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Abstract—In this paper, we investigate nonuniformly spaced linear
arrays (NUSLA) rigorously. Several important problems in NUSLA
design are solved with the combination of the Genetic Algorithm
and Conjugate Gradient method (GA-CG). The pattern synthesis
for the specified beamwidth and minimum achievable sidelobe level
(SLL) are performed and for the first time, the graphs which show
the relation between the beamwidth, sidelobe level and number of
elements for NUSLA are derived. Also, the NUSLA’s pattern for
the specified directivity and sidelobe level is synthesized. The graphs
showing the behavior of NUSLA relative to the increase of its length
for a fixed number of elements are derived. These graphs show the
relations between the directivity and sidelobe level of NUSLA with its
length. As a practical design, an array of parallel dipoles is designed
for specified beamwidth/sidelobe level or specified directivity/sidelobe
level. Furthermore, a novel Neural Network based model for the
NUSLA is presented for the rapid and accurate computation of S-
parameters. The computed S-parameters are used for the computation
of coupling among elements. Then the GA-CG method can adjust
these values in the synthesis process to achieve desired pattern and
bearable coupling among elements.

1. INTRODUCTION

The analysis of nonuniformly spaced linear arrays originated with
the work of Unz [1], who developed a matrix formulation to obtain
the current distribution necessary to generate a prescribed radiation
pattern for a NUSLA with specified geometry. Subsequent to the initial
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concept of Unz, NUSLA is divided into two categories: thinned arrays,
which are derived by selectively zeroing some elements of an initial
equally spaced linear array (ESLA), and arrays with randomly spaced
elements.

In the first category, Skolnik [2] employed dynamic programming
for zeroing elements. Mailloux and Cohen [3] utilized the statistical
thinning of arrays with quantized element weights to improve side
lobe level performance. The Genetic Algorithm [4–6] and Simulated
Annealing (SA) [7] were used to thin an array. Razavi and Forooragi [8]
used pattern search algorithm for array thinning.

In the second category that is of interest in this paper,
Harrington [9] developed an iterative method to reduce the sidelobe
levels of uniformly excited N -elements linear arrays by employing
unequal spacing. His method can reduce the sidelobe level to about
2/N times the field intensity of the mainlobe without increasing the
beamwidth of the mainbeam as obtained by ESLA. Andreasan [10]
derived two important conclusions for NUSLA: 1) the 3-dB beamwidth
of the mainlobe depends primarily on the length of the array and 2)
the sidelobe level depends primarily on the number of elements in the
array and to a minimal extent on the average element spacing of the
array when the latter exceeds about two wavelengths. One of the first
analytical methods in this category is Ishimaru’s classical analysis [11]
of NUSLA. His work addressed the following points: 1) sidelobe level
reduction relative to a linear array with uniform excitation, 2) grating
lobe suppression of the linear array by the use of the Anger function
and 3) azimuthal frequency scanning by means of an unequally spaced
circular array. In recent years, other works such as [12, 13] proposed
an analytical method for nonuniformly spaced array synthesis.

As mentioned in [14], since the element positions occur as
trigonometric or exponential functions, element position synthesis is
a nonlinear problem. Also, element spacing constraints has to be
placed on the solutions, for instance they must be real and positive
and greater than prescribed value to reduce the array element count.
Reference [15] determined element excitations required to yield desired
field pattern for an array with arbitrary geometry. In [16], the particle
swarm optimization is applied to the optimization of nonuniformly
spaced antenna arrays and sidelobe level is reduced. In [17], with
Neural Network (NN) and in [18] with least mean square, nonuniformly
spaced array are synthesized.

Most works consider the minimization of the sidelobe level at a
fixed main beamwidth and all of them consider the design problem
as a single objective minimization problem. But there are no design
curves which show minimum achievable SLL for a specified beamwidth
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for NUSLA with N elements. Also, no work has been reported for
the design of NUSLA with specified directivity and sidelobe level.
Although, [19] provided directivity versus element spacing curves
for ESLA with uniform excitation, there is no similar curves for
NUSLA. Furthermore, the dependence of array directivity on its length
and average element spacing for NUSLA is rarely addressed in the
literature.

On the other hand, the mutual coupling (MC) consideration for
NUSLA is a cumbersome work. In a few recent works [20, 21], driving
point impedance matching has been derived with unequal spacing
of elements. In [22], a NN-based model was developed to replace
the induced EMF formulation for approximating the mutual coupling
among array elements. This model has the notable advantage that
it is not element specific. Reference [23] extends the array design
developments reported in [20–22] to include the effects of frequency
variation in the optimization process. The NN model in this work
enabled rapid and accurate array element driving point impedance
estimation as a function of frequency, element position and scan angle.

In the aforementioned studies, the MC is included in the driving
point impedance. But according to [24], the coupling between two
elements can be measured by an appropriate criterion, which may
be defined for the transmitter and receiver individually. But this
parameter has not been included in the NUSLA design. The main
reason is the difficulty of its computation which requires S-parameters.

In this paper, we design NUSLA with N elements for the specified
beamwidth between first nulls (BW) and minimum possible SLL. Then,
for the first time a family of curves showing the relations among SLL,
number of elements and beamwidth as parameter are derived with an
optimization method. Also, NUSLA pattern synthesis for the specified
directivity (D) and minimum achievable SLL is performed and average
element spacing is defined. A curve for the directivity and SLL versus
average element spacing is derived. Furthermore, an optimum dipole
array for the specified D/SLL and specified BW/SLL with unequal
spacing is designed. For the first time, we include coupling definition
in [24] for the NUSLA design. We design NUSLAs for minimum
(bearable) coupling or specified coupling between its adjacent elements.
For the coupling calculation, a NN-based model which is not element
specific is introduced and used to estimate S-parameters.

The combination of GA and Conjugate Gradient (CG) is used as
the optimization method and the Neural Network is employed for the
coupling computations (GA-CG-NN).
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2. BASIC RELATIONS FOR NONUNIFORMLY SPACED
LINEAR ARRAY DESIGN

The far field pattern of a NUSLA consisting of N elements placed at
dn as shown in Fig. 1 with uniform excitation is:
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d-1d-2 d1 d2d-M ......
dM
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z

Figure 1. Nonuniformly spaced elements geometry.
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And for symmetrical geometry around origin:
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]
; N = 2M + 1 (3)

E(ϕ) =
1
N
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where k is the wave number and ϕ and θ are the angle from the array
axis (x axis) and the z axis, respectively. Because of symmetry, only
θ = 90 degree plane pattern is sufficient. Thus, ϕ is used as the angle
from the array axis in the θ = 90 degree plane.

The sidelobe level is defined as:

SLL = max(|E(ϕ)|) |ϕ∈ϕsll
ϕsll = [0, ϕFNL] ∪ [ϕFNR, 180] (5)

where ϕFNL and ϕFNR are the left and right first nulls around the
broadside mainbeam. For the symmetrically specified beamwidth BW
(null-to-null) case, these values are known to be:

ϕFNR = 90 +
∣∣∣∣BW

2

∣∣∣∣ , ϕFNL = 90 −
∣∣∣∣BW

2

∣∣∣∣ (6)

Also for a specified SLL, the values of these nulls can be approximately
assumed to be equal to the nulls of ESLA with the same SLL. Then the
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Taylor formula [25], gives these nulls. Also we may use a null finding
procedure to achieve the exact position of these nulls.

Another important parameter is directivity. A relation for the
directivity of an array with isotropic elements is given in [19] as:

D =


 M∑
k=−M

Ik




2

M∑
m=−M

M∑
p=−M

ImIpe
j(αm−αp) sin(k(dm − dp)

k(dm − dp)

(7)

where In and αn are amplitude and phase of nth element’s excitation,
respectively. In this paper, In =1 and αn = 0. When isotropic elements
are replaced with parallel dipoles an approximate relation for the whole
array directivity (Dw) is obtained as:

Dw ≈ De ·D (8)

where De is the element directivity and D is directivity of the array
factor (Eq. (7)). But this relation may not be sufficiently accurate and
may cause unbearable error. Reference [21] derived an approximate
formula for the directivity of a parallel half wavelength dipoles array
(shown in Fig. 2) as:
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Figure 2. The position and orientation of dipoles in NUSLA.
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and
S̃(0) ∼= 0.609412 (11)

and mainbeam of the array is directed along θ = 90◦ and ϕ = ϕ0. If we
select ϕ0 = 90◦ and In = 1, then the maximum value of D(ϕ) occurs
at ϕ = 90◦. Eqs. (5), (7) and (9) show that SLL and D are nonlinear
functions of element spacing dn.

Also, for NUSLA, we define an average element spacing as:

dave =
L

N − 1
(12)

where L is the total length of the array, which for a uniform spacing
d, is:

L = (N − 1)d (13)

This parameter also can be judged as an approximate criterion for the
coupling. Greater dave, may lead to the reduction of MC.

3. NUSLA DESIGN FOR SPECIFIED BEAMWIDTH
AND MINIMUM SIDELOBE LEVEL (PENCIL BEAM)

In this section, with nonuniform spacing, for tightly specified
beamwidth between first nulls (BW), the minimum achievable sidelobe
level is derived. The NUSLA is designed to have minimum SLL for
very tightly specified symmetrical beamwidth. In this section, the
array geometry is assumed symmetric around the origin to reduce the
unknown variables. Therefore, array pattern is symmetrical and right
or left sides of mainbeam is similar to each other. First null is selected
to be ϕFN = ϕFNR and is calculated by Eq. (6). To solve this nonlinear
problem, a fitness function (error function) is defined as:

errorBW−SLL = errorBW + errorSLL

errorBW =

{
0 if |E(ϕFN )| ≤ 0.001
10 else

errorSLL = max (|E(ϕ)|) |ϕ∈ϕsll

(14)

Tightly specified beamwidth means that the first null has to be located
exactly at ϕFN . Thus beamwidth error (errorBW ) definition, should
give a high error value (for example 10) when the first null deviates
from this angle.

All variables to be calculated to minimize the fitness function
are the M element positions. These variables are derived with the
optimization algorithm.
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In all of this paper we use a hybrid optimization algorithm. This
algorithm is the combination of the Genetic Algorithm and Conjugate
Gradient (GA-CG). Since GA as an evolutionary algorithm is supposed
to be a global optimization method, it does not heavily depend on
the initial values of the variables. However, implementation of GA is
very computer time consuming. On the other hand, CG is largely a
local optimization method and its convergence to an extremum point
depends on the initial values of variables. However, implementation of
CG is relatively fast, but it requires the computation of gradients of
functions. Consequently, combination of GA and CG may utilize the
advantages of each one, avoiding the shortcomings of both. Therefore,
the combined algorithm starts by implementing GA with a set of initial
values for variables which leads towards an extremum. At about this
point, GA is stopped and CG is activated to speed up the convergence
towards a local extremum. Thereafter, the values of variables at this
extremum point are taken as the initial values for GA. This algorithm is
continued until the global extremum is arrived at. In all optimizations,
the element positions are assumed to be as dn = d

(0)
n + δdn. Where

d
(0)
n is an appropriate value for the nth element position and δdn is

its variation, which is calculated by the hybrid algorithm to meet the
desired conditions. The complete flowchart of the GA-CG method is
shown in Fig. 3.

To illustrate the efficacy of the proposed method, a broadside
pencil beam with 16 degree symmetrical beamwidth is designed for
NUSLA with 20 elements. For this case, ϕFN = 98◦. The values
of d

(0)
n are selected as the positions of elements in ESLA with 0.4λ

spacings and the same number of elements. The hybrid algorithm
finds optimum position of elements. The values of dn are listed in
Table 1 and minimum achievable SLL is −24.87 dB. Also the optimum
designed NUSLA’s pattern is shown in Fig. 4.

Table 1. Position of elements for optimum designed NUSLA (N =
20).

n -10 -9 -3 -2 -1 

/nd -4.37 -3.597 -2.928 -2.449 -1.956 -1.614 -1.184 -0.85 -0.537 -0.104

n 

/nd 0.104 0.537 0.85 1.184 1.614 1.956 2.449 2.928 3.597 4.37 

λ

λ

1 2 3 4 5 6 7 8 9 10

8 7 6 5 4- - - - -

As it is clear from Fig. 4, the optimum NUSLA’s pattern with
uniform excitation is similar to the Dolph-Chebychev pattern for
equally spaced linear array with tapered excitation. Therefore, NUSLA
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Figure 3. The complete flowchart of the GA-CG method.
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with simple feed network can generate a pattern similar to the Dolph-
Chebychev pattern. Also, it is verified that the minimum SLL for a
specified BW by the hybrid algorithm may be realized because the
Dolph-Chebychev pattern has the minimum SLL for a specified BW.
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Figure 4. Pattern of designed NUSLA for BW = 16◦ and minimum
achieved SLL = −24.78 dB.

Although for the equally spaced linear array with N elements and
spacing d, the Dolph-Chebychev excitation gives minimum SLL for a
specified BW, but for nonuniformly spaced linear array, there is no
similar relation for the element spacing. In fact, the main reason
is due to the nonlinear relation between dn and E(ϕ). Here, for
the first time, with the hybrid algorithm, for a specified BW and
constant N , the minimum SLL is achieved for NUSLA. The results
for N = 8, 10, 12, 14, 16, 18, 20, 30 and BW = 8, 12, 16, 20 degrees
are drawn in Fig. 5.

As Fig. 5 shows, the minimum SLL for constant N and specified
BW is a function of both the number of elements (N) and BW.
Furthermore, for a narrow BW and small N , low SLL is not realizable.
A narrow BW pattern requires longer array length. Therefore, for
small N , very wide element spacing between two adjacent element
becomes necessary and a secondary mainbeam (equivalent to grating
lobe in ESLA) appears. Consequently, low SLL for small N , is
impossible to obtain because of these conflicting requirements.
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Figure 5. (Minimum achievable SLL)-N curves with BW as
parameter for NUSLA.

4. NUSLA DESIGN FOR SPECIFIED DIRECTIVITY
AND SIDELOBE LEVEL

In Section 3, we designed for the minimum SLL and tightly specified
beamwidth. However, sometimes designers may desire to design
NUSLA for a specified directivity. The narrowest beamwidth may be
judged as maximum directivity, but it is not always the case. When
the array length of equally spaced linear array with mainbeam in
ϕ0 direction, increases (for constant N), beamwidth decreases and
directivity increases until the element spacing (d) exceeds λ/(1 +
| cosϕ0|) and grating lobe appears [19]. With the grating lobe
appearance, the beamwidth still decreases but directivity falls so
rapidly that the inverse relation between D and beamwidth is not true
in this condition. For the broadside pattern (ϕ0 = 90◦), when d exceeds
1λ, this situation happens. But what happens for the nonuniformly
spaced linear array in a similar condition? Before answering this
question, we would like to show that the NUSLA design for a constant
specified BW should not be interpreted as NUSLA design for constant
D.

4.1. Directivity and Beamwidth Relationship

To show the relationship between directivity and BW for the designed
NUSLA in Section 3 which its results is shown in Fig. 5, directivity is
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Figure 6. Directivity-N curves with BW as parameter for the
designed NUSLA in Section 3 for the minimum SLL and tightly
specified BW .

calculated by Eq. (7) and plotted in Fig. 6. In this figure, D is drawn
versus N and BW is a parameter. As we expect, the directivity for a
pattern with constant BW, is not constant and changes with N and
spacing. Also, for instance, for BW = 8◦, when N is smaller than 16,
the array directivity becomes smaller than the directivity of array with
the same number of elements but BW = 12◦. These results show that
in the case of array pattern design for a specified directivity, sometimes
BW is not a good criterion.

Therefore, we propose the hybrid algorithm to design NUSLA with
the specified D and bearable SLL.

Fitness function (error function) for this problem defined as:

errorD−SLL=errorD+errorSLL

errorD=|D−Ddesired|2 (15)

errorSLL=



|SLL(dB)−SLLthreshold(dB)|2

if SLL(dB) > SLLthreshold(dB)
0 else

where Ddesired is the desired directivity and SLLthreshold is the bearable
SLL in dB.

For example we design NUSLA with N = 14, Ddesired = 22 for
SLLthreshold = −15 dB. Also, a Minimum Allowable Distance (MAD)
between two adjacent elements is included to reduce mutual coupling.
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Then, the hybrid algorithm should solve the problem with the MAD
constraint according to:

|dn − dn±1| > MAD (16)

Here, we set MAD = 0.5λ. The hybrid algorithm solved this problem.
The resultant directivity is 22.1 and SLL is −15.5 dB. The values of dn
are listed in Table 2. Because of symmetry, only positions of right side
elements are listed. Also, the optimally designed NUSLA’s pattern is
shown in Fig. 7.

Table 2. Position of right side elements for optimum designed NUSLA
(N = 14).

n 

/nd λ

1 2 3 4 5 6 7

0.31 1.1 1.92 2.92 3.72 4.74 5.56
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Figure 7. Pattern of designed NUSLA (N = 14) with D = 22.1 and
SLL = −15.46 dB.

In second example, we design a NUSLA with N = 20, Ddesired =
20 and SLLthreshold = −21 dB. Here, MAD = 0.35λ is assumed. The
hybrid algorithm solved this problem. The resultant directivity is 20
and SLL is −22.6 dB. The values of dn are listed in Table 3. Because
of symmetry, only position of right side elements are listed. Also, the
optimally designed NUSLA’s pattern is shown in Fig. 8.
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Table 3. Position of right side elements for optimum designed NUSLA
(N = 20).

n 

/nd λ

1 2 3 4 5 6 7 8 9 10
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Figure 8. Pattern of designed NUSLA (N = 20) with D = 20 and
SLL = −22.6 dB.

It is necessary to mention that, there is a trade-off between D and
SLL. Whenever the desired D is high, a low SLL is difficult to obtain.

We can enhance the value of directivity error or SLL error in
Eq. (15) by weighting functions as follow:

errorD−SLL = WDerrorD + WSLLerrorSLL (17)

where, WD and WSLL are the weights for directivity and SLL,
respectively.

Therefore, with proper weighting, Eq. (17) may be used to design
NUSLA for a desired D and bearable SLL or a desired SLL and
threshold D.

4.2. Directivity and Length Relationship for NUSLA

To answer the question about NUSLA’s directivity behavior when for
a fixed number of elements, the array length increases, average element
spacing defined in Eq. (12), should be used. For the fixed number of
elements which is assumed 11, the array length slightly become longer,
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and dave from Eq. (12) becomes wider. And then for each new length
(or new dave), with the hybrid algorithm, the optimum NUSLA is
designed to show a suitable directivity in comparison with ESLA with
the same length and same number of elements.

Here, with the hybrid algorithm, for some dave, NUSLA is designed
to satisfy some constraints as follows:

1. The whole length of NUSLA should be exactly equal to the
specified value ((N − 1)dave) as:

|dM − d−M | = (N − 1)dave (18)

2. For dave/λ ≤ 0.5, MAD = dave and for dave/λ > 0.5,
MAD = 0.5λ.

The desired directivity is specified to be as ESLA’s directivity
(Duniform) for dave/λ ≤ 0.9 and bearable SLL equal to −13 dB.
But for dave/λ > 0.9, that the grating lobe appears for ESLA and
directivity falls rapidly, the NUSLA design purpose is reasonable SLL
and maximum achievable directivity. Therefore, Eq. (17) with suitable
WD and WSLL can be used as a fitness function. The elements of
NUSLA are not necessary to be symmetrically located. Therefore,
Eqs. (1) or (2) for E(ϕ) may be used. The hybrid algorithm found
optimum NUSLA for some dave and N = 11. Their D and SLL are
plotted in Figs. 9 and 10, respectively. Also, in these figures, the
directivity and SLL of ESLA for element spacing dave and N = 11 are
also shown. These results show that NUSLA for 1.4 > dave/λ > 0.9
still results in good directivity and reasonable SLL.

0. 4 0.5 0.6 0.7 0.8 0.9 1  1.1 1.2 1.3 1.4 1.52
8

9

10

11

12

13

14

15

16

17

18

19

d
ave

/

D
ir

ec
ti

vi
ty

 

 

NUSLA

ESLA

λ

Figure 9. Comparison of D of ESLA and NUSLA having the same
average element spacing for N = 11.
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Figure 10. Comparison of SLL of ESLA and NUSLA having the
same average element spacing for N = 11.

The pattern of optimum NUSLA for dave = 1.2λ and that of
ESLA with the spacing dave = 1.2λ between its elements is shown in
Fig. 11. The element positions for NUSLA and ESLA are also shown
in Fig. 12. As we can see, the minimum distance between elements is
0.68λ and maximum distance is 2.77λ to ensure the reduction of MC
among elements.

5. NONUNIFORMLY SPACED PARALLEL DIPOLE
ARRAY DESIGN

In this section, with the obtained results in Sections 3 and 4, the
NUSLA with dipole elements will be designed.

5.1. Dipole Array Design for Specified BW and Minimum
Achievable SLL

Consider an array of half wavelength dipoles with N = 16 as shown
in Fig. 2. It is desired to have BW = 12◦ with MAD = 0.5λ. With
reference to Fig. 5, it is found that minimum achievable SLL is about
−19.5 dB. The optimum position of elements for this case, which was
calculated by the hybrid algorithm, is listed in Table 4. Because of
symmetry only the positions of right side elements are listed.
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Figure 11. Comparison of radiation pattern of ESLA and NUSLA
for dave = 1.2λ and N = 11.
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Figure 12. Comparison of element positions in ESLA and NUSLA
for dave = 1.2λ and N = 11.

Table 4. Positions of right side elements for optimum designed parallel
dipole array (N = 16).

n 

/nd  0.252 0.793 1.436 1.992 2.616 3.44 4.272 5.134λ

1 2 3 4 5 6 7 8

The whole array pattern (Ew) is defined as:

Ew = E · Ee (19)

where E is the array factor (array with isotropic elements) defined in
Eqs. (1), (2), (3) and (4) and Ee is the element pattern of the half
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wavelength dipole shown in Fig. 2, defined as:

Ee = cos
(
π

2
cos θ

)
/ sin θ (20)

The whole pattern of the designed parallel dipole array is drawn in the
horizontal plane (θ = 90◦) in Fig. 13. As we expected, the element
pattern does not change the first null position and SLL from those of
the array factor.
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Figure 13. The horizontal plane pattern of the designed parallel
dipole array (N = 16, BW = 12◦).

5.2. Dipole Array Design for Specified Directivity and SLL

Consider the dipole array in Section 5.1 with N = 12. It is desired
to have a pattern with Dw = 25 (13.98 dBi) and minimum achievable
SLL with SLLthreshold = −17 dB for MAD = 0.55λ.

We use the result of Section 4 and Eq. (8) to design the array
factor with desired directivity. For half wavelength dipoles, De = 1.64.

Table 5. Position of right side elements for optimum designed parallel
dipole array (N = 12).

n 

/nd λ

1 2 3 4 5 6

0.28 0.84 1.41 2.09 2.88 3.69
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The Eq. (8) gives D = Dw/De = 25/1.64 = 15.24, then with
this desired directivity and Eq. (15), the hybrid algorithm will find the
optimum dn for symmetrical geometry. Because of symmetry only the
right side element positions are listed in Table 5. The achieved D is
15.5 and SLL = −18.52 dB. The whole directivity is 25.42 (14.05 dBi).
The whole directivity in the horizontal plane is drawn in Fig. 14.
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Figure 14. The directivity of the designed parallel dipole array,
calculated by Eq. (8), Eq. (9) and simulation.

This array is simulated by fullwave software, FEKO program [26].
For excitation, voltage sources with input impedances of 125 ohm are
used. The directivity of simulated array in the horizontal plane is
drawn in Fig. 14. As we can see, for the peak directivity at ϕ = 90◦,
there is 1.22 dBi difference between simulation and design values. This
difference is due to the fact that Eq. (8) is an approximate formula. But
it is acceptable. Also to show the accuracy of Eq. (9), in comparison
with Eq. (8), the directivity of the designed array, is calculated by
Eq. (9) and plotted in Fig. 14. There is a good agreement between
its results and simulation results. In Section 5.3, Eq. (9) will be used
for the array design. It should be mentioned that MC causes the first
sidelobe in the simulation results to become greater than our design
value.

5.3. Dipole Array Design for Bearable Coupling Between
Adjacent Elements

In Section 5.2, the nonuniformly spaced dipole array was designed for
the specified D and SLL with some constraints on element positions.
The average element spacing and MAD were introduced in this paper
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as some criteria to limit coupling among elements. But these criteria
are not accurate enough. In [27–29], MC is defined. The coupling
between two transmitter antennas is defined in [24] as:

C21 =
P2

P1
=

|S21|2

1 − |S11|2
(21)

where P2 is the power received by antenna 2 and P1 is the power
delivered by antenna 1. This parameter is a better criterion than
MAD or dave. However, for NUSLA, the S-parameters computation
for various distances among elements is a very cumbersome and time
consuming problem. Since the array geometry is not kept fixed in the
optimization process, the S-parameters should be computed in each
run of GA-CG. On the other hand, the S-parameters computation is
very difficult and their relations are scarce and imprecise. The array
simulation by a fullwave simulator like IE3D is the best procedure,
but by using the simulator for data generation for GA-CG, the CPU
time may increase abruptly. To overcome this problem, we propose
a NN-based model for the S-parameters estimation. Although NN is
used for solving some various antenna problems [30–33], NN using for
the calculation of S-parameters is proposed for the first time.

We propose a Radial Basis Function Neural Network (RBFNN)
with three layers. For the training stage, we should generate the data
with a fullwave simulator like IE3D. As a good approximation, only
the adjacent element effects are included in the simulation. Since
the maximum coupling occurs between two neighboring elements,
we consider an array of three half wavelength dipoles with variable
element spacing d1 and d2 as shown in Fig. 15 and simulate
it by IE3D at 3 GHz. Computed S-parameters are used for
RBFNN training. The values of d1 and d2 are selected from the
set{10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 160, 200} all
in mm. For instance, one possible case for (d1, d2) is (40 mm, 50 mm).
About 15× 15 = 225 simulations are performed and S -parameters are
obtained to train RBFNN. After the training and testing, RBFNN
may be used to estimate S -parameters between each two adjacent
elements of NUSLA for element spacing from [10–200] all in millimeter
with 0.1 mm precision. In order to implement the proposed RBFNN
model, the Neural Networks Toolbox of MATLAB, is used. The
main properties of the RBFNN of this toolbox are the utilization
of Gaussian distribution transfer functions in the hidden layer, pure
linear transfer functions in the output layer, and the least mean
squares algorithm for training in the output layer and optimization of
weights between neurons. For the hidden layer, the center of Gaussian
distribution transfer functions is calculated by k-means algorithm. The
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trained RBFNN has 255 neurons in the hidden layer and 6 neurons in
output layer (real and imaginary parts of S-parameters are separately
produced by RBFNN). This NN-based model is used by the hybrid
optimization method. For instance, when the optimizer is to calculate
C24 and C34, it gives (d24 = |d2−d4|, d34 = |d3−d4|) to RBFNN which
generates S44, S24 and S34 and then C24 and C34 by Eq. (21) can be
computed. Block diagram in Fig. 16 shows the proposed process.

d1 d2

Left  adjacent Right adjacent

Figure 15. Three half wavelength dipoles with variable element
spacing d1 and d2.

R BFNN
S-parameters : 
with two adjacent  
elements  

Coupling with: 

R ight adjacent, 

L eft adjacent 

d1

d2

Figure 16. S-parameters estimation by NN and computation of
coupling with two adjacent elements.

Table 6. The optimum position of right side dipoles dn/λ obtained
by GA-CG-NN.

n 

/nd λ

1 2 3 4 5 6 7 8

0.26 0.74 1.25 1.73 2.25 2.75 3.35 4.28

Now, we can design NUSLA for a specified Cij between two
adjacent elements. The fitness function (error function) is defined as:

errorD−SLL−C = WDerrorD + WSLLerrorSLL + WCerrorC (22)

The first two terms on the right side are the same as Eq. (17) and
errorC shows the deviation from the bearable coupling and may be
defined in various forms. WC is an enhancing coefficient, like WD and
WSLL.
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Here, for parallel half wavelength dipole array with N = 16, it is
desired to have SLL = −16 dB. Also, D is to be greater than 30 and
|max(Cij)| > 29 dB.

With these conditions, the optimization with GA-CG-NN method
is performed. For the directivity computation, Eq. (9) which is
accurate sufficiently was used. The optimum position of right side
elements is listed in Table 6 and Cij are listed in Table 7. The achieved
peak directivity is 36.4 or 15.61 dBi and achieved SLL is −16.92 dB.
Also, |max(Cij)| = 29.4 is achieved. The directivity in the θ = 90◦
plane (horizontal plane) is shown in Fig. 17.

This array is simulated by FEKO for f = 3 GHz with unit voltage
sources with 125 ohm impedances as excitations. The simulation
directivity in the horizontal plane is shown in Fig. 17. The peak
directivity is D = 15.61 dBi or D = 36.4. The values of Cij derived
from S-parameters by IE3D, are listed in Table 7 and compared with
NN results. The value of SLL is −16.5 dB. As we expected, by keeping
coupling among elements below a specified bearable value, its effect
decreases. This is clearly seen by comparing Fig. 14 and Fig. 17
especially in the first sidelobe and mainbeam. The data reported
in Table 7 verify the accuracy of the used RBFNN model for the
calculation of S-parameters and then Cij .

Table 7. Coupling in dB between each two adjacent elements of the
optimized dipole array which is computed by NN model and IE3D.

n Cn,n-1(dB) (NN) Cn,n-1(dB) (Simulation) Cn,n+1(dB)(NN) Cn,n+1(dB)(Simulation) 

-7 -38.8156 -39.2257 -29.5123 -31.6374 

-6 -31.3448 -31.9237 -29.4018 -31.7746 

-5 -29.8641 -31.8301 -30.0084 -31.9677 

-4 -29.7291 -31.9356 -29.5219 -32.0627 

-3 -29.4741 -32.0658 -29.5617 -31.8354 

-2 -29.5741 -31.8354 -29.4556 -32.1938 

-1 -29.5386 -32.2047 -29.7186 -31.9496 

1 -29.7291 -31.9496 -29.5219 -32.2047 

2 -29.4741 -32.1938 -29.5617 -31.8354 

3 -29.5741 -31.8354 -29.4556 -32.0658 

4 -29.5386 -32.0627 -29.7186 -31.9356 

5 -30.0176 -31.9677 -29.8533 -31.8301 

6 -29.3907 -31.7746 -31.3384 -31.9237 

7 -29.4981 -31.6374 -38.8571 -39.2257 
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Figure 17. Directivity of optimized NUSLA in the horizontal plane
(θ = 90◦) from Eq. (9) and simulation in FEKO.

6. CONCLUSION

In this paper, nonuniformly spaced linear array was investigated
rigoriously. By the combination of GA-CG as an optimizer, some
important problems were solved for this type of arrays. For the
first time the relation between SLL-BW and number of elements for
NUSLA were derived and plotted in the design curves. The NUSLA
was designed for fixed N and BW to have minimum possible SLL.
Also, for the first time, directivity was included in NUSLA design
and NUSLA was optimally designed for specified directivity to have
bearable (threshold) SLL. By using average element spacing, the
relation between array length, directivity and SLL was derived for
NUSLA and compared with ESLA with uniform excitation. As a
result, NUSLA for wider average element spacing (e.g., wider than 1λ),
still had a good performance whereas ESLA’s performance degrade
badly for such element spacing. As a practical design, parallel half
wavelength dipole array was designed for specified BW and minimum
achievable SLL using the results of arrays of isotropic elements. Then
this array was designed for specified directivity and SLL with some
constraint on the minimum distance among elements. For directivity
computation, multiplication of array factor directivity and element
directivity was used with good accurate results. The dipole array
was designed for specified directivity and SLL and a novel constraint,
bearable coupling among elements. Here, Neural Network model was
used for the calculation of S-parameters and coupling among elements.
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The obtained results show the efficacy of the hybrid algorithm.
These results are general and may be used for nonuniformly spaced
linear array with arbitrary elements.
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