
Progress In Electromagnetics Research, PIER 84, 363–377, 2008

DETERMINISTIC BLIND BEAMFORMING FOR
ELECTROMAGNETIC VECTOR SENSOR ARRAY

X. Zhang and D. Xu

Electronic Engineering Department
Nanjing University of Aeronautics & Astronautics
Nanjing 210016, China

Abstract—Deterministic blind beamforming algorithms try to
separate superpositions of source signals impinging on electromagnetic
vector sensor array by using deterministic properties of the signals.
This paper links electromagnetic-vector-sensor-array beamforming
problem to the parallel factor (PARAFAC) model, which is an analysis
tool rooted in psychometrics and chemometrics. Exploiting this link,
it derives a deterministic blind beamforming algorithm. The blind
beamforming algorithm doesn’t require DOA (direction of arrival)
information and polarization information. The simulation results
reveal that the performance of the blind beamforming algorithm
for electromagnetic vector sensor array is close to nonblind MMSE
method, and this algorithm works well in array error condition.

1. INTRODUCTION

Electromagnetic vector sensor arrays have some inherent advantages
over traditional sensor arrays, since they have the capability of
separating signals based on their polarization characteristics [1, 2],
as well as spatial diversity. Electromagnetic vector sensor arrays
are used widely in the communication, radio and navigation [3–6].
In the context of array signal processing, beamforming is concerned
with the reconstruction of source signals from the outputs of a
sensor array. Classically, beamforming [7–12] requires knowledge
of a direction vector of the desired source. Maximum likelihood
signal estimation method for electromagnetic vector sensor array s
is proposed in [13]. Filtering performance of electromagnetic vector
sensor array in completely polarized case is investigated in [14].
Acoustic vector sensor beamforming and direction estimation is
investigated in [15]. The beamforming methods mentioned above
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are nonblind methods, since they require the knowledge of DOA [16]
and polarization information. Blind beamforming tries to recover
source signals without this information, relying instead on various
structural properties, and blind beamforming is also regarded as
blind source separation. Some blind beamforming algorithms use
known space/time manifold structure (like ESPRIT [17]). More
recently, new blind beamformers have been proposed that are not
based on specific channel models, but instead exploit properties of
the signals, e.g., finite alphabet, constant modulus, known pulse
shape/spreading, or cyclostationarity [18–21]. Van der Veen [22]
provides an excellent overview of algebraic methods for deterministic
blind beamforming under sensor arrays. Sidiropoulos [23] has
investigated identifiability issues in the context of deterministic blind
beamforming for sensor array, and the viewpoint derives from the
theory of low-rank decomposition of multiway arrays, known as Parallel
factor (PARAFAC) analysis which was shown to be the core problem
underlying deterministic blind beamforming. PARAFAC analysis
has been first introduced as a data analysis tool in psychometrics,
most of the research in the area is conducted in the context of
chemometrics [24], spectrophotometric, chromatographic and flow
injection analyses. Harshman [25] developed the PARAFAC model.
At the same time, Caroll and Chang [26] introduced the canonical
decomposition model, which is essentially identical to PARAFAC. In
signal processing field, PARAFAC can be thought of as a generalization
of ESPRIT and joint approximate diagonalization [27, 28].

Our work extends blind beamfoming for sensor array in [23] to
blind beamforming for electromagnetic vector sensor array. This paper
links the electromagnetic vector-sensor-array beamforming problem to
the PARAFAC model and derives a deterministic blind beamforming
whose performance is close to nonblind minimum mean-squared error
(MMSE). The proposed algorithm supports small sample sizes, and
even works well in array error condition. Most notably, it does not
require knowledge of the DOA and polarization information. Instead,
this algorithm relies on a fundamental result of Kruskal [29] regarding
the uniqueness of low-rank three-way array decomposition. A prime
advantage is that the blind beamformers are not dependent on channel
properties or array calibration.

This paper is structured as follows. Section 2 develops data model.
Section 3 discusses identifiability issues and deals with algorithmic
issues. Section 4 presents simulation results, and Section 5 summarizes
our conclusions.
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2. THE DATA MODEL

Consider a uniform linear array consisting of M electromagnetic vector
sensor, as shown in Fig. 1. Each electromagnetic vector sensor is triple-
orthogonal dipoles. Each dipole in the array is a short dipole (In
general, dipole length is shorter than half wavelength), so the output
voltage from each dipole is proportional to the electric field component
along that dipole. There are orthogonal short dipoles, the x-, y- and
z-axis dipoles, parallel to the x, y and z axes, respectively. The lth
dipole pair, l = 1, 2, . . . ,M , has its center on the y-axis at y = (l−1)d.
The distance d between two adjacent dipole pairs is assumed to be a
half wavelength to avoid angle ambiguity problems.

Y

X

Z

Figure 1. The structure of electromagnetic vector sensor array.

2.1. The Received Signal Model for Electromagnetic Vector
Sensor

We begin by considering the polarization of an incoming signal.
Suppose there is an antenna at the origin of a spherical coordinate
system. Assume that a signal b(t) is arriving from direction θ, ϕ,
where ϕ is the elevation angle and θ is the azimuth angle. Let this
signal be a transverse electromagnetic (TEM) wave, and consider the
polarization ellipse produced by the electric field in a fixed transverse
plane. Polarization parameters are γ, η. We characterize the antenna
in terms of its response to linearly polarized signals in the x, and y
directions. Let Ex, Ey and Ez be the complex voltage induced at
the antenna output terminals by an incoming electromagnetic signal
with a unit electric field polarized entirely in the x, y and z directions,
respectively. The total output voltage and magnetic from this antenna
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in response to the electromagnetic signal is

yo(t) =




Ex

Ey

Ez

Hx

Hy

Hz




=




cos θ cosϕ − sinϕ
cos θ sinϕ cosϕ
− sin θ 0
sinϕ cos θ cosϕ

− cosϕ cos θ sinϕ
0 − sin θ



[
sin γejη

cos γ

]
b(t) = sb(t) (1)

where s =




cos θ cosϕ − sinϕ
cos θ sinϕ cosϕ
− sin θ 0
sinϕ cos θ cosϕ

− cosϕ cos θ sinϕ
0 − sin θ




[
sin γejη

cos γ

]
is the polarization

vector, and it relates to polarization and DOA information.

2.2. The Received Signal Model for Electromagnetic Vector
Sensor Array

Assume that a signal b(t) arrives at the uniform linear array
with M electromagnetic vector sensor. The received signal of the
electromagnetic vector sensor array is shown as follows.

y(t) =
[
sT , qsT , . . . , qM−1sT

]T
b(t) = (a⊗ s)b(t) (2)

where ⊗ is Kronecker product. s is the polarization vector. a =
[1, q, . . . , qM−1]T is the direction vector, q = e−j2πd sin θ/λ.

When K sources impinge the electromagnetic vector sensor array,
the received signal at the output of the electromagnetic vector sensor
array is

X = [a1 ⊗ s1, a2 ⊗ s2, . . . , aK ⊗ sK ]BT = [A ◦ S]BT (3)

where ai and si are the direction vector and polarization vector of the
ith source, respectively. B = [bT1 , b

T
2 , . . . , b

T
K ] ∈ R

N×K is the source
matrix, where bi the transmit signal of the ith source. A ◦S is Khatri-
Rao product. A = [a1, a2, . . . , aK ] ∈ C

M×K is the direction matrix.
S = [s1, s2, . . . , sK ] ∈ C

6×K is the polarization matrix. Eq. (3) can be
denoted as

X =




X..1

X..2
...

X..M


 =




SD1(A)
SD2(A)

...
SDM (A)


BT (4)
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where Dm(.) is understood as an operator that extracts the mth row of
its matrix argument and constructs a diagonal matrix out of it. X..m

is

X..m = SDm(A)BT , m = 1, 2, . . . ,M (5)

where X..m is the mth slice along spatial direction. In the presence of
noise, the received signal model becomes

X̃..m = X..m + V..m = SDm(A)BT + V..m, m = 1, 2, . . . ,M (6)

where V..m, the 6 × N matrix, is the received noise corresponding to
the mth slice.

The signal in (5) is also denoted through rearrangements

xm,n,p =
K∑

f=1

am,fsn,fbp,f ,

m = 1, . . . ,M ; n = 1, . . . , N ; p = 1, 2, . . . , 6

(7)

where am,f stands for the (m, f) element of A matrix, and similarly
for the others. The signal in (7) is well known as the trilinear
mode, trilinear decomposition or PARAFAC analysis. Eq. (6) can be
interpreted as slicing the 3-D data in a series of slices (2-D data) along
the spatial direction. The symmetry of the trilinear model in (7) allows
two more matrix system rearrangements, which can be interpreted as
slicing the three-way data along different directions. In particular

Y..p = BDp(S)AT , p = 1, 2, . . . , 6 (8)

Z..n = ADn(B)ST , n = 1, 2, . . . , N (9)

where Y..p is the pth slice in polarization direction. Z..n is the nth slice
in the temporal direction.

3. DETERMINISTIC BLIND BEAMFORMING FOR
ELECTROMAGNETIC VECTOR SENSOR ARRAY

3.1. Trilinear Decomposition

TALS (Trilinear Alternating Least Square) algorithm is the common
data detection method for trilinear model [29]. TALS algorithm is
discussed in detail as follows.
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According to (4), least squares fitting is

min
A,S,B

∥∥∥∥∥∥∥∥∥




X̃..1

X̃..2
...

X̃..M


 −




SD1(A)
SD2(A)

...
SDM (A)


BT

∥∥∥∥∥∥∥∥∥
F

(10)

where ‖‖F stands for the Frobenius norm. X̃..m, m = 1, 2, . . . ,M , are
the noisy slices. Least squares update for the source matrix B is

B̂T =




ŜD1

(
Â

)

ŜD2

(
Â

)
...

ŜDM

(
Â

)




+ 


X̃..1

X̃..2
...

X̃..M


 (11)

where [.]+ stands for pseudo-inverse. Â and Ŝ denote previously
obtained estimates of A and S.

Similarly, from the second way of slicing the 3-D data: Y..p =
BDp(S)AT , p = 1, 2, . . . , 6. According to symmetry of the trilinear
model, the costing function in (10) is rewritten as follows

min
A,S,B

∥∥∥∥∥∥∥∥∥




Ỹ..1

Ỹ..2
...

Ỹ..6


 −




BD1(S)
BD2(S)

...
BD6(S)


AT

∥∥∥∥∥∥∥∥∥
F

(12)

And the conditional LS update for matrix A is

ÂT =




B̂D1

(
Ŝ

)

B̂D2

(
Ŝ

)
...

B̂D6

(
Ŝ

)




+ 


Ỹ..1

Ỹ..2
...

Ỹ..6


 (13)

Finally, from the third way of slices: Z..n = ADn(B)ST , n =
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1, 2, . . . , N . And then LS update for matrix S is

ŜT =




ÂD1

(
B̂

)

ÂD2

(
B̂

)
...

ÂDN

(
B̂

)




+ 


Z̃..1

Z̃..2
...

Z̃..N


 (14)

According to (11), (13) and (14), matrices B, A and S are updated
with conditioned least squares, respectively. The matrix update will
stop until convergence.

TALS is optimal when noise is additive i.i.d. Gaussian [30]. TALS
algorithm has several advantages: it is easy to implement, guarantee to
converge and simple to extend to higher order data. Sometime TALS
algorithm can be stuck in local minima [30, 31]. In this paper, we use
the COMFAC algorithm [32] for trilinear decomposition. COMFAC
algorithm is essentially a fast implementation of TALS, and can speeds
up the LS fitting.

Deterministic blind beamforming algorithm is proposed in this
paper. This blind beamforming uses trilinear decomposition to get the
source matrix, and we make decision for the estimated source matrix
to implement the beamforming.

3.2. Identifiablity

Definition1 [29]: Consider a matrix A ∈ C
I×J . If rank(A) = r, then A

contains a collection of r linearly independent columns. Moreover, if
every l ≤ J columns of A are linearly independent, but this does not
hold for every l + 1 columns, then A has k-rank kA = l. Note that
kA ≤ rank(A),∀A.

Theorem1 [23]: X..m = SDm(A)BT , m = 1, 2, . . . ,M , where A ∈
C

M×K , S ∈ C
6×K , B ∈ R

N×K , considering that A is a matrix with
Vandermonde characteristic. If

kS + min(M + kB, 2K) ≥ 2K + 2 (15)

then A, B and S are unique up to permutation and scaling of
columns, that is to say, any other triple Ā, B̄, S̄ that construct X..m

(m = 1, 2, . . . ,M) is related to A, B and S via

Ā = AΠ∆1, B̄ = BΠ∆2, S̄ = SΠ∆3 (16)
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where Π is a permutation matrix, and ∆1,∆2,∆3 are diagonal scaling
matrices satisfying ∆1∆2∆3 = I and I is an identity matrix.

Scale ambiguity and permutation ambiguity are inherent to the
separation problem. This is not a major concern. Permutation
ambiguity can be resolved by resorting to a priori or embedded
information. The scale ambiguity can be resolved using automatic
gain control, normalization or embedded information.

In our present context, for source-wise independent source signals,
kB = min(N,K); for source-wise independent polarization, kS =
min(6,K), and therefore, (15) becomes

min(6,K) + min(M + min(N,K), 2K) ≥ 2K + 2 (17)

If matrix A in Theorem1 is not a vandermonde matrix, according
to [23], the identifiable condition is

min(6,K) + min(N,K) + min(M,K) ≥ 2K + 2 (18)

4. SIMULATION RESULTS

According to (6), we define SNR

SNR = 10 log10

M∑
m=1

∥∥SDm(A)BT
∥∥2

F

M∑
m=1

‖V..m‖2
F

dB (19)

Uniform linear array containing 8 electromagnetic vector sensors
is used in the simulation. Assume that each source only has one path
to electromagnetic vector sensor array. We assume Binary Phase Shift
Keying (BPSK) modulated signal and additive gauss white noise.

We present Monte Carlo simulations that are to assess the bit
error rate (BER) performance of the proposed blind beamforming
algorithm. The number of Monte Carlo trials is 1000. The
blind beamforming algorithm doesn’t require DOA information and
polarization information. We compare our blind beamforming
algorithm with the nonblind minimum mean-squared error (MMSE)
receiver. MMSE receiver offers a performance bound against which
blind algorithms are often measured [33]. MMSE receiver assumes
perfect knowledge of DOA, SNR and polarization information.

Note that N is the number of snapshots. We use MATLAB
software and computer with Pentium 4, CPU 3.2 GHz, memory 504 MB
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as simulation environment. For 1000 Monte Carlo trials with N = 100,
SNR = 0 and 2 sources, PARAFAC method requires 178s, and MMSE
method requires 28s. The PARAFAC method requires more processing
time than MMSE method. The performances of these algorithms under
different N are shown in Fig. 2–Fig. 5. For the simulation, the number
of the sources is 3.

Figure 2 presents large sample results for N = 400, From Fig. 2,
we find that the blind beamforming algorithm is very close to nonblind
MMSE method.
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Figure 2. Algorithm performance comparison with N = 400.

Figure 3 and Fig. 4 depict results for N = 200 and 100,
respectively. From Fig. 2 to Fig. 4 we find that the gap between the
blind beamforming algorithm and (nonblind) MMSE increases as N
decreases.

Figure 5 shows small sample results for N = 30. It is clear that
the blind beamforming algorithm performs well even for small sample
sizes.

The performance of the blind beamforming algorithm under
different source number is investigated in the simulation. The source
number is set 2, 3 and 4. The number of snapshots is 100. Fig. 6 shows
the blind beamforming performance under different source numbers.
From Fig. 6, we find that the blind beamforming performance of the
proposed algorithm degrades with the increasing of the source number.

The blind beamforming algorithm performance in the array error
condition is investigated. In this simulation, array error vector is
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Figure 3. Algorithm performance comparison with N = 200.
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Figure 4. Algorithm performance comparison with N = 100.

the array gain and phase error vector. The array error vector
g= [1, 0.6071 − 0.4953i, 0.2083 + 0.7059i, 0.3497 − 0.7167i, 0.693 +
0.2916i, 0.4343 + 0.6883i, 0.330 + 0.6894i, 0.6678 − 0.5133i]. Assume
that array response vector for DOA = θ is a(θ), and then the array
response vector with array error is diag(g)a(θ). The direction matrix
with array error is not vandermonde matrix, and then the identifiable
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Figure 5. Algorithm performance comparison with N = 30.
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Figure 6. Algorithm performance comparison with different sources.

condition is shown in (18). The performance of the blind beamforming
algorithm in array error condition is shown in Fig. 7. Fig. 7 shows that
the blind beamforming algorithm has the better performance in the
array error condition. The blind beamforming algorithm has robust
characteristics to array error. When there exists mutual coupling
between the elements, the direction matrix A is not a Vandermonde
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Figure 7. Algorithm performance with array error.

matrix. If satisfying the identifiable condition in (18), our proposed
algorithm still works well in this condition.

5. CONCLUSIONS

This paper has developed a link between PARAFAC analysis and
blind beamforming for electromagnetic vector sensor arrays. Relying
on the uniqueness of low-rank three-way array decomposition and
trilinear decomposition, a deterministic blind beamforming algorithm
has been proposed. The algorithm doesn’t require DOA information
and polarization information. The simulation results reveal that the
performance of the blind beamforming algorithm for electromagnetic
vector sensor array is close to nonblind MMSE method, and the
algorithm works well in array error condition and supports small
sample sizes.
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