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Abstract—Kelvin-Helmoholtz instability by parallel flow velocity
shear in presence of inhomogeneous d.c. electric field and perpendicular
density temperature magnetic field gradient has been studied by using
method of characteristic solution and kinetic approach. Effect of in
homogeneity of d.c. electric field and gradient have been discussed in
result. The growth rates have been calculated for different effects and
showing in stabilizing and destabilizing of instability.

1. INTRODUCTION

Kelvin-Helmholtz instability resulting from velocity shear in fluid
dynamics has an analogous counterpart in planetary magnetopause
and could account, at least in past, for the entry of solar wind
plasma in to the closed field lines of the magnetosphere [1]. Results
of research to date have provided a strong observational and
theoretical case for existence of a magnetopause K-H instability [2–
12]. Recently microstructure of magnetopause was done by analyzing
AMPTE/CCE and ISEE2 space craft data [13]. The shape, field
and structure of the magnetopause was inferred analytically and
by simulation technique [14, 15]. Simulation of K-H instability for
magnetospheric calculations are numerous and extend from MHD
calculations [16–18], to hybrid calculations [19–21] and full particle
calculations [22, 32, 33]. Kinetic simulation of the K-H instability
including three-dimensional simulation was studied by [23, 24] and
applied to dayside magnetopause. In a collisionless magneto-plasma
Kelvin-Helmholtz instability were investigated analytically by Kineti
approach [25–28]. Investigated the electrostatic ion-cyclotron by
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Kinetic approach for sheared velocity flow perpendicular to uniform
magnetic field. It was found that for small velocity shear parameters
the instability exists at long wave-length as well as at short wave length
also.

In recently electrostatic Kelvin-Helmoholtz instability by parallel
flow velocity shear in presence of inhomogeneous d.c. electric field
and only density gradient has been studied by Pandey et al. [29] and
velocity shear ion-cylotron instability with perpendicular a.c. electric
filed has been also studied by Pandet et al. [36].

In this paper a microscopic study of K-H instability was
reinvestigated by incorporating the details of particle trajectories in the
presence of non-uniform electric field having density, temperature, and
magnetic field gradients by method of characteristics solution. In this
paper detail of particle trajectories, dispersion relation and calculation
of growth rate for bi-Maxwellian plasma with velocity shear have been
obtained.

2. DISPERSION RELATION

The particle trajectories under the given geometrical conditions and
in the presence of inhomogeneous external DC electric field and
homogeneous magnetic field has been given by Pandey et al. [29] as,
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After doing some lengthy algeraic simplifications following techniques
out lined in [29–31, 34, 35] the time integration gives the perturbed
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distribution function as
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The unperturbed bi-Maxwellian distribution function is written as
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′′ (3)
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Now simplifying m = n, g = p and using the definition of current
density, conductivity and dielectric tensor, we get the dielectric tensor
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Now we consider electrostatic K-H instability∥∥∥ε||∥∥∥ = N2 (5)

where N = refractive index
The required electrostatic dispersion relation can be obtained by

using the approximation of [25] and from Equations (1 to 4).
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where Z(ξ) is plasma dispersion function
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Above dispersion relation reduces to that of [25] if inhomogeneous
DC electric field is removed and α⊥s = α||s an following the assumption
of Huba [25] for p = 1, g = 0 and s = i, e. In order to get
dispersion relation for electrons and ions, approximations for electrons
are assumed as k⊥ρe � 1 and for ions no such assumptions in done
thus above equation becomes.
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From this expression dimensionless growth rate has been calculated
by computer technique when b2i < 4aici. Hence this criteria gives a
condition for the growth rate of wave.
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Figure 1. Variation of growth rale γ/Ω1 with k⊥ρi for different values
of shear scale length Ai and for other fixed parameters [B0 = 6×10−7 T,
E0x = 4 × 10−3 m V/m, AT = T⊥i/T||i − 1 = 0.25, Te/Ti = 4, θ = 88◦,
P/a = 0.5, εnρi = 0.02].

3. RESULT AND DISCUSSION

Growth rate variations with k⊥ρi were calculated from expression
for various values of plasma parameters listed in figure captions. In
Figure 1, the growth rate increases by increasing the velocity shear
scale length but maxima shifted towards lower values of k⊥ρi. The
mechanism for instability of this mode is due to coupling of regions
of positive and negative wave energy. This coupling occurs if velocity
shear is non-uniform and the shear is the source of energy. Figure 2
deals with variation of growth rate with k⊥ρi for different values of
tan θ = k⊥/k||. The growth rate increases by increasing values of theta
from 87◦ to 88.5◦ but maxima coincide for a fixed value of k⊥ρi. In
Figure 3, the inhomogenity in electric field affects the growth rate.
Increases by increasing the value of p/a = x/a2 and maxima slightly
shifts for lower values of k⊥ρi. Ion-cyclotron turbulence and frequencies
nearer to this have been observed with shocks [32] in the magnetosphere
and where localized field perpendicular to the magnetic field is present.
Inhomogenity in magnetic field introduces a shear in velocity flow and
couples positive and negative energy waves leading to growth of the
wave. In Figure 4, the growth rate is affected by the ratio of Te/Ti.
It is decreased by increasing the value of Te/Ti and maxima shifts
towards higher values of k⊥ρi as the velocity shear term is proportional
to Te/Ti. When shear flow is dominated by electron flow, the maxima
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Figure 2. Variation of growth rale γ/Ω1 with k⊥ρi for different values
of θ(= tan−1 k⊥/k||) and for other fixed parameters [B0 = 6 × 10−7 T,
E0x = 4×10−3 m V/m, AT = T⊥i/T||i−1 = 0.25, Te/Ti = 4, Ai = 0.05,
P/a = 0.5, εnρi = 0.02].

Figure 3. Variation of growth rale γ/Ω1 with k⊥ρi for different
values of magnituse of electric field E0x and for other fixed parameters
[B0 = 6 × 10−7 T, θ = 88◦, AT = T⊥i/T||i − 1 = 0.25, Te/Ti = 4,
Ai = 0.05, P/a = 0.5, εnρi = 0.02].
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Figure 4. Variation of growth rale γ/Ω1 with k⊥ρi for different values
of inhomogeneity of electric field P/a and for other fixed parameters
[B0 = 6 × 10−7 T, θ = 88◦, AT = T⊥i/T||i − 1 = 0.25, Te/Ti = 4,
Ai = 0.05, E0x = 4 × 10−3 m V/m, εnρi = 0.02].

Figure 5. Variation of growth rale γ/Ω1 with k⊥ρi for different
values of temperature ratio Te/Ti and for other fixed parameters
[B0 = 6 × 10−7 T, θ = 88◦, AT = T⊥i/T||i − 1 = 0.25, P/a = 0.5,
Ai = 0.05, E0x = 4 × 10−3 mV/m, εnρi = 0.02].
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Figure 6. Variation of growth rale γ/Ω1 with k⊥ρi for different
values of temperature anisotropy AT and for other fixed parameters
[B0 = 6 × 10−7 T, θ = 88◦, Te/Ti = 4, P/a = 0.5, Ai = 0.05,
E0x = 4 × 10−3 m V/m, εnρi = 0.02].

Figure 7. Variation of growth rale γ/Ω1 with k⊥ρi for different values
of magnetic field B0 and for other fixed parameters [AT = T⊥i/T||i−1 =
0.25, θ = 88◦, Te/Ti = 4, P/a = 0.5, Ai = 0.05, E0x = 4×10−3 m V/m,
εnρi = 0.02].
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Figure 8. Variation of growth rale γ/Ω1 with k⊥ρi for different values
of εnρi and for other fixed parameters [B0 = 6 × 10−7, θ = 88◦,
Te/Ti = 4, P/a = 0.5, Ai = 0.05, E0x = 4 × 10−3 m V/m, AT =
T⊥i/T||i − 1 = 0.25].

flows towards lower wavelengths [17]. In Figure 5, the growth rate
increase by increasing the value of ion perpendicular and parallel
temperature ratio for and maxima shifts towards lower values of k⊥ρi.
The instability criterion indicates that velocity shear is proportional to
Te/Ti and ion perpendicular and parallel temperature ratio. The non-
isothermal plasma changes the velocity shear required for onset of this
instability. In Figure 6, the effect of temperature gradient on growth
rate has been shown. The growth rate decreases by increasing the value
of temperature gradient scale length but the maxima shift towards
lower values of k⊥ρi. The temperature gradient has weak stabilizing
effect on shear driven K-H instability. If the temperature gradient
is weaker than electron density gradient than it is having stabilizing
effect. However, in case of large temperature gradient in perpendicular
direction increases the growth rate. It shows the establishing nature
in K-H instability for βi > 1. In Figure 7, the growth rate increase
by increasing the value of density gradient initially. However for much
larger density gradients, the growth rate decreases. This mode is not
stabilized even for strongest density gradient equaling to velocity shear
scale length. The effect of magnetic field gradient has very weak effect
on the growth as shown in Figure 8. This effect would be of importance
when electromagnetic effects are included in. In general this has a
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stabilizing effect introducing resonant and non-resonant interactions
affecting the growth rate and real frequency.

4. CONCLUSION

Velocity shear ,electron ion temperature ratio, temperature anisotropy
and in homogeneity in electric field are found to be dominating sources
for K-H instability. The density gradient has destabilizing effect on K-
H mode where as temperature and magnetic field gradient are found
to be have weaker effect on this instability.
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