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Abstract—In order to meet the approximate plane-wave irradiation
condition, adequate large field or compact range system is needed
for RCS measurement of large aircraft targets. However, an outside
testing field site or a compact range system is very expensive, so some
kinds of RCS extrapolation methods based on near-distance testing
have been presented. In this overview, two categories of extrapolating
technique are summed up, which are based on Huygens Equivalent
Reradiating Source (HERS) and Inverse Synthetic Aperture Imaging
(ISAI) respectively. Each method is fully elaborated. The comparison
and analysis of these extrapolating techniques are discussed in detail.

1. INTRODUCTION

RCS measurement is of great significance to the research of stealth
target and its scattering characteristics. Generally it needs huge testing
field or complex expensive compact range system [1, 2]. However, an
outside test field site or a compact range system is very expensive.
In order to overcome this problem, a variety of near-field test method
to extrapolate RCS came into being [3–13]. In this overview, two
categories are summed up from the existing extrapolating techniques,
the one is based on Huygens Equivalent Reradiating Source (HERS),
and the other is based on inverse synthetic aperture imaging (ISAI).

The near-distance RCS measurement system is identical to far-
field, but the distance is much shorter, so the testing distance can
easily be met and the RCS of targets are obtained by extrapolating
techniques. In this paper, several extrapolating technologies are
described in detail, and the precision, effective angle domain and
applicability are discussed.
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Table 1 lists a number of scaled aircraft models; the height of
fuselage is less than 1/7 of its length. So they can easily meet the far
field RCS testing requirements in vertical direction (Table 2 shows the
allowed maximum height of a target at different frequencies) according
far-field condition. Therefore, for the near-field RCS measurement,
field distribution in the target range can be regarded approximately
as a cylindrical wave. Based on above assumption, two kinds of
extrapolating technique can be derived.

Table 1. The height and length of some scaled models.

Model Global Hawk B2 F22 Dark Star
length/(m) 1.90 2.00 2.50 3.30
height/(m) 0.15 0.12 0.35 0.20
Height/length 0.079 0.061 0.14 0.064

Table 2. The maximum height allowed for targets at different
frequencies.

Test Distance R = 20 m
Frequency/GHz 1 2 5 10 30

maximum height/m 1.73 1.22 0.77 0.55 0.35

In general, the extrapolation of far field RCS from near field
data requires a full set of bistatic scattering measurements. La
Haie developed a new near field-to-far field transformations (NFFFT)
for predicting the far-field RCS of targets from monostatic near-
field measurements [5, 6]. His techniques use approximations and/or
supporting information to overcome the need for bistatic near-field
measurement [7, 8].

For predicting far-field RCS, three new methods named Huygens
arithmetic, Hankel arithmetic and NFFFT are realized in this paper,
Huygens arithmetic is based on HERS, the Hankel arithmetic is based
on ISAI, NFFFT is another arithmetic based on ISAI, which can be
used in stepped-frequency measurement system.

In the following, a uniform and innovative view is set up to
understand all the extrapolating techniques.
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2. METHODS OF RCS EXTRAPOLATION FROM
NEAR-FIELD TO FAR-FIELD

2.1. The Relation between Near-field and Far-field Based on
Imaging

Figure 1. Near-field RCS measurement.

As shown in Figure 1, P point is the position of radar, O point is
the centre of rotator, Q point is a selected point on target randomly.
Based on the assumption that the reflectivity distribution of target is
irrelative to distance of measurement, the basic 2-D imaging formula
can be expressed as following:

Sr(t) =
∫
V

g(r′)St

(
t− 2R

c

)
dr′ (1)

In above equation, r′ is any selected point position vector on the
target, R is the range from radar to target, g(r′) is the reflectivity
distributing function within the target, which can be derived by 2-D
Fourier transformation, as follow:

g(r′) =
∫
V

Sr(t)S∗
t

(
t− 2R

c

)
e−jK·r′

dK (2)

As we know, Green function in free space can be expressed as
G(k,R0) = e−jk|R0−r′|/4π|R0 − r′|. Similarly, the every point of
imaging can be regarded as reradiating source, thus the new Green
function is derived as G(k,R0) = e−j2k|R0−r′|/(4π|R0 − r′|)2. The
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scattering field collected by radar in near-field can be expressed as
following

EN
s (k,R0) =

1
(4π)2

∫
V

g(r′)e−j2k|R0−r′|/|R0 − r′|2dr′ (3)

where k is the wave number, R0 is the position vector of radar
observation point.

The echo signal of radar in far-field is:

EF
s (k,R) =

1
(4π)2

∫
V

g(r′)
|R − r′|2 e

−j2k|R−r′|dr′

≈ e−j2k|R|

(4π|R|)2
∫
V

g(r′)ej2kr′·R̂dr′ (4)

From the relation between Equation (3) and Equation (4), the
distance factor |R0−r′| in Equation (3) can be reduced approximately
to three forms according to different near distance, so we can derive
three arithmetic.

2.2. Huygens Arithmetic-Extrapolating Technique Based on
HERS

If R0 � r′max, r
′
max is the maximum size of target, the denominator

|R0−r′|2 in Equation (3) can be approximated as |R0|2, thus, the near-
field of target is treated as a new second radiating source, the second
radiating pattern can be calculated from Equation (3), as following:

EN
s (k,R0) =

1
(4π)2

∫
V

g(r′)
|R0 − r′|2 · e−j2k|R0−r′|dr′

≈ 1
(4π|R0|)2

∫
V

g(r′) · e−j2k|R0−r′|dr′

≈ C · g(r′) ∗ e−j2kR0 (5)

where C = 1/(4π|R0|)2, C is a constant which can be ignored,
∗ is convolution operator. By replacing convolution by Fourier
transform [16], we can get:

g(r′) ≈ F
−1

{
F

[
EN

s (k,R0)
]
/F

(
e−j2kR0

)}
(6)
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So the far field of target is derived as:

EF
s (k,R) ≈ 1

|R|2
∫
V

g(r′) · e−j2k|R−r′|dr′ ≈ g(r′) ∗ e−j2kR (7)

Rewrite Equation (6) and Equation (7), the relation between near-field
and far-field can be established as following:

EF
s (k,R) ≈ F

−1
{

F
[
EN

s (k,R0)
]
· F

(
e−j2kR

) /
F

(
e−j2kR0

)}
(8)

2.3. Hankel Arithmetic-Extrapolating Technique Based on
ISAI

Equation (3) can be coordinated to the format including Green
Function of 2-D free space, as follows:

EN
s (k,R0) =

∫
V

√
2k · g(r′)

|R0 − r′|3/2
· e−j2k|R0−r′|√

2k|R0 − r′|
dr′

≈
∫
V

√
2k · g(r′)

|R0 − r′|3/2
· C ′ ·H(2)

0

(
2k

∣∣R0 − r′∣∣) dr′ (9)

In Equation (9), the error can be analyzed by assuming Ratio =
e−j2kR|√

2kR
/H

(2)
0 (2kR), Let k = 10 (frequency is 0.5 GHz), distance R

varies from 1 m to 8 m, The result is listed in Table 3.

Table 3. The approximation error of amplitude and phase.

R /m 1 2 3 4 5 6 7
2kR 20 40 60 80 100 120 140 160

Ratio 5.606 5.605 5.605 5.605 5.605 5.605 5.605 5.605

arg( )Ratio
/degree

-45.36 -45.18 -45.12 -45.09 -45.07 -45.06 -45.05 -45.05

8

The error of amplitude is lower than 0.02% and the error of phase
is lower than 0.5◦. So Equation (9) has an excellent precision.

In Equation (9), C ′ is a constant. If R0 � r′max, the denominator
|R0 − r′

0| in Equation (9) can be approximated as |R0|, also named
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R0. According to the Hankel addition theory:

H
(2)
0

(
2k

∣∣R0 − r′∣∣) =
∞∑

n=−∞
H(2)

n (2kR0)Jn(2kr′)ejn(ϕ0−ϕ′) (10)

Replacing Equation (10) to Equation (9), and ignoring the constant
C ′, a series is derived as following:

EN
s (k,R0) ≈

2k

R
3/2
0

∞∑
n=−∞

H(2)
n (2kR0)ejnϕ0

∫
V

g(r′)Jn(2kr′)e−jnϕ′
dr′

(11)

Note
∫
V

g(r′)Jn(2kr′)e−jnϕ′
dr′ = S2k

n , this is the generalized Fourier

series of target image, which belongs to inherence scattering
characteristic, and it is irrelative to measurement distance. So
Equation (11) can be changed as:

EN
s (k,R0) ≈

2k

R
3/2
0

∞∑
n=−∞

S2k
n H(2)

n (2kR0)ejnϕ0 (12)

According to the large argument approximation theory in Hankel
function, Equation (12) is turned as:

EF
s (k,R) ≈ 1

R2

√
4k
π
ej(2−kR+π

4 )
∞∑

n=−∞
S2k

n ejn(ϕ+π
2 ) (13)

Connect Equation (12) and Equation (13), the following can be
derived:

EF
s (k,R) ≈

∫
EN

s (k,R0)
∞∑

n=−∞

jnejn(ϕ−ϕ0)

H
(2)
n (2kR0)

dϕ0

= EN
s (k, ϕ0) ∗

∞∑
n=−∞

jnejn(ϕ0)

H
(2)
n (2kR0)

(14)

In fact, the series in Equation (14) must be truncated, generally
|n| ≤ N0, N0 ≥ int(2kD), where D is the minimum radius enclosing
the target.
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2.4. NFFFT-Another Extrapolating Technique Based on
ISAI

If the testing distance is much nearer, the assumption R0 � r′max
can not be met, a more precise technique is needed [14]. Rewrite
Equation (3), as following:

EN
s (k,R0) =

∫
V

g(r′) · e
−j2k|R0−r′|

|R0 − r′|2 dr′ (15)

Do partial derivative of k to Equation (15):

∂EN
s (k,R0)
∂k

=
∫
V

−j2 · g(r′) · e
−j2k|R0−r′|

|R0 − r′| dr′

≈
∫
V

−j2 · g(r′)
|R0 − r′|1/2

· c′H(2)
0

(
2k

∣∣R0 − r′∣∣) dr′ (16)

Note − 1
j2 · ∂EN

s (k,R0)
∂k

∆= UN
s , if we use stepped-frequency RCS

measurement system, UN
s can be easily obtained by Fourier Transform

technique as [18–21]:

UN
s (k,R0) =

1
2π

∫
2R

[∫
EN

s (k,R0)e
j2kR0

dk

]
e−j2kRdR (17)

Ignore the constant c′, Equation (16) is changed as:

UN
s ≈ 1

R
1/2
0

∫
V

−j2 · g(r′) ·H(2)
0

(
2k

∣∣R0 − r′∣∣) dr′ (18)

In Equation (17), UN
s is derived from near field EN

s (k′, R0) by
inverse Fourier transform, and after multiplying distance factor 2R,
Fourier transform is used once more. In fact, if R is replaced by R3/2,
as following:

UN
s (k,R0) =

1
2π

∫
2R3/2

[∫
EN

s (k,R0)e
j2kR0

dk

]
e−j2kRdR (19)

Thus, 1/|R0 − r′|1/2 is approximated as 1/R1/2
0 by moving from

the integral with much less error in Equation (18) (shown in Figure 2).
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According to the Hankel addition theory, the far-field can be
derived from the near-filed as following:

EF
s (k,R) ≈

√
R0

R

∫
UN

s (k,R0)
∞∑

n=−∞

jnejn(ϕ−ϕ0)

H
(2)
0 (2kR0)

dϕ0

= UN
s (k, ϕ0) ∗

√
R0

R

∞∑
n=−∞

jnejn(ϕ0)

H
(2)
0 (2kR0)

(20)

Similar to Equation (14), Equation (20) must be truncated,
generally |n| ≤ N0, N0 ≥ kD + 10, where D is the minimum radius
enclosing the target.

Figure 2. Much less error is gained by replacing R with R3/2 (the
dash line turns solid line).

The above two arithmetic are based on inverse synthesized
aperture imaging theory, despite their theoretical underpinnings.
However, they do not explicitly require image formation as part of
their implementation, so they are the most computationally efficient.

3. SIMULATION AND EXPERIMENTS

A plate with length 1m, and width 0.3 m, is selected as DUT, frequency
is 15 GHz, the distance is 16 m, and the scope of rotator is −7.5◦ ∼ 7.5◦,
where the step is 0.1◦, as shown in Figure 3. The simulated result
is shown in Figure 4. By extrapolating the near-field with Huygens
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Figure 3. Metal plate rotates by α angle.

Figure 4. Normalized RCS patterns by extrapolating the near-field
with Huygens arithmetic, Hankel arithmetic, NFFFT respectively.

arithmetic, Hankel arithmetic and NFFFT respectively, they can be
consistent well, all can correct the bend phase-distribution effectively.

The experiment is designed to make a target with large depth
structure, which is made of 9 metal spheres with the same diameter
5 mm, as shown in Figure 5, the maximums size in landscape
orientation and in depth is 1 m. The measurement frequency is 15 GHz,
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Figure 5. A target with large depth structure.

Figure 6. Normalized RCS patterns by extrapolating the near-field
with Huygens arithmetic, Hankel arithmetic and NFFFT Respectively.

the distance is 13 m, and the scope of rotator is −7.5◦ ∼ 7.5◦, where
the step is 0.1◦. The experimental result is shown in Figure 6.
NFFFT holds the best precision, its extrapolating results are very
consistent with theoretical value within −5◦ ∼ 5◦, the two small sides
are not consistent with theoretical value because the arithmetic has
limited angle scope. Huygens arithmetic, Hankel arithmetic can hold
little error in high level, but more error occurs in lower level. The
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error caused by the distance factor is approximated too serious when
extracted from the integral in Equation (5) and Equation (11).

The results in simulation and experiment show that three
extrapolating techniques can extrapolate the true RCS effectively,
NFFFT technique gets the best precision especially for near-field
measurement. The base of the extrapolating technique is scattering
center model, which is suit for most of aircraft targets [22–26]. In
addition, the existing RCS measurement systems generally are bistatic,
the monostatic RCS can be gained according to the bistatic and
monostatic RCS equivalence principle [27]. Also, this principle is based
on Scattering Center model [28–31]. So the extrapolating techniques
can be applied to general RCS measurement systems.

4. CONCLUSIONS

As above, three extrapolating techniques are described. They all can
be applied to whole circle angle scope, so the whole circle RCS can
be gained. Huygens extrapolation technique requires farther distance
to obtain lower magnitude error. Hankel extrapolation techniques can
apply to less distance by amending part error. NFFFT is the most
precision for no magnitude approximation, and it can be used at very
near distance.

During the process of real target rotating and imaging, large angle
scope leads the scattering centers migrate. In fact, extrapolating
techniques based on ISAR imaging theory are also applied to small
rotator angle scope mostly. The whole circle RCS can be depicted by
connecting every sect of small rotator angle scope.
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