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Abstract—We have studied the problem of diffraction of an
electromagnetic spherical wave by a perfectly conducting finite strip
in a homogeneous bi-isotropic medium and obtained some improved
results. The problem was solved by using the Wiener-Hopf technique
and Fourier transform. The scattered field in the far zone was
determined by the method of steepest descent. The significance of
the present analysis was that it recovered the results when a strip was
widened into a half plane.

1. INTRODUCTION

Beltrami flows were first introduced in the late 19th century [1, 2].
There was no significant work on Beltrami flows for next 60 years.
However, in 1950s and onwards it gained wide application in fluid
mechanics and other related areas. Chandrasekhar [3], re-introduced
Beltrami flows and worked on force free magnetic fields. Lakhtakia [4]
compiled a catalogue on contemporary works.

A Beltrami field is proportional to its own curl everywhere in
a source-free region and can be either left-handed or right-handed.
For the analysis of time-harmonic electromagnetic fields in isotropic
chiral and bi-isotropic media, Bohren [5] was the pioneer and his work
was enhanced by Lakhtakia [6]. Lakhtakia [7], and Lakhtakia and
Weiglhofer [8] worked on the application of Beltrami field to time
dependent electromagnetic field. On chiral wedges, Fisanov [9] and
Przezdziecki [10] did exceptional job. Asghar and Lakhtakia [11]
showed that the concept of Beltrami fields can be exploited to calculate
the diffraction of only one scalar field and the rest can be obtained
thereof.
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A Beltrami magnetostatic field exerts no Lorentz force on an
electrically charged particle, and for this reason the concept has
been extensively used in astrophysics as well as magnetohydrodynam-
ics [12, 13]. Beltrami fields also occur as the circularly polarized plane
waves in electromagnetic theory [14]. Although circularly polarized
plane waves in free space and natural, optically active media [15, 16]
have been known since the time of Fresnel, their theoretical value is
best expressed in biisotropic media [17–22]. In recent years, prop-
agation of plane waves with negative phase velocity and its related
applications in isotropic chiral materials can be found in [23–26]. It
may be noted that scattering from strips, slits, half plane, impedance
surfaces and study of high frequency diffraction are topics of current
interest [37–48].

In this paper, the diffracted field due to a spherical electromagnetic
wave by a perfectly conducting finite strip in a homogeneous bi-
isotropic medium is obtained in an improved form by solving two
uncoupled Wiener-Hopf equations. The significance of the present
analysis is that the results of half plane [36] can be deduced by taking
an appropriate limit l → ∞ whereas this is not possible in [32]. It is
found that the two edges of the strip give rise to two diffracted fields
(one from each edge) and an interaction field (double diffraction of two
edges). A similar analysis [31] for the case of a cylindrical wave has
recently been accepted in Journal of Modern Optics (article in press).

2. PROBLEM STATEMENT

Let all space is occupied by a homogeneous bi-isotropic medium with
the exception of the perfectly conducting strip z = 0, −l ≤ x ≤
0. In the Fedorov representation [6, 35], the bi-isotropic medium is
characterized by the following equations

D = εE + εα∇× E, (1)
B = µH + µβ∇× H, (2)

where ε and µ are the permittivity and the permeability scalars,
respectively, while α and β are the bi-isotropy scalars. D is the electric
displacement, H is the magnetic field strength, B is the magnetic
induction, and E is the electric field strength. The bi-isotropic
medium with α = β is reciprocal and is then called a chiral medium.
Recently, it has been proved [27] that non-reciprocal bi-isotropic
media are not permitted by the structure of modern electromagnetic
theory. Certainly in the MHz-PHz regime, this statement has not been
experimentally challenged yet, although in the < 1 kHz regime there
is some experimental evidence to the contrary which has not been
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independently confirmed [34]. However, in the mathematical study
the case α �= β may also be considered for generality.

Let us assume the time dependence of Beltrami fields to be of the
form exp(−iωt), where ω is the angular frequency. The source free
Maxwell curl postulates in the bi-isotropic medium can be set up as

∇× Q1 = γ1Q1, (3)
∇× Q2 = −γ2Q2. (4)

The two wave numbers γ1 and γ2 are given by

γ1 =
k

(1 − k2αβ)

{√
1 +

k2(α− β)2

4
+

k(α + β)
2

}
, (5)

and

γ2 =
k

(1 − k2αβ)

{√
1 +

k2(α− β)2

4
− k(α + β)

2

}
, (6)

where Beltrami fields in terms of the electric field E and the magnetic
field H, as given in [28], are :

Q1 =
η1

η1+η2
(E + iη2H), (7)

and

Q2 =
i

η1+η2
(E − iη1H), (8)

where Q1 is the left-handed Beltrami field and Q2 is the right-handed
Beltrami field. In Eqs. (7) and (8), the two impedances η1 and η2 are
given by

η1 =
η√

1 +
k2(α− β)2

4
+

k(α− β)
2

, (9)

and

η2 = η

{√
1 +

k2(α− β)2

4
− k(α− β)

2

}
, (10)

where k = ω
√
εµ and η =

√
µ
ε .
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Since we are interested in scattering of electromagnetic waves with
a prescribed y-variation, therefore, it is appropriate to decompose the
Beltrami fields as [29].

Q1 = Q1t + yQ1y, (11)

with

Q1t = Q1xi + Q1zk. (12)

and

Q2 = Q2t + yQ2y. (13)

where the fields Q1t and Q2t lie in the xz-plane and j is a unit vector
along the y-axis such that j·Q1t = 0 and j·Q2t = 0. Now, from Eqs. (3)
and (4)

Q1x =
1
γ2

1

[
∂2Q1y

∂y∂x
− ∂2Q1x

∂y2

]
− 1

γ1

∂Q1y

∂z
, (14)

Q1z =
1
γ2

1

[
∂2Q1y

∂y∂z
− ∂2Q1z

∂y2

]
+

1
γ1

∂Q1y

∂x
, (15)

Q2x =
1
γ2

2

[
∂2Q2y

∂y∂x
− ∂2Q2x

∂y2

]
+

1
γ2

∂Q2y

∂z
, (16)

Q2z =
1
γ2

2

[
∂2Q2y

∂y∂z
− ∂2Q2z

∂y2

]
− 1

γ2

∂Q2y

∂x
. (17)

It is sufficient to explore the scattering of the scalar field Q1y and Q2y

because the other components of Q1 and Q2 can then be completely
determined by using Eqs. (14)–(17).

Now using the constitutive relations (1) and (2), the Maxwell curl
postulates ∇×E = iωB−K and ∇×H = −iωD + J may be written
as:

∇× Q1 − γ1Q1 = S1, (18)

∇× Q2 − γ2Q2 = S2, (19)

where S1 and S2 are the corresponding source densities and are given
by

S1 =
η1

η1 + η2

(
iγ1

ωε
J − (1 + αγ1)K

)
, (20)

S2 =
η1

η1 + η2

(
− iγ2

ωµ
K − (1 + βγ2)J

)
. (21)
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In deriving Eqs. (20) and (21), we have used the following relations

1 + ωεαη2 = (1 − k2αβ)(1 + αγ), (22)

1 − ωεαη1 = (1 − k2αβ)η1
γ2

ωµ
, (23)

η2 + ωµβ = (1 − k2αβ)
γ1

ωε
, (24)

η1 − ωµβ = (1 − k2αβ)η1(1 − βγ2). (25)

Furthermore, Q1 is E like and Q2 is H like. Similarly S1 is K like and
S2 is J like where J and K are the electric and magnetic source current
densities, respectively. Since electric field vanishes on a perfectly
conducting surface. Therefore, the boundary conditions on a perfectly
conducting finite-plane in terms of the electric field components take
the form Ex = Ey = 0, for z = 0, −l ≤ x ≤ 0. Using this fact in
Eqs. (7) and (8), the boundary conditions on the finite plane take the
form

Q1y − iη2Q2y = 0, z = 0, − l ≤ x ≤ 0, (26a)

and

Q1x − iη2Q2x = 0, z = 0, − l ≤ x ≤ 0. (26b)

With the help of Eqs. (14) and (15), Eq. (26b) becomes

1(
γ2

1 + ∂2

∂y2

) [
∂2Q1y

∂y∂x
− γ1

∂Q1y

∂z

]

− iη2
1(

γ2
2 + ∂2

∂y2

) [
∂2Q2y

∂y∂x
+ γ2

∂Q2y

∂z

]
=0, z = 0, − l ≤ x ≤ 0. (27)

Thus the scalar fields Q1y and Q2y satisfy the boundary condi-
tions (26a) and (27). Now, eliminating Q2y from Eqs. (26a) and (27),
we obtain
∂2Q1y

∂y∂x
∓ 1

(γ2−γ1)

[
γ1γ2+

∂2Q2y

∂y2

]
∂Q1y

∂z
=0, z = 0±, − l≤x≤0, (28a)

It is worthwhile to note that the boundary conditions (28a) are of the
same form as impedance boundary conditions [30]. We observe that
there is no boundary for −∞ < x < −l, x > 0, z = 0. Therefore the
continuity conditions are given by

Q1y(x, y, z+) = Q1y(x, y, z−); −∞<x<−l, x > 0, z = 0, (28b)
∂Q1y(x, y, z+)

∂z
=

∂Q1y(x, y, z−)
∂z

; −∞<x<−l, x > 0, z = 0. (28c)
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The edge conditions (local properties) on the field that invoke the
appropriate physical constraint of finite energy near the edges of the
boundary discontinuities require that

Q1y(x, y, 0) = O(1) and
∂Q1y(x, y, 0)

∂z
=O

(
x−

1
2

)
as x → 0+, (29a)

Q1y(x, y, 0) = O(1) and
∂Q1y(x, y, 0)

∂z
=O(x + l)−

1
2 as x→−l. (29b)

Finally, the scattered field must satisfy the radiation conditions in the
limit (x2+y2+z2)1/2 → ∞. We must also observe at this juncture that,
in effect, we need to consider the diffraction of only one scalar field, that
is either Q1y or Q2y, at a time, but the presence of the other scalar field
is reflected in the complicated nature of the boundary condition (28a).

Now we consider a point source which is located at (x0, y0,
z0). Then, the scalar fields Q1y and Q2y in the presence of a point
source of strength S01 and S02, respectively, satisfy the reduced scalar
equations [27](

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
Q1y+γ2

1Q1y = S01δ(x−x0)δ(y−y0)δ(z−z0), (30a)(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
Q2y+γ2

2Q2y = S02δ(x−x0)δ(y−y0)δ(z−z0). (30b)

3. THE WIENER-HOPF EQUATIONS

The Fourier transform and its inverse over the variable y are defined
respectively as:

Q̃1y(x, s, z) =

∞∫
−∞

Q1y(x, y, z)e−iγ1sydy, (31a)

Q1y(x, y, z) =
γ1

2π

∞∫
−∞

Q̃1y(x, s, z)eiγ1syds. (31b)

In Eqs. (31a) and (31b), the transform parameter is taken conveniently
to be γ1s, s is non-dimensional. In addition γ1 must be complex
for causality, as remarked earlier and has a small positive imaginary
part. Transforming Eq. (30a) and the boundary conditions (28a), (28b)
and (28c) with respect to y by using Eq. (31a), we obtain(

∂2

∂x2
+

∂2

∂z2
+ χ2

1γ
2
1

)
Q̃1y(x, s, z) = ãδ(x− x0)δ(z − z0), (32)
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∂

∂x
Q̃1y(x, s, z) ∓ λ

∂

∂z
Q̃1y(x, s, z)=0, z = 0±, −l ≤ x ≤ 0, (33a)

Q̃1y(x, s, z+)=Q̃1y(x, s, z−); −∞ < x < −l, x > 0, z = 0, (33b)
∂

∂z
Q̃1y(x, s, z+)=

∂

∂z
Q̃1y(x, s, z−); −∞ < x < −l, x > 0, z=0. (33c)

where

ã = S01e
−iγ1sy0 , χ2

1 = 1 − s2, λ =
(γ2 − γ1s

2)
is((γ2 − γ1))

(34)

A solution of Eq. (32) can be written in the form

Q1y(x, s, z) = Q̃inc
1y (x, s, z) + Q̃sca

1y (x, s, z), (35)

where Q̃inc
1y (x, s, z) is the solution of inhomogeneous wave Eq. (32),

that corresponds to the incident wave and Q̃sca
1y (x, s, z) is diffracted field

corresponding to the solution of the homogeneous Eq. (32). Thus, Q̃inc
1y

(x, s, z) and Q̃sca
1y (x, s, z) satisfy the following equations:(

∂2

∂x2
+

∂2

∂z2
+ χ2

1γ
2
1

)
Q̃inc

1y (x, s, z) = ãδ(x− x0)δ(z − z0), (36)

(
∂2

∂x2
+

∂2

∂z2
+ χ2

1γ
2
1

)
Q̃sca

1y = 0, (37)

(
∂

∂x
∓ λ

∂

∂z

)
Q̃inc

1y (x, s, 0±)

+
(

∂

∂x
∓ λ

∂

∂z

)
Q̃sca

1y (x, s, 0±) = 0, −l ≤ x ≤ 0, (38a)

Q̃sca
1y (x, s, z+) = Q̃sca

1y (x, s, z−); −∞ < x < −l, x > 0, z = 0, (38b)
∂

∂z
Q̃sca

1y (x, s, z+)=
∂

∂z
Q̃sca

1y (x, s, z−); −∞<x<−l, x > 0, z=0. (38c)

Now, we define the Fourier transform Ψ(υ, s, z) of Q̂sca
1y (x, s, z) as

Ψ(υ, s, z) =
1√
2π

∞∫
−∞

Q̂sca
1y (x, s, z)eiυxdx

= Ψ+(υ, s, z) + e−iυlΨ−(υ, s, z) + Ψ1(υ, s, z), (39)
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where

Ψ+(υ, s, z) =
1√
2π

∞∫
0

Q̂sca
1y (x, s, z)eiυxdx,

Ψ−(υ, s, z) =
1√
2π

−l∫
−∞

Q̂sca
1y (x, s, z)eiυ(x+l)dx,

Ψ1(υ, s, z) =
1√
2π

0∫
−l

Q̂sca
1y (x, s, z)eiυxdx,

(40)

where Ψ−(υ, s, z) is regular for Imυ < Im(χ1γ1), and Ψ+(υ, s, z) is
regular for Imυ > −Im(χ1γ1) and Ψ1(υ, s, z) is an integral function and
therefore, Ψ1(υ, s, z) is analytic in the common region −Im(χ1γ1) <
Imυ < Im(χ1γ1). The solution of Eq. (32) can be written as

Q̂inc
1y (x, s, z) = − â

4i
H

(1)
0

[
χ1γ1

√
(x− x0)2 + (z − z0)2

]
,

=
â

4πi

∞∫
−∞

e−iυ(x−x0)+iκ|z−z0|

κ
dυ, (41)

where

κ2 =
(
χ2

1γ
2
1 − υ2

)
, Imκ > 0, (41a)

and H
(1)
0 (.) is the Hankel function of order zero and first type and its

asymptotic expansion is given by

H
(1)
0 (M) =

(
2

πM

) 1
2

ei[M−(π
4
)]. (41b)

The incident wave in the cartesian coordinates can now be written by
taking an inverse Fourier transform of Eq. (41) over the parameter γ1s
as

Qinc
1y (x, y, z) = S01

eiγ1r1

4πr1
, (42)

where

r1 =
√

(x− x0)2 + (y − y0)2 + (z − z0)2. (42a)
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Taking the Fourier transform of Eq. (37) with respect to x, we obtain(
d2

dz2
+ κ2

)
Ψ(υ, s, z) = 0, (43)

The solution of Eq. (43) satisfying radiation conditions is given by

Ψ(υ, s, z) =
{

A(υ)eiκz if z > 0,
C(υ)e−iκz if z < 0. (44)

Transforming the boundary conditions (38b) and (38c), we have

Ψ±(υ, s, 0+) = Ψ±(υ, s, 0−) = Ψ±(υ, s, 0),

Ψ′
±(υ, s, 0+) = Ψ′

±(υ, s, 0−) = Ψ′
±(υ, s, 0),

}
(45)

where the primes denote differentiation with respect to the variable z.
Now making change of variables

z0 = r0 sinφ, x0 = r0 cosφ, π ≤ φ ≤ 3π
2
,

in Eq. (41) and when r0 → ∞, the source recedes to infinity, we obtain,
using the asymptotic expansion of Hankel function

Q̂inc
1y (x, s, z) = b(s)ei(k1xx+k1zz), (46a)

where

b(s) = −e−iγ1sy0

4i

√
2

πχ1γ1r0
exp

[
i
(
χ1γ1r0 −

π

4

)]
, (46b)

k1x = −χ1γ1 cosφ, k1z = −χ1γ1 sinφ. (46c)

The Fourier transform of the incident wave (46a) in the region −l ≤
x ≤ 0 gives

Ψinc
1 (υ, s, 0) =

ib(s)√
2π(k1x + υ)

[−1 + exp[−i(k1x + υ)l]]. (47)

Taking the Fourier transform of Eq. (38a) and using Eq. (47), we get

−iυΨ1(υ, s, 0+) − λΨ′
1(υ, s, 0

+)

−(k1x − λk1z)b(s)√
2π(k1x + υ)

[−1 + exp[−i(k1x + υ)l]] = 0, (48)

−iυΨ1(υ, s, 0−) + λΨ′
1(υ, s, 0

−)

−(k1x + λk1z)b(s)√
2π(k1x + υ)

[−1 + exp[−i(k1x + υ)l]] = 0. (49)
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Using Eq. (39) and (45) in Eq. (44), we have

Ψ+(υ, s, 0) + e−iυlΨ−(υ, s, 0) + Ψ1(υ, s, 0+) = A(υ),

Ψ+(υ, s, 0) + e−iυlΨ−(υ, s, 0) + Ψ1(υ, s, 0−) = C(υ),

Ψ
′

+(υ, s, 0) + e−iυlΨ
′

−(υ, s, 0) + Ψ
′

1(υ, s, 0
+) = iκA(υ),

Ψ
′

+(υ, s, 0) + e−iυlΨ
′

−(υ, s, 0) + Ψ
′

1(υ, s, 0
−) = −iκC(υ).


(50)

The unknown function A(υ) and C(υ) can be obtained from Eq. (50)
as

A(υ) = J1(υ, s, 0) +
J ′

1(υ, s, 0)
iκ

, (51)

and

C(υ) = −J1(υ, s, 0) +
J ′

1(υ, s, 0)
iκ

, (52)

where

J1(υ, s, 0) =
1
2

[
Ψ1(υ, s, 0+) − Ψ1(υ, s, 0−)

]
, (53)

and

J ′
1(υ, s, 0) =

1
2

[
Ψ′

1(υ, s, 0
+) − Ψ′

1(υ, s, 0
−)

]
. (54)

From Eqs. (48)–(50), we obtain

Ψ′
+(υ, s, 0) + e−iυlΨ′

−(υ, s, 0) − iκL(υ)J1(υ, s, 0)

+
b(s)k1z√

2π(k1x + υ)
[−1 + exp[−i(k1x + υ)l]] = 0, (55)

and

−iυΨ+(υ, s, 0) − iυe−iυlΨ−(υ, s, 0)

+λL(υ)J ′
1(υ, s, 0) +

b(s)k1x√
2π(k1x + υ)

[−1 + exp[−i(k1x + υ)l]] = 0. (56)

4. SOLUTION OF WIENER-HOPF EQUATIONS

In Eqs. (55) and (56)

L(υ) =
(
1 +

υ

λκ

)
. (57)
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Eqs. (55) and (56) are the standard Wiener-Hopf equations. Let us
proceed to find the solution for these equations. For the solution of
Wiener-Hopf functional equations, the functions L(υ) and κ(υ) can be
factorized as

L(υ) =
(
1 +

υ

λκ

)
= L+(υ)L−(υ), (58a)

also

κ(υ) = κ+(υ)κ−(υ) = (χ1γ1 + υ)
1
2 (χ1γ1 − υ)

1
2 , (58b)

where L+(υ) and κ+(υ) are regular for Imυ > −Im χ1γ1, i.e., for upper
half plane and L−(υ) and κ−(υ) are regular for Im υ < Imχ1γ1 i.e.;
lower half plane. This factorization has been done in [30]. By using the
values of J1(υ, s, 0) and J ′

1(υ, s, 0) from Eqs. (55) and (56) respectively
in Eqs. (51) and (52), we get

A(υ) =
1

iκ L(υ)

[
Ψ′

+(υ, s, 0) + e−iυlΨ′
−(υ, s, 0) +

b(s)k1z√
2π(k1x + υ)

[−1+exp[−i(k1x+υ)l]]

]
+

υλ1

κ L(υ)

[
Ψ+(υ, s, 0)+e−iυlΨ−(υ, s, 0)

− b(s)k1x√
2π(k1x + υ)

[−1 + exp[−i(k1x + υ)l]]

]
, (59)

and

C(υ) =
−1

iκ L(υ)

[
Ψ′

+(υ, s, 0) + e−iυlΨ′
−(υ, s, 0)

+
b(s)k1z√

2π(k1x + υ)
[−1 + exp[−i(k1x + υ)l]]

]

+
υλ1

κ L(υ)

[
Ψ+(υ, s, 0) + e−iυlΨ−(υ, s, 0)

− b(s)k1x√
2π(k1x + υ)

[−1 + exp[−i(k1x + υ)l]]

]
, (60)

where λ1 = 1
λ . In [32], the terms of O(λ1) are neglected while in the

present analysis the λ1 parameter is taken up to order one so that
the results due to semi infinite barrier [36] can be recovered by taking
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an appropriate limit. To accomplish this, we have to solve both the
Wiener-Hopf equations to find the values of unknown functions A(υ)
and C(υ). For this we use Eqs. (58a) and (58b) in Eqs. (55) and (56),
which gives

Ψ′
+(υ, s, 0) + e−iυlΨ′

−(υ, s, 0) + s(υ)J1(υ, s, 0)

=
−χ1γ1 sinϕb(s)√
2π(υ − χ1γ1 cosϕ)

× [1 − exp[−i(υ − χ1γ1 cosϕ)l]], (61)

and

−iυΨ+(υ, 0) − iυe−iυlΨ−(υ, 0) + λL+(υ)L−(υ)J ′
1(υ, s, 0)

=
−χ1γ1 cosϕb(s)√
2π(υ − χ1γ1 cosϕ)

× [1 − exp[−i(υ − χ1γ1 cosϕ)l]], (62)

where

S(υ) = −iκ(υ)L(υ) = S+(υ)S−(υ), (63)

and S+(υ) and S−(υ) are regular in upper and lower half plane
respectively. Equations of types (61) and (62) have been considered
by Noble [30] and a similar analysis may be employed to obtain an
approximate solution for large χ1γ1r. So, we follow the procedure
given in [30] (Sec. 5.5, p. 196) and deduce that

Ψ′
+(υ, s, 0) =

−χ1γ1 sinϕb(s)S+(υ)√
2π

[G1 (υ) + T (υ)C1(χ1γ1)] , (64)

Ψ′
−(υ, s, 0) =

−χ1γ1 sinϕb(s)S−(υ)√
2π

[G2 (−υ) + T (−υ)C2(χ1γ1)] , (65)

Ψ+(υ, s, 0) =
ib(s)L+(υ)√

2πυ

[
G′

1 (υ) + T (υ)C ′
1(χ1γ1)

]
, (66)

and

Ψ−(υ, s, 0) =
−ib(s)L−(υ)√

2πυ

[
G′

2 (−υ) − T (−υ)C ′
2(χ1γ1)

]
, (67)

where

S+(υ) = (υ + χ1γ1)
1
2L+(υ), (68a)

and

S−(υ) = (υ − χ1γ1)
1
2L−(υ), (68b)
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G1 (υ) =
1

(υ−χ1γ1 cosϕ)

[
1

S+(υ)
− 1
S+(χ1γ1 cosϕ)

]
−e−ilχ1γ1 cos ϕR1(υ),

(69)

G2 (υ) =
e−ilχ1γ1 cos ϕ

(υ + χ1γ1 cosϕ)

[
1

S+(υ)
− 1

S+(−χ1γ1 cosϕ)

]
−R2 (υ) , (70)

C1 = S+(χ1γ1)
[
G2 (χ1γ1) + S+(χ1γ1)G1 (χ1γ1)T (χ1γ1)

1 − S2
+(χ1γ1)T 2 (χ1γ1)

]
, (71)

C2 = S+(χ1γ1)
[
G1 (χ1γ1) + S+(χ1γ1)G2 (χ1γ1)T (χ1γ1)

1 − S2
+(χ1γ1)T 2 (χ1γ1)

]
, (72)

G′
1 (υ) =

υ

(υ − χ1γ1 cosϕ)

[
1

L+(υ)
− 1
L+(χ1γ1 cosϕ)

]
−e−ilχ1γ1 cos ϕR1(υ),

(73)

G′
2 (υ) =

e−ilχ1γ1 cos ϕ

(υ + χ1γ1 cosϕ)

[
υ

L+(υ)
− χ1γ1 cosϕ

L+(−χ1γ1 cosϕ)

]
−R2 (υ) , (74)

C ′
1 =L+(χ1γ1)

[
G′

2 (χ1γ1) + L+(χ1γ1)G′
1 (χ1γ1)T (χ1γ1)

1 − L2
+(χ1γ1)T 2 (χ1γ1)

]
, (75)

C ′
2 =L+(χ1γ1)

[
G′

1 (χ1γ1) + L+(χ1γ1)G′
2 (χ1γ1)T (χ1γ1)

1 − L2
+(χ1γ1)T 2 (χ1γ1)

]
, (76)

R1,2 (υ) =
E−1[W−1{−i (χ1γ1 ∓ χ1γ1 cosϕ)l}−W−1{−i(χ1γ1+υ) l}]

2πi(υ ± χ1γ1 cosϕ)
,

(77)

T (υ) =
1

2πi
E−1W−1{−i (χ1γ1 + υ) l}, (78)

E−1 = 2ei π
4 eiχ1γ1 cos ϕl (l)

1
2 (i)−1 h−1, (79)

and

Wn− 1
2
(p) =

∫ ∞

0

une−u

u + p
du = Γ (n + 1) e

p
2 p

1
2
n− 1

2W− 1
2
(n+1), 1

2
n(p), (80)

where p = −i (χ1γ1 + υ) l and n = −1
2 . Wm,n is known as a Whittaker

function.
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Now, making use of Eqs. (64)–(67) in Eqs. (59) and (60), we get

A(v)
C(v)

}
=
−χ1γ1 sinϕb(s)sgn(z)√

2π iκL(υ)
S+(υ)G1 (υ) + S+(υ)T (υ)C1(χ1γ1) + e−iυlS−(υ)

[G2 (−υ) − T (−υ)C2(χ1γ1)] −
(1 − e−i(υ−χ1γ1 cos ϕ)l

(υ − χ1γ1 cosϕ)


+

b(s)υλ1√
2πκL(υ)


L+(υ)G′

1 (υ) + T (υ)L+(v)C ′
1(χ1γ1)

+e−iυl[(L−(υ)G′
2 (−υ) + T (−υ)

L+(v)C ′
2(χ1γ1))] −

(
1 − e−il(k1x+υ)

)
(υ − χ1γ1 cosϕ)

 (81)

where A(v) correspond to z > 0 and C(v) correspond to z < 0. We can
see that the second term in the above equation was altogether missing
in Eq. (67) of [32]. This term included the effect of λ1 parameter in
it which can be seen from the solution also. Now, Q̃sca

1y (x, s, z) can be
obtained by taking the inverse Fourier transform of Eq. (44). Thus

Q̃sca
1y (x, s, z) =

1√
2π

∞∫
−∞

{
A(υ)
C(υ)

}
exp(iκ |z| − iυx)dυ, (82)

where A(υ) and C(υ) are given by Eq. (81). Substituting the
value of A(υ) and C(υ) from Eq. (81) into Eq. (82) and using the
approximations (69)–(76), one can break up the field Q̃sca

1y (x, s, z) into
two parts

Q̃sca
1y (x, s, z) = Q̃

sca(sep)
1y (x, s, z) + Q̃

sca(int)
1y (x, s, z), (83)

where

Q̃
sca(sep)
1y (x, s, z) =

χ1γ1 sinϕb(s)sgn(z)
2πi

∞∫
−∞

S+(υ) exp(iκ |z| − iυx)
iκL(υ)S+(χ1γ1 cosϕ)(υ − χ1γ1 cosϕ)

dυ

+
χ1γ1 sinϕb(s)sgn(z)

2πi
∞∫

−∞

e−il(k1x+υ)S−(υ) exp(iκ |z| − iυx)
iκL(υ)S+(−χ1γ1 cosϕ)(υ − χ1γ1 cosϕ)

dυ
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−b(s)
2πi

∞∫
−∞

λ1e
−il(k1x+υ) exp(iκ |z| − iυx)
κL(υ)(υ − χ1γ1 cosϕ)

dυ

+
b(s)
2πi

∞∫
−∞

L−(υ)e−il(k1x+υ) exp(iκ |z| − iυx)
κL(υ)(υ−χ1γ1 cosϕ)L+(−χ1γ1 cosϕ)

dυ

+
b(s)
2πi

∞∫
−∞

λ1 exp(iκ |z| − iυx)
κL(υ)(υ − χ1γ1 cosϕ)

dυ, (84)

and

Q̃
sca(int)
1y (x, s, z)=

χ1γ1 sinϕb(s)sgn(z)
2πi

∞∫
−∞

1
iκL(υ)[

S+(υ)R1 (υ) e−ilχ1γ1 cos ϕ − C1(χ1γ1)S+(υ)T (υ)

+S+(−υ)e−ilυR2(−υ) − C2(χ1γ1)T (−υ)S+(−υ)e−ilυ
]

exp(iκ |z| − iυx)dυ − b(s)
2πi

∞∫
−∞

λ1

κL(υ)[
T (υ)L+(υ)C ′

1(χ1γ1) + T (−υ)L−(υ)C ′
2(χ1γ1)

−L+(υ)R1 (υ) e−ilχ1γ1 cos ϕ −L−(υ)R2 (−υ) e−ilυ
]

exp(iκ |z| − iυx)dυ. (85)

Here, Q̃
sca(sep)
1y (x, s, z) consists of two parts each representing the

diffracted field produced by the edges at x = 0 and x = −l, respectively,
as though the other edges were absent while Q̃

sca(int)
1y (x, s, z) gives the

interaction of one edge upon the other.

5. FAR FIELD SOLUTION

The far field may now be calculated by evaluating the integrals
appearing in Eqs. (82), (84) and (85), asymptotically [33]. For that put
x = r cosϑ, |z| = r sinϑ and deform the contour by the transformation
υ = −χ1γ1 cos (ϑ + ip) , (0 < ϑ < π, −∞ < p < ∞).
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Hence, for large χ1γ1r, Eqs. (82), (84) and (85) become

Q̃
sca(sep)
1y (x, s, z)=b(s)[i·sgn(z) sinϕ·f1(−χ1γ1 cosϑ)+g1(−χ1γ1 cosϑ)]

× 1√
2πχ1γ1r0

exp
(
iχ1γ1r−i

π

4

)
, (86)

and

Q̃
sca(int)
1y (x, s, z)=b(s) [i·sgn(z) sinϕ·f2(−χ1γ1 cosϑ)+g2(−χ1γ1 cosϑ)]

× 1√
2πχ1γ1r0

exp
(
iχ1γ1r − i

π

4

)
, (87)

where A(−χ1γ1 cosϑ) and C(−χ1γ1 cosϑ) can be found from Eq. (81),
while

f1(−χ1γ1 cosϑ)

=
S+(−χ1γ1 cosϑ)

L(−χ1γ1 cosϑ)S+(χ1γ1 cosφ)(−χ1γ1 cosφ− χ1γ1 cosϑ)

−e−il(−χ1γ1 cos φ−χ1γ1 cos ϑ)S+(χ1γ1 cosϑ)
1 cosφ)(−χ1γ1 cosφ− χ1γ1 cosϑ)

, (88)

g1(−χ1γ1 cosϑ)

=
1

(−χ1γ1 cosφ− k1xz cosϑ)

×



λ1e
−il(−χ1γ1 cos φ−χ1γ1 cos ϑ)

L(−χ1γ1 cosϑ)

−L+(χ1γ1 cosϑ)e−il(−χ1γ1 cos φ−χ1γ1 cos ϑ)

L(−χ1γ1 cosϑ)L+(−χ1γ1 cosφ)

− λ1

L(−χ1γ1 cosϑ)

 , (89)

f2(−χ1γ1 cosϑ)

=
1

L(−χ1γ1 cosϑ)

×


S+(−χ1γ1 cosϑ)R1 (−χ1γ1 cosϑ) eilχ1γ1 cos φ

+S+(χ1γ1 cosϑ)eilχ1γ1 cos ϑR2 (χ1γ1 cosϑ)
− C1(χ1γ1)S+(−χ1γ1 cosϑ)T (−χ1γ1 cosϑ)

− C2(χ1γ1)T (χ1γ1 cosϑ)S+(χ1γ1 cosϑ)eilχ1γ1 cos ϑ

 , (90)
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and

g2(−χ1γ1 cosϑ)

=
1

L(−χ1γ1 cosϑ)

×


L+(−χ1γ1 cosϑ)R1 (−χ1γ1 cosϑ) eilχ1γ1 cos φ

+ L+(χ1γ1 cosϑ)R2 (χ1γ1 cosϑ) eilχ1γ1 cos ϑ

− T (−χ1γ1 cosϑ)L+(−χ1γ1 cosϑ)C ′
1(χ1γ1)

− T (χ1γ1 cosϑ)L+(χ1γ1 cosϑ)C ′
2(χ1γ1)

 . (91)

Now, substituting Eq. (46b) in Eqs. (86) and (87) and then taking the

inverse Fourier transform w.r.t “y” and using Eq. (31b), we obtain

Q
sca(sep)
1y (x, y, z)=

S01i · sgn(z) sinϕ
8π2√rr0

∞∫
−∞

f1(−χ1γ1 cosϑ)

exp iγ1[χ1(r + r0) + s(y − y0)ds +
S01i

8π2√rr0
∞∫

−∞

g1(−χ1γ1 cosϑ) exp iγ1[χ1(r+r0)+s(y−y0)ds,(92)

Q
sca(int)
1y (x, y, z)=−S01i · sgn(z) sinϕ

8π2√rr0

∞∫
−∞

f2(−χ1γ1 cosϑ)

exp iγ1[χ1(r + r0) + s(y − y0)ds−
S01iγ1

8π2√rr0
∞∫

−∞

g2(−χ1γ1 cosϑ) exp iγ1[χ1(r+r0)+s(y−y0)ds.(93)

For the evaluation of integrals in Eqs. (92) and (93), we introduce
r + r0 = r12 sinσ, (y − y0) = r12 cosσ and the transformation
s = cos(σ + iq), which changes the contour of integration over into
a hyperbola passing through the point cosσ. The integrals are then
solved asymptotically by using the steepest decent method and the
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resulting expressions are given by

Q
sca(sep)
1y (x, y, z)=− i · sgn(z)S01

4π
√

2πγ1rr0r12[
sinϕf1(−γ1 sinσ cosϑ)

+ g1(−γ1 sinσ cosϑ)

]
exp i

(
γ1r12−

π

4

)
,(94)

Q
sca(int)
1y (x, y, z)=− S01iγ1 sinσ

4π
√

2πγ1rr0r12[
sinϕf2(−γ1 sinσ cosϑ)

+ g2(−γ1 sinσ cosϑ)

]
exp i

(
γ1r12−

π

4

)
,(95)

where f1(−γ1 sinσ cosϑ), g1(−γ1 sinσ cosϑ), f2(−γ1 sinσ cosϑ) and
g2(−γ1 sinσ cosϑ) given by Eqs. (88)–(91) respectively. Thus, the
complete solution of the system is given by

Q1y(x, y, z) = Qinc
1y (x, y, z) + Qsca

1y (x, y, z). (96)

Substituting the values of Qinc
1y (x, y, z) from Eq. (42) and of

Q
sca(sep)
1y (x, y, z) and Q

sca(int)
1y (x, y, z) from Eqs. (94) and (95) into

Eq. (96), we get the desired result of the system as

Q1y(x, y, z) = S01
eiγ1r1

4πr1
− i · sgn(z)S01

4π
√

2πγ1rr0r12

[
sinϕf1(−γ1 sinσ cosϑ)

+ g1(−γ1 sinσ cosϑ)

]
exp i

(
γ1r12 −

π

4

)
− S01iγ1 sinσ

4π
√

2πγ1rr0r12[
sinϕf2(−γ1 sinσ cosϑ)

+ g2(−γ1 sinσ cosϑ)

]
exp i

(
γ1r12 −

π

4

)
. (97)

Remarks:
Mathematically, we can derive the results of the half plane problem

a follows:
For the analysis purpose, in Eq. (81), we take the wave number

χ1γ1 to be pure imaginary and using the L Hopital rule successively,
the value of E−1, reduces to Ltl→∞( eikl√

kl
) which becomes zero and in

turn result the quantities T (υ) , R1,2 (υ) , G′
2 (υ) , C ′

1 and G2 (υ) in
zero. The third term in Eqs. (69), (70) and (73) also becomes zero as
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l → ∞. The Eq. (81), after these eliminations reduces to

A(υ) =
1√
2π

[ −k1zκ+(υ)L+(υ)
iκ(υ)L(υ)(k1x + υ)κ+(−k1x)L+(−k1x)

+
δ1υL+(υ)

κ(υ)L(υ)(k1x + υ)L+(−k1x)

]
.

Using the factorization

L(υ) = L+(υ)L−(υ),

and

κ(υ) = κ+(υ)κ−(υ).

and substituting the pole contribution υ = − k1x, the above result
reduces to Eq. (72) of the Half Plane [36] which in turn results the
separated field of the strip into the diffracted field [36] as the strip
is widened to half plane by taking the limit l → ∞ which can be
considered as check of the validity of the analysis in this paper.

Figure 1. Variation of the amplitude of diffracted field (db) versus
observation angle (radians) for values from 0 to 3.2, and against r12
for values from 1 to 2.
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Figure 2. Variation of the amplitude of separated field (db) versus
observation angle (radians) for values from 0 to 3.2, and against r12
for values from 1 to 2, for l = 10.

Figure 3. Variation of the amplitude of separated field (db) versus
observation angle (radians) for values from 0 to 3.2, and against r12
for values from 1 to 2, for l = 107.
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Figure 4. Variation of the amplitude of separated field (db) versus
observation angle (radians) for values from 0 to 3.2, and against r12
for values from 1 to 2, for l = 1014.

Figure 5. Variation of the amplitude of separated field (db) versus
observation angle (radians) for values from 0 to 3.2, and against r12
for values from 1 to 2, for l = 1022.
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6. GRAPHICAL RESULTS

A computer program MATHEMATICA has been used for graphical
plotting. The main feautres of the graphical results can be seen in
graphs (1), (2), (3), (4) and (5) are as follows:

(a) The graphs of the diffracted field corresponding to the half
plane is given in Fig. 1. It is observed that the separated field of the
strip for different values of l, Figs. 2–5, are in comparison with Fig. 1.

(b) It is observed that as l = 1022, which can be considered as an
infinity in case of strip in Fig. 5 is in close comparision with half plane
Fig. 1, verifying our claim that strip is widened into the half plane as
l → ∞.

7. CONCLUSION

The diffracted field due to a spherical electromagnetic wave by a
perfectly conducting finite strip in a homogeneous bi-isotropic medium
is obtained in an improved form. It is found that the two edges of the
strip give rise to two diffracted fields (one from each edge) and an
interaction field (double diffraction of two edges). This seems to be
the first attempt in this direction as we can deduce the results of half
plane [36] by taking an appropriate limit. In [32], the λ parameter was
not taken into account which ends up in an equation from which one
cannot deduce the results for semi infinite barrier [36]. This can be
considered as check of the validity of the analysis in this paper. Thus,
the new solution can be regarded as a correct solution for a perfectly
conducting barrier.
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