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Abstract—Electrostatic velocity shear Kelvin-Helmholtz instability
has been studied for bi-Maxwellian plasma in the presence of
perpendicular a.c. electric field by using the method of characteristic
solution. The effects of a.c. electric field temperature variation,
velocity shear scale length, electron ion temperature ratio and other
parameters on growth rate have been discussed.

1. INTRODUCTION

The Kelvin-Helmholtz instability is generated by unbalanced pressure
resulting from the perturbation of the velocity shear flow. The Kelvin-
Helmholtz (K-H) instability that is driven by sheared velocity flows has
applications in many areas of astrophysics and space physics. In the
beginning of the space era Axford and Hines [1] have suggested that
the solar wind couples momentum and energy into the magnetospheric
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cavity via a viscous interaction along the flanks of the day side
magnetopause. They speculated that the strong velocity shear at the
boundary might excite Kelvin-Helmholtz turbulence, which would then
permit solar wind momentum to diffuse in the closed magnetospheric
field lines. This viscous stress would drive a tail ward convection flow,
which eventually would be closed by an earth ward return flow in the
center of the tail.

When the flow is perpendicular to the ambient field, shear flow
occurs due to a nonuniform electric field. Ganguli et al. [2–4] show
that such a situation also gives rise to instabilities. Electrostatic
particle simulation has also been employed to reveal more fully
the character of the instability in the ion cyclotron regime [5, 6].
Pritchett and Coroniti [7, 8] have carried out similar simulation for the
longer wavelength electrostatic Kelvin Helmholtz instability, showing
reduction of growth when the ion gyroradius becomes comparable
to the shear layer thickness. In recent parallel flow velocity shear
instabilities has been studied with inhomogeneous D.C. electric field
for an anisotropic Maxellian plasma [9, 10]. While attempts have been
made to study such ion kinetic instabilities by including in the MHD
formulation first-order finite Larmor radius corrections [7] or Proton
and electron pressure effects [11] the modifications to the MHD theory
are minimal. Recently, Opp and Hassan [12] have used a set of modified
MHD equations, which are valid in the large Larmor radius limit, to
show that a new short wavelength branch of the Kelvin-Helmhoitz
instability is also excited [13].

Simulation of K-H instability for magnetospheric applications are
numerous [14, 15]. In order to study K-H mixing process, the ion
particle effects have been treated consistently in hybrid code simulation
including the effect of inhomogeneity in density [16]. The motivation
for this work is provide by observations of both space and laboratory
plasmas in which flows have been reported, whose shear scale length
can be of the order of the ion Larmor radius or smaller. In auroral
phenomena, for example electric fields called paired electrostatic shocks
have been found to exist whose scale length of variation is of the order
of the ion Larmor radius [17, 18]. This electric field causes localized
cross-field flows, which excite instability with frequency and growth
rate in the vicinity of the ion cyclotron frequency [2, 3]. A distinctive
feature of this instability is that it can exist even when the field-aligned
current is sub critical. Another example of strongly sheared system is
given by the dynamical evolution of the plasma sheet just prior to the
on set of a magnetic substrom. During this time the neutral plasma
sheet region thins and its width becomes smaller than the ion Larmor
radius.
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In this paper electrostatic K-H instability for short wave length
has been studied with perpendicular AC electric field for bi-Maxwellian
plasma by using the method of characteristic solution in auroral
region of ionosphere. The effect of a.c. electric field temperature
variation, density gradient and other parameters has been discussed.
The bi Maxwellian modified distribution including density gradient
and velocity shears has been used in this study. The most important
source of driving instability is velocity shear, temperature anisotropy,
density gradient and AC frequency, which modify the Doppler shift
frequency.

2. DISPERSION RELATION

A spatially homogeneous anisotropic magnetoplasmacollision less
magneto plasma subjected to an external magnetic field B0 = B0e

′z
and an electric fields E0x = (E0 sin υte′x) has been considered. In
order to obtain the dispersion relation in this case, the Vlasov-Maxwell
equations are linearized. The linearized equations obtained after
neglecting the higher order terms and separating the equilibrium and
non equilibrium parts, following the techniques of [9, 19] are given as
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where force is defined as F = mdv/dt, v = a.c. frequency

F = es [E0sinυt+ (v ×B0)] (3)

The practical trajectories are obtained by solving the equation of
motion defined in Eq. (3) and S(r, v, t) is defined as
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where s denotes species and E1, B1 and fs1 are perturbed and are
assumed to have harmonic dependence in fs1, B1 and E1 ∼ exp i(k ·
r − ωt).

The method of characteristic solution is used to determine the
perturbed distribution function. fs1, which is obtained from Eq. (2)
by
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The phase space coordinate system has been transformed from (r, v, t)
to (r0, v0, t − t′). The particle trajectories which have been obtained
by solving Eq. (3) for the given external field configuration and wave
propagation

k = �k⊥ex, 0, k‖ez�.

are
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where Ωcs = esB0
ms

is the cyclotron frequency of species s and Γx = esE0
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.
Equation (2) can be written in terms of a perturbed quantities as
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The unperturbed distribution function with velocity and density
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gradient.
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where ε′′ being constant of motion
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After using the unperturbed trajectories with perpendicular AC
electric field and unperturbed distribution function also doing some
lengthy simplifications the perturbed distribution function as,
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Now simplifying m = n, g = p and using the definition of current
density, conductivity and dielectric tensor, we get the dielectric tensor
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now we consider electrostatic instability

‖ε‖ = N2 (12)

where N = refractive index.
The required electrostatic dispersion relation can be obtained by

using the technique of [9, 19] and from Eqs. (1) to (3)
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Following the assumption of [21] and [9] for p = 1, g = 0 and
s = i, e. In order to get dispersion relation for electrons and ions,
approximations for electrons are assumed as k⊥ρe << 1 and for ions
no such assumptions in done thus above equations becomes.
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quadratic dispersion as:
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From this expression dimensionless growth rate has been
calculated by computer technique when b2i < 4aici. Hence this criteria
gives a condition for the growth rate of wave when
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3. RESULTS AND DISCUSSION

Following plasma parameters suited to the ionospheric region have
been used to evaluated the growth rate for harmonic value of n = 0.
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Magnetic field B0 has been taken to vary from 2×10−7 T to 6×10−7 T,
energy of the electrons KBT‖ = 10 eV. Velocity shear scale length Ai

has been allowed to vary between 0.5 to 0.6, density gradient εnρi

between 0.02 to 0.06 and temperature ratio Te/Ti between 2 to 4.
The value of AC electric field has been fixed on E0 = 4 × 10−3 V/m
where as it’s frequency ν is allowed to vary between 2 KHz and 4 KHz.
Temperature anisotropy varies between 0.25 and 0.5 and the value
of θ varies from 88◦ to 88.5◦ where θ = tan−1 (k⊥/k‖). Growth
rate variations with k‖ρi have been calculated from expression (17) for
various values of plasma parameters listed in figure captions.

Figure 1. Variation of growth rate with k⊥ρI for various values of
velocity shear scale length at other fixed plasma parameters.

Figure 1: The growth rate variations for two shear scale length
have been shown. The maximum peak of growth rate is obtained at
k⊥ρi = 1.4 and and 1.5 respectively. The growth rate increases by
increasing the velocity shear scale length but maxima shifts slightly
towards higher value of k⊥ρi. The mechanism of instability of this
mode is de to coupling of regions of positive and negative wave energy.
This coupling occurs if velocity shear is non-uniform and the shear
is the source of energy. Figure 2 deals with variation of growth rate
with k⊥ρi for different values of tan θ = k⊥/k‖ for maximum value
of k⊥ρi = 1.5. The growth rate increases by increasing the value of
theta from 88◦ to 88.5◦ and maxima shifts towards higher value of
k⊥ρi. However, for some other plasma parameters and velocity shear,
instability exists at lower angles with smaller magnitude. The K-H
instability has maximum growth rate when c becomes very close to
90◦.

Figure 3: It is shown that the magnetic field affects the growth
rate. It increases by increasing the value of B0 and maxima slightly
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Figure 2. Variation of growth rate with k⊥ρI for various values of θ
at other fixed plasma parameters.

Figure 3. Variation of growth rate with k⊥ρI for various values of
magnetic field B0 at other fixed plasma parameters.

shifts towards higher values of k‖ρi. Inhomogenity in magnetic field
introduces a shear in velocity flow and couples positive and negative
energy waves leading to grow of the wave. In Fig. 4, it clears that the
growth rate is affected by the ratio Te/Ti. It is increases by increasing
the value of Te/Ti and maxima shifts towards higher value of k⊥ρi as
the velocity shear term is proportional to Te/Ti Thus , the temperature
ratio of electron and ions becomes an additional source along with
the velocity shear for exciting the larger wavelengths. When shear
flow is dominated by electron flow, the maxima flows towards lower
wavelengths [22].

Figure 5: The temperature anisotropy affects the growth rates
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Figure 4. Variation of growth rate with k⊥ρI for various values of
temperature ratio Te/Ti at other fixed plasma parameters.

Figure 5. Variation of growth rate with k⊥ρI for various values of
temperature anisotropy AT at other fixed plasma parameters.

significantly and shifts towards lower value of k⊥ρi. Tor towards
the higher wavelengths. The non-isothermal plasma changes the
velocity shear required for onset of this instability. Thus temperature
anisotropy and electron ion temperature play a vital role in the
understanding of magnetopause. Fig. 6 the variation of growth rate
with k⊥ρi for various values of density gradient scale length from
εnρi = 0.02 to 0.06 the growth rate increases by the value ofv
density scale length. The simulation conclusion of Fijimoto and
Terasawa [16] indicates that for non-uniform background plasma, the
mixing efficiency becomes the function of density ratio,shear width
and wavelength of growing mode. The present analytical results are in
agreement with their [16] conclusions. As shown in Fig. 7 the growth
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Figure 6. Variation of growth rate with k⊥ρI for various values of
density gradient scale length at other fixed plasma parameters.

Figure 7. Variation of growth rate with k⊥ρI for various values of
frequency of A.C. at other fixed plasma parameters.

rate increases by increasing the value of the frequency of the AC field
and maxima shifted towards the higher values of k⊥ρi. Indicate that
the a.c. frequency modified the Doppler frequency.

4. SUMMARY

The prime driving source of K-H instability remains to be the velocity
shear in addition temperature anisotropy and density gradient. The
a.c. field frequency, which modifies the Doppler shift frequency having
mark effect on K-H instability. The increasing in magnetic field plays
the role of increasing effect of the growth rate. The electron ion
ratio and pitch angle having minimum effect on this instability. The
temperature anisotropy and a.c. frequency is worked as free energy
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source for instability. The present results are in agreement with
simulation results.
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