] and Mackowski [47] expressed the
vector translational addition coefficients in terms of seven and six scalar
translational addition coefficients, respectively. In fact, as Mackowski
pointed out, these two formulations can be converted to each other [47].
The expressions by Mackowski are given by

Amn
µν =

(ν − µ)(ν + µ+ 1)Cm+1n
µ+1ν

+2µmCmn
µν + (n+m)(n−m+ 1)Cm−1n

µ−1ν

2ν(ν + 1)

Bmn
µν =

i(2ν + 1)
2ν(ν + 1)(2ν + 3)

[
(ν + µ+ 1)(ν + µ+ 2)Cm+1n

µ+1ν+1

−2m(ν + µ+ 1)Cmn
µν+1−(n+m)(n−m+ 1)Cm−1n

µ−1ν+1

]
. (11)

It follows that this set of equations do not need geometrical information
of the volumes. This makes Mackowski’s formulations more convenient
in practical computations, and we choose to use these formulations in
our paper.

4. PROPOSED METHOD

Consider a dielectric cylinder with large aspect ratio. We use N − 1
hypothetic surfaces to divide it into a cluster of N identical sub-
cylinder, for each the T matrix can be directly calculated by using
the conventional EBCM. The simple case of two sub-cylinder division
is depicted in Fig. 3. Such case will serve as the basis of our analysis,
since the extension to an N sub-cylinder case is straightforward. Now
that these two sub-cylinder are touching via the division interface,

E i E i

Primary 
Surface (S2p )

Contact 
Surface (S12 )

Primary 
Surface (S1p )

Figure 3. Division of a cylinder into two identical sub-cylinder.
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a subtle technical issue arises here: the conventional multi-scatterer
equation method is not directly applicable because it requires that the
circumscribing spheres of the sub-cylinder exclude each other [40]. It is
necessary that boundary conditions at the division interface be satisfied
and carefully incorporated into the EBCM formalism. The subtlety lies
in the fact that boundary conditions at the division interface are point-
wise while the EBCM is in an integral form. For such concern, we shall
introduce some intermediate variables that have specific meanings,
where the boundary conditions are incorporated.

Since the EBCM involves surface integrals and since cylinder
division generates hypothetical interfaces, before we proceed we need
to denote these surfaces carefully. Each sub-cylinder will contain a
primary surface and an interface. We shall start number ordering
from the lowest sub-cylinder (see Fig. 3). The primary surface of sub-
cylinder 1, S1p, includes its cylindrical surface and the lower surface,
while that of sub-cylinder 2, S2p, includes its cylindrical surface and
the upper surface. The common interface is denoted by S12. The
center of sub-cylinder 1 is r1 and that of sub-cylinder 2 is r2. Utilizing
T matrix, the expanded coefficients āmn and ās

mn for each part are
related as follows[

a
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mn
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+
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a
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Now for fields expanded in terms of vector spherical waves with
different origins, we introduce the following intermediate variables:[

a
(M)(1)p
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a
(N)(1)p
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]
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∫
S1p

dS

{
iωµn̂1 × H1(r) ·

[
M̄−mn(rr1)
N̄−mn(rr1)

]

+kn̂1 × E1(r) ·
[
N̄−mn(rr1)
M̄−mn(rr1)

] }
(13)[

a
(M)(2)p
mn

a
(N)(2)p
mn

]
= −ik(−1)m

∫
S2p

dS

{
iωµn̂2 × H2(r) ·

[
M̄−mn(rr2)
N̄−mn(rr2)

]

+kn̂2 × E2(r) ·
[
N̄−mn(rr2)
M̄−mn(rr2)

] }
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where the superscript p denotes the primary part, and s the scattered
field. These intermediate variables are not arbitrary quantities
but have specific physical meanings. They represent the expansion
coefficients of the exciting fields and scattered fields due to the
primary surfaces of these two sub-cylinder, respectively. Similarly, the
respective expansion coefficients of the exciting fields and scattered
fields due to the interface of these two sub-cylinder are[
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In the above, n̂i is the outward pointing unit normal vectors on the
surface Si of sub-cylinder i. We have n̂2 = −n̂1 on the surface S12.

Since the terms ā(1)u
mn and ā

s(2)d
mn are expressed in terms of the

tangential fields on the interface, it is natural to relate them in some
way. Yet since each involves vector spherical waves with different
origins, a transformation of origin must first be performed using
the translational addition theorem. For the latter task we have the
convenience of reducing the double summation over m and ν to single
summation over ν because the translation is along the z axis. Shifting
the origin from r1 to r2, the term ā

(1)u
mn can thus be expressed as[

a
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mn

a
(N)(1)u
mn

]
= −ik (−1)m
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[
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]

+
∑

v
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∫
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[
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]
. (21)

In the second equality of the above equation, we specifically make use
of the boundary conditions

n̂1 × H1 = −n̂2 × H2, n̂1 × E1 = −n̂2 × E2. (22)

The intermediate variables of the second sub-cylinder (20) allow us to
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further express (21) as[
a

(M)(1)u
mn

a
(N)(1)u
mn

]
=

∑
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A−mν
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]
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a
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]
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Note that for a single scatterer, the incident field is equal to the
exciting field. In our case, the virtual partition shall not change this
property. Now if we let the global origin coincidence with r1, we have[

a
(M)
mn

a
(N)
mn

]
= −ik(−1)m

∫
S1,p

dSiωµn̂1 × H1(r) ·
[
M̄−mn(rr1)
N̄−mn(rr1)

]

+kn̂1 × E1(r) ·
[
N̄−mn(rr1)
M̄−mn(rr1)

]

−ik(−1)m

∫
S2,p

dSiωµn̂2 × H2(r) ·
[
M̄−mn(rr1)
N̄−mn(rr1)

]

+kn̂2 × E2(r) ·
[
N̄−mn(rr1)
M̄−mn(rr1)

]
. (24)

By applying transformation of origin on the vector spherical waves
in the second surface integral, and making use of the intermediate
variables (16), we obtain[

a
(M)
mn

a
(N)
mn

]
=

[
a

(M)(1)p
mn

a
(N)(1)p
mn

]
−

∑
ν

A−mn
−mν (r1r2)

[
a

s(M)(2)p
mν

a
s(N)(2)p
mν

]

−
∑

ν

B−mn
−mν (r1r2)

[
a

s(N)(2)p
mν

a
s(M)(2)p
mν

]
. (25)

Combining (23) and (25), and using variable substitution, yields[
a

(M)
mn

a
(N)
mn

]
=

[
a

(M)(1)
mn

a
(N)(1)
mn

]
−

∑
ν

A−mn
−mν (r1r2)

[
a

s(M)(2)
mν

a
s(N)(2)
mν

]

−
∑

ν

B−mn
−mν (r1r2)

[
a

s(N)(2)
mν

a
s(M)(2)
mν

]
(26)
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where

a(M)(1)
mn = a(M)(1)u

mn + a(M)(1)p
mn (27)

a(N)(1)
mn = a(N)(1)u

mn + a(N)(1)p
mn (28)

as(M)(2)
mn = as(M)(2)d

mn + as(M)(2)p
mn (29)

as(N)(2)
mn = as(N)(2)d

mn + as(N)(2)p
mn . (30)

Similarly, we can also establish the following system of equations
by focusing on the upper part of cylinder as follows[

a
(M)
mn

′

a
(N)
mn

′

]
=

[
a

(M)(2)
mn

a
(N)(2)
mn

]
−

∑
ν

A−mn
−mν (r2r1)

[
a

s(M)(1)
mν

a
s(N)(1)
mν

]

−
∑

ν

B−mn
−mν (r2r1)

[
a

s(N)(1)
mν

a
s(M)(1)
mν

]
, (31)

where the multipole coefficients of the incident plane wave a(M)
mn

′
and

a
(N)
mn

′
differ from a

(M)
mn and a(N)

mn by a factor eikhcosθi . Here h is the
height of each sub-cylinder.

The scattered field can be treated similarly. Applying the
translational addition theorems (7) to the (19) and the following
equation, respectively,[

a
s(M)
mn

a
s(N)
mn

]
= ik(−1)m

∫
S

dS

{
iωµn̂× H(r) ·

[
RgM̄−mn(rr1)
RgN̄−mn(rr1)

]

+kn̂× E(r) ·
[
RgN̄−mn(rr1)
RgM̄−mn(rr1)

] }

= ik(−1)m

∫
S1,p

dS

{
iωµn̂1 × H1(r) ·

[
RgM̄−mn(rr1)
RgN̄−mn(rr1)

]

+kn̂1 × E1(r) ·
[
RgN̄−mn(rr1)
RgM̄−mn(rr1)

] }

+ ik(−1)m

∫
S2,p

dS

{
iωµn̂2 × H2(r) ·

[
RgM̄−mn(rr1)
RgN̄−mn(rr1)

]

+kn̂2 × E2(r) ·
[
RgN̄−mn(rr1)
RgM̄−mn(rr1)

] }
(32)
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we can easily derive the following equations[
a

s(M)(1)u
mn

a
s(N)(1)u
mn

]
= −

∑
ν

RgA−mn
−mν (r1r2)

[
a

s(M)(2)d
mn

a
s(N)(2)d
mn

]

−
∑

ν

RgB−mn
−mν (r1r2)

[
a

s(N)(2)d
mν

a
s(M)(2)d
mν

]
(33)

and [
a

s(M)
mn

a
s(N)
mn

]
=

[
a

s(M)(1)p
mn

a
s(N)(1)p
mn

]
+

∑
ν

RgA−mn
−mν (r1r2)

[
a

s(M)(2)p
mν

a
s(N)(2)p
mν

]

+
∑

ν

RgB−mn
−mν (r1r2)

[
a

s(N)(2)p
mν

a
s(M)(2)p
mν

]
. (34)

Combining the above two equations allows us to express the
total scattered coefficients of whole cylinder in the primary coordinate
system as[

a
s(M)
mn

a
s(N)
mn

]
=

[
a

s(M)(1)
mn

a
s(N)(1)
mn

]
+

∑
ν

RgA−mn
−mν (r1r2)

[
a

s(M)(2)
mν

a
s(N)(2)
mν

]

+
∑

ν

RgB−mn
−mν (r1r2)

[
a

s(N)(2)
mν

a
s(M)(2)
mν

]
. (35)

It is clear that the solutions of these coupled, linear, simultaneous
equations can be easily obtained by iterative method. The iteration
procedure is summarized as follows: Starting with the initial solutions
a

s(M),2
mn = a

s(N),2
mn = 0. From (26) and by using T matrix we obtain

the new values of the scattering coefficients ās,1
mn in (31). In a similar

manner, we next use the new values to obtain the scattering coefficients
ās,2

mn in (26). The procedure is repeated until all the coefficients
converge.

For the specific case of far zone, the expansion coefficients of the
total scattered field can be simply expressed as[

a
s(M)total
mn

a
s(N)total
mn

]
=

[
a

s(M)(1)
mn

a
s(N)(1)
mn

]
+

[
a

s(M)(2)
mn

a
s(N)(2)
mn

]
· e−ikh cos θs (36)

If we are to use the widely used amplitude scattering matrix Fpq(k̂s, k̂i)
to describe the relation between the amplitudes of the incident and
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the scattered fields and represent general properties of the scatterer,
its expression is given by

Fqp(k̂s, k̂i) =
∑
m,n

{
q̂ · as(M)total

mn M̄mn(kr, θ, φ)

+q̂ · as(N)total
mn N̄mn(kr, θ, φ)

}
· p̂ (37)

where p̂ and q̂ are unit polarizations for the incident and scattered
wave, respectively. The expressions of far-field solutions for the
outgoing vector spherical waves can be found in [41].

5. ERROR ANALYSIS

In the implementation of our proposed approach, since it involves
both T matrix and translational addition theorem, and since it is well
known that there are truncation errors and/or other types of errors
associated with these two aspects, it is expected that any version of
implementation will bear the impact of these errors to varying degree,
depending on the nature of the problem at hand and the specifics of
the implementation. In the following we shall discuss these issues in
turn.

For T matrix computations, theoretically the multipole expansions
are of infinite length and the T matrix is of infinite size. However
in practical calculations, the summation over m and n has to be
truncated, thus a special procedure should be used to check the
convergence of the resulting solution over the size of T matrix Nmax.
For axially symmetric scatterers, the T matrix can be decomposed
into separate submatrices corresponding to different azimuthal modes
m which are independently calculated. For a desired absolute accuracy
of computing the expansion coefficients ∆ (∆ = 10−4), the following
simple convergence criterion can be used to determine Nmax [52]

max
[∣∣∣∣c1(Nmax) − c1(Nmax − 1)

c1(Nmax)

∣∣∣∣ ,
∣∣∣∣c2(Nmax) − c2(Nmax − 1)

c2(Nmax)

∣∣∣∣
]
≤ ∆,

(38)

where

c1(Nmax) = −2π
k2

Re
Nmax∑
n=1

(2n+ 1)
(
T 11

0n0n + T 22
0n0n

)
(39)

c2(Nmax) =
2π
k2

Nmax∑
n=1

(2n+ 1)
[∣∣T 11

0n0n

∣∣2 +
∣∣T 22

0n0n

∣∣2] (40)
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(b) ρ = 1 / 2

10 20 30 40 50 60 70 80 90 100
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

Nmax

R
el

at
iv

e 
E

rr
or

(c) ρ = 1 / 4

Figure 4. Relative errors of the cylindrical cases, where rv is 5.

In Fig. 4, we plot the relative errors represented by the left side of (38)
for three cylindrical cases, where the equal-volume sphere radius rv is
identically set to 5, and the ratio of the horizontal to rotational axes
ρ changes from 1 to 0.25. In this figure we clearly see that the relative
errors do not monotonically decrease with increasing Nmax; rather,
they demonstrate oscillating behaviors. Such behaviors indicate the
need to be very careful and specific when determining Nmax in applying
T -matrix approach.

For numerical computation of the translational addition coeffi-
cients, the order of dipole moment has to be truncated as well which
results in truncation error. In a truncation error analysis for the scalar
spherical addition theorem [51], it was found that the truncation error
decreases as the truncation order Vmax increases. Yet in the present
analysis, things become more complicated in that the truncation opera-
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tions in applying addition theorem and in applying T -matrix approach
are convoluted; specifically, the truncation order Vmax in applying ad-
dition theorem cannot be larger than Nmax in applying T -matrix ap-
proach. Such constraint may lead to truncation errors that would not
show if these two operations were independent.

In order to examine the relative error behavior, we shall compare
several cases with different translational scenarios, where various
translational distances rji are used and ri is identically set to 1. We
consider the term M̄1,5 (r̄j) which is approximated by

M̄1,5 (r̄j) =
Nmax∑
n=1

{
A1,5

1,n (r̄ji)RgM̄1,n (r̄i) +B1,5
1,n (r̄ji)RgN̄1,n (r̄i)

}
.

(41)

Relative error values of M̄1,5 (r̄j) are shown in Fig. 5. As shown in this
figure, the relative error can be appreciable when insufficient orders
are used in applying the addition theorem. We can make following
observations: 1) the relative error decreases when the translational
distance increases; 2) the spherical waves of higher order n requires
larger expansion orders; 3) the convergence can be improved when
the expansion orders increase (from 5 to 35 in this case). Similar
observations can be made from Fig. 6, where ri is identically set to 3.
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Figure 5. Relative errors due to
truncations in applying addition
theorem for various rji where ri
is 1.
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Figure 6. Relative errors due to
truncations in applying addition
theorem for various rji where ri
is 3.

Bearing the impact of truncation errors in applying the
translational addition theorems and T -matrix approach, when the
eccentricity of the scatterer is large, the iterative procedure may
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become an ill-conditioned one, for which caution needs to be taken. We
use a method similar to the successive over-relaxation method (SOR),
which takes the form of a weighted average between the previous
iterate and the computed new iterate successively for each component
as reported in [53] where multi-sphere system was considered. An
extrapolation factor w (0 ≤ w ≤ 1) is used to speed up the convergency
procedure.

6. NUMERICAL RESULTS

In this section, we compare the theoretical predictions of the proposed
iterative approach with numerical simulations, as well as measurements
for scattering from dielectric circular cylinders with finite length. For
cases where the ratio of horizontal to rotational axes ρ, the equal-
volume sphere radius rv and the refractive index fall in the region where
the conventional EBCM is applicable, we expect that our proposed
method should provide comparable results. To test this preposition,
various size parameters of cylinders are used with rv ranging from 0.5
to 3, ρ from 1 to 1/3, and the refractive index is 1.5+0.02i. For linear
polarization the scattering cross section is defined as

σpq = 4π
∣∣∣Fpq(k̂s, k̂i)

∣∣∣2 , (42)

and for circular polarization

σ = π
∣∣∣Fvv

(
k̂s, k̂i

)
± Fhh

(
k̂s, k̂i

)∣∣∣2 (43)

where the + and − signs stand for left-hand and right-hand circular
polarization, respectively.

The results are shown in Figs. 7–12. One can observe from the
figures that both the vertically-polarized and horizontally-polarized
bistatic scattering cross sections obtained by our method are in perfect
agreements with that of T -matrix approach when rv is smaller than 3.

Table 2. Parameters for the samples.

Sample � � � �

ka 0.1143 0.1904 0.2666 0.3428
c/a 10.00 9.99 9.99 10.00

Re(ε) 3.13 3.13 3.15 3.14
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Figure 7. The bistatic scattering cross section of a cylinder under our
proposed method and EBCM at broadside incidence where rv is 0.5
and ρ is 1/2.
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Figure 8. The bistatic scattering cross section of a cylinder under our
proposed method and EBCM at broadside incidence where rv is 1 and
ρ is 1/2.

Comparison between the theoretical predictions of our method
and experimental data is shown in Fig. 13, where the experimental
data are taken from [42] for different samples with the parameters
listed in Table 2. The imaginary part of dielectric constant is 0.036i.
The overall agreement is good except at locations near the null where
the experimental results are much higher. Similar discrepancy with the
GRG approximation was also reported by Karam et al. [22] where they
suggested that the discrepancy may be due to the finite equivalent
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Figure 9. The bistatic scattering cross section of a cylinder under our
proposed method and EBCM at broadside incidence where rv is 3 and
ρ is 1/2.
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Figure 10. The bistatic scattering cross section of a cylinder under
our proposed method and EBCM at end-fire incidence where rv is 0.5
and ρ is 1/3.

bandwidth of the measurement system. In addition, they expected
this difference not to be important when dealing with scattering from
randomly oriented cylinders where returns from volumes are summed
incoherently. It is clear from Fig. 13 that our method outperforms the
GRG approximation.

Finally we compare the backscattering coefficients obtained from
our proposed method for both vertical and horizontal polarizations
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Figure 11. The bistatic scattering cross section of a cylinder under
our proposed method and EBCM at end-fire incidence where rv is 1
and ρ is 1/3.
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Figure 12. The bistatic scattering cross section of a cylinder under
our proposed method and EBCM at end-fire incidence where rv is 3
and ρ is 1/3.

with that by GRG approximation when it is applicable. Fig. 14
illustrates the results for a needle case, where ka is 0.7, ρ is 1/25 and
the refractive index is 1.5 + 0.02i. The results show good agreement
between the two methods.
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Figure 13. Comparisons among our proposed method, GRG
approximation and the measured backscattering cross section of
dielectric cylinders excited by a circularly polarized plane wave. (a)
Measurement datas. (b) Prediction by our method. (c) Predictions by
Karam.
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Table 3. This list includes the variables in this paper.

Variable Definition
RgMmn, RgNmn regular vector spherical waves
Mmn, Nmn outgoing vector spherical waves
ainc incident field coefficients
asca scattered field coefficients

mn scalar wave function
Pm

n associated Legendre function
zn spherical Bessel function or spherical Hankel function
a(m,n, , , p) Gaunt coefficient
Cmn scalar translational coefficient
Amn, Bmn vector translational coefficient
Sip primary surface of sub-cylinder i
Sij interface between sub-cylinder i and j

a
(i)p
mn primary coefficients of sub-cylinder i

a
s(i)p
mn primary scattered field coefficients of sub-cylinder i

a
(i)u
mn upper tangential field coefficients on the interface of sub-cylinder i

a
s(i)u
mn upper tangential scattered field coefficients on the interface of sub-cylinder i

a
(i)d
mn lower tangential field coefficients on the interface of sub-cylinder i

a
s(i)d
mn lower tangential scattered field coefficients on the interface of sub-cylinder i
Fpq(k̂s, k̂i) amplitude scattering matrix
p̂ unit polarizations for the incident wave
q̂ unit polarizations for the scattered wave

ratio of horizontal to rotational axes
rv equal-volume sphere radius

scattering cross section

¯

ψ

µ ν

σ

ρ

¯
¯ ¯

¯
¯

µν µν

¯
¯
¯
¯

¯

7. CONCLUSION

In this paper, we proposed a new iterative technique to analyze
scattering from dielectric circular cylinders with finite length. It
was demonstrated that the new method can extend regular T -matrix
approach to solve cylindrical cases with large aspect ratio. The new
method can also be used for finite dielectric cylinders with arbitrary
cross section as long as the T matrix of each sub-cylinder can be
accurately obtained. Moreover, the new method holds the potential for
multi-cylinder problems, especially for the cases of closely positioned
cylinders.
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