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Abstract—Fractional curl operator has been used to derive solutions
to the Maxwell equations for fractional rectangular cavity resonator.
These solutions to the Maxwell equations may be regarded as fractional
dual solutions. Behavior of field lines and surface current density
in fractional cavity resonator have been investigated with respect to
the fractional parameter. Fractional parameter describes the order of
fractional curl operator.

1. INTRODUCTION

Ten years before, interest in exploring the roles and applications of
fractional calculus [1] and fractional operators in electromagnetics led
to fractionalization of curl operator, an operator which is commonly
used in electromagnetics. It is represented by curlα = (∇×)α and
is known as fractional curl operator [2]. Generally, the parameter α
is noninteger. For α = 0, the fractional curl operator becomes an
identity operator. Whereas, the fractional curl operator transforms to
conventional curl operator when α = 1. When α ranges between 0
and 1, the fractional curl operator behaves as intermediate operator
between identity operator and conventional/ordinary curl operator.

According to the following relations [2]

Efd =
[
(ik)−1∇×

]α
E

ηHfd =
[
(ik)−1∇×

]α
ηH

the fractional curl operator generates the fractional dual solution
(Efd, ηHfd) to the Maxwell equations. In above equations E and H
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are electric and magnetic fields respectively. Quantities k and η are
the wavenumber and impedance of the medium. For α = 0, the above
relations yield solution (E, ηH) while for α = 1, above relations yield
solution (ηH,−E). When α ranges between 0 and 1, above relations
yield solutions which may be regarded as intermediate step between
solution (E, ηH) and solution (ηH,−E). That is, intermediate between
original solution to Maxwell equations and dual to the original solution
to Maxwell equations.

Fractional curl operator has been applied by Naqvi and co-workers
on variety of problems, e.g., fractional curl operator in chiral and
bi-anisotropic medium, fractional dual solutions in metamaterials,
fractional perfect electromagnetic structures, fractional waveguides
and transmission lines etc. [3–15]. Valuable contributions on this topic
are given by other authors [16–23].

In this paper, we have investigated fractional rectangular cavity
resonator. Fractional fields and fractional surface current density in
fractional rectangular cavity resonator has been studies.

2. FIELDS IN FRACTIONAL CAVITY RESONATOR

Consider a rectangular cavity resonator, constructed from a waveguide
of rectangular cross-section having width a and height b(a ≥ b). The
waveguide is closed by two perfectly conducting plates located at z = 0
and z = d(d ≥ a), forming a rectangular parallelepiped or rectangular
cavity. Since both TM and TE modes can exist in a rectangular
waveguide, we expect TM and TE modes in a rectangular cavity
resonator too. For simplicity we choose the z-axis as the reference
“direction of propagation”. Actually, the existence of conducting walls
at z = 0 and z = d give rise to multiple reflections and set up standing
waves. Therefore, no wave propagates in an enclosed cavity. Note
that the longitudinal variation for wave traveling in the +z-direction
and −z-direction are described by propagation factors e−ikzz and eikzz

respectively. Consider the TMmnp mode in the rectangular cavity
resonator. Where the three symbol {mnp} subscript designate a TM
or TE standing wave pattern in cavity resonator. Field expressions
are [24]

ẑEz(x, y, z) = ẑAmnp sin(kxx) sin(kyy) cos(kzz) (1a)

x̂Ex(x, y, z) = −x̂
kzkx

k2
c

Amnp cos(kxx) sin(kyy) sin(kzz) (1b)

ŷEy(x, y, z) = −ŷ
kzky

k2
c

Amnp sin(kxx) cos(kyy) sin(kzz) (1c)
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x̂ηHx(x, y, z) = x̂
ikky

k2
c

Amnp sin(kxx) cos(kyy) cos(kzz) (1d)

ŷηHy(x, y, z) = −ŷ
ikkx

k2
c

Amnp cos(kxx) sin(kyy) cos(kzz) (1e)

where kx = mπ
a , ky = nπ

b and kz = pπ
d , m = n = p = 0, 1, 2 . . . and

kc =
√

k2 − k2
x − k2

y − k2
z .

We may develop TMmnp in cavity resonator as the linear combination
of +z-direction and −z-direction traveling TM rectangular waveguide
mode, and is given by

ẑE+
z (x, y, z) = ẑ

Amn

2
sin(kxx) sin(kyy) exp(−ikzz) (2a)

x̂E+
x (x, y, z) = −x̂

ikzkx

2k2
c

Amn cos(kxx) sin(kyy) exp(−ikzz) (2b)

ŷE+
y (x, y, z) = −ŷ

ikzky

2k2
c

Amn sin(kxx) cos(kyy) exp(−ikzz) (2c)

x̂ηH+
x (x, y, z) = x̂

ikky

2k2
c

Amn sin(kxx) cos(kyy) exp(−ikzz) (2d)

ŷηH+
y (x, y, z) = −ŷ

ikkx

2k2
c

Amn cos(kxx) sin(kyy) exp(−ikzz) (2e)

and

ẑE−
z (x, y, z) = ẑ

Amn

2
sin(kxx) sin(kyy) exp(ikzz) (3a)

x̂E−
x (x, y, z) = x̂

ikzkx

2k2
c

Amn cos(kxx) sin(kyy) exp(ikzz) (3b)

ŷE−
y (x, y, z) = ŷ

ikzky

2k2
c

Amn sin(kxx) cos(kyy) exp(ikzz) (3c)

x̂ηH−
x (x, y, z) = x̂

ikky

2k2
c

Amn sin(kxx) cos(kyy) exp(ikzz) (3d)

ŷηH−
y (x, y, z) = −ŷ

ikkx

2k2
c

Amn cos(kxx) sin(kyy) exp(ikzz) (3e)

For +z-directed wave, the corresponding fractional field (E+
fd, ηH

+
fd)

are given by [using (11a) and (11b) in 2] are

E+
fd = x̂E+

xfd + ŷE+
yfd + ẑE+

zfd (4a)

ηH+
fd = x̂ηH+

xfd + ŷηH+
yfd + ẑηH+

zfd (4b)
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where

E+
xfd=−i

Amn

2k2
c

{
kzkx cos

(
α

π

2

)
+ kky sin

(
α

π

2

)}

× cos
(

kxx − α
π

2

)
sin

(
kyy − α

π

2

)
exp (−ikzz) (5a)

E+
yfd=−i

Amn

2k2
c

{
kzky cos

(
α

π

2

)
− kkx sin

(
α

π

2

)}

× sin
(

kxx − α
π

2

)
cos

(
kyy − α

π

2

)
exp (−ikzz) (5b)

E+
zfd =

Amn

2
cos

(
α

π

2

)
sin

(
kxx − α

π

2

)
sin

(
kyy − α

π

2

)
exp (−ikzz) (5c)

and

ηH+
xfd = i

Amn

2k2
c

{
kky cos

(
α

π

2

)
− kzkx sin

(
α

π

2

)}

× sin
(

kxx − α
π

2

)
cos

(
kyy − α

π

2

)
exp (−ikzz) (5d)

ηH+
yfd = −i

Amn

2k2
c

{
kkx cos

(
α

π

2

)
+ kzky sin

(
α

π

2

)}

× cos
(

kxx − α
π

2

)
sin

(
kyy − α

π

2

)
exp (−ikzz) (5e)

ηH+
zfd = −Amn

2
sin

(
α

π

2

)
cos

(
kxx−α

π

2

)
cos

(
kyy − α

π

2

)
exp(−ikzz)

(5f)

Similarly, for −z-directed wave, the corresponding fractional field
(E−

fd, ηH
−
fd) becomes

E−
fd = x̂E−

xfd + ŷE−
yfd + ẑE−

zfd (6a)

ηH−
fd = x̂ηH−

xfd + ŷηH−
yfd + ẑηH−

zfd (6b)

where

E−
xfd =−i

Amn

2k2
c

{
−kzkx cos

(
α

π

2

)
+ kky sin

(
α

π

2

)}

× cos
(

kxx − α
π

2

)
sin

(
kyy − α

π

2

)
exp (ikzz) (7a)

E−
yfd =−i

Amn

2k2
c

{
−kzky cos

(
α

π

2

)
− kkx sin

(
α

π

2

)}

× sin
(

kxx − α
π

2

)
cos

(
kyy − α

π

2

)
exp (ikzz) (7b)
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E−
zfd =

Amn

2
cos

(
α

π

2

)
sin

(
kxx − α

π

2

)
sin

(
kyy − α

π

2

)
exp (ikzz)

(7c)
and

ηH−
xfd = i

Amn

2k2
c

{
kky cos

(
α

π

2

)
+ kzkx sin

(
α

π

2

)}

× sin
(

kxx − α
π

2

)
cos

(
kyy − α

π

2

)
exp (ikzz) (7d)

ηH−
yfd = −i

Amn

2k2
c

{
kkx cos

(
α

π

2

)
− kzky sin

(
α

π

2

)}

× cos
(

kxx − α
π

2

)
sin

(
kyy − α

π

2

)
exp (ikzz) (7e)

ηH−
zfd = −Amn

2
sin

(
α

π

2

)
cos

(
kxx − α

π

2

)
cos

(
kyy − α

π

2

)
exp (ikzz)

(7f)

The total fractional dual solution of TMmnp mode in the fractional
rectangular cavity resonator becomes

Efd = x̂Exfd + ŷEyfd + ẑEzfd (8a)
ηHfd = x̂ηHxfd + ŷηHyfd + ẑηHzfd (8b)

where

Exfd = E+
xfd + E−

xfd (9a)

Eyfd = E+
yfd + E−

yfd (9b)

Ezfd = E+
zfd + E−

zfd (9c)

ηHxfd = ηH+
xfd + ηH−

xfd (9d)

ηHyfd = ηH+
yfd + ηH−

yfd (9e)

ηHzfd = ηH+
zfd + ηH−

zfd (9f)

For α = 0,

Ezfd = Amnp sin (kxx) sin (kyy) cos (kzz) = Ez (10a)

Exfd = −kzkx

k2
c

Amnp cos (kxx) sin (kyy) sin (kzz) = Ex (10b)

Eyfd = −kzky

k2
c

Amnp sin (kxx) cos (kyy) sin (kzz) = Ey (10c)
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ηHxfd = i
kky

k2
c

Amnp sin (kxx) cos (kyy) cos (kzz) = ηHx (10d)

ηHyfd = −i
kkx

k2
c

Amnp cos (kxx) sin (kyy) cos (kzz) = ηHy (10e)

ηHzfd = 0 = ηHz (10f)

gives the original field solution of TM mode in rectangular cavity
resonator with PEC walls. For α = 1, the field behavior changes
from TM mode to TE mode in cavity resonator with PMC walls. In
other words we can interpret the solution as the dual of the original
solution that satisfies the Maxwell’s equations and is given below

Ezfd = 0 = ηHz (11a)

Exfd =
ikky

k2
c

Amnp sin (kxx) cos (kyy) cos (kzz) = ηHx (11b)

Eyfd = − ikkx

k2
c

Amnp cos (kxx) sin (kyy) cos (kzz) = ηHy (11c)

ηHxfd =
kzkx

k2
c

Amnp cos (kxx) sin (kyy) sin (kzz) = −Ex (11d)

ηHyfd =
kzky

k2
c

Amnp sin (kxx) cos (kyy) sin (kzz) = −Ey (11e)

ηHzfd = Amnp sin (kxx) sin (kyy) cos (kzz) = −Ez (11f)

For 0 < α < 1, the fields given by (9) describe the fractional dual
solution between two solutions given by (10) and (11). Which ‘in other
sense’ replicates the intermediate fractional behavior between PEC and
PMC cavities.

3. NUMERICAL ANALYSIS OF FRACTIONAL FIELDS

To study the behavior of fractional TMmnpfd fields in dielectric filled
rectangular cavity resonator of relative permittivity εr = 2 and relative
permeability µr = 1, we have carried out the numerical simulation of
(2 × 1 × 3) cm rectangular cavity resonator at a frequency 35 GHz.
We have considered only TM111fd mode because of its dominance in
cavity resonator. In case of cavity, triply infinite number of resonant
frequencies correspond to different field distributions. The resonant
frequencies of different mode in cavity can be measured using the
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following relation

fmnp =
c0

2
√

µrεr

[(
m

a

)2

+
(

n

b

)2

+
(

p

d

)2
] 1

2

Figure 1. 3-D fractional TM111 standing wave field patterns, for
α = 0, 0.5, 0.75, 0.85, 0.9, 1.
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where c0 is the velocity of light. The indices m, n, p in resonance
frequency relation refer to the number of variations in the standing-
wave pattern in the x, y and z axes, respectively. When α = 0,
the simulated result yield the original field pattern of TM mode in
PEC walls cavity as shown in Fig. 1. The plot reports that the field
forming loops in xz-plane is tangential magnetic field (red coloured),
whereas the electric field (blue coloured) lies in xy-plane, is normal
to the adjoining planes. For α = 1, the whole situation changes, in
such a way that the TM mode in PEC walls cavity, transform to TE
mode in PMC walls cavity. Besides this, the field pattern rotates
in counter-clockwise direction by απ/2. So that the normal electric
field (blue coloured) transform to tangential electric field in form of
loops in xz-plane and the tangential magnetic field (red coloured) to
normal magnetic field, which is the property of PMC material. For
0 < α < 1, we get intermediate effects between the above mentioned
results.

Results for 0 < α < 1, are not very much clear. To highlight the
behavior of fractional dual results, we have carried out the numerical
results in 2-D plane as shown in Fig. 2 and intermediate steps can be
visualized very easily.
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Figure 2. Fractional TM111 standing wave field patterns in 2-D at
z = constant plane for various values of fractional order α.
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Figure 3. 3-D fractional surface current density wave patterns for
two different values of α. i.e., α = 0 and α = 1, represent electric and
magnetic surface current densities.

4. FRACTIONAL SURFACE CURRENT DENSITY

Surface current density on walls of the fractional cavity resonator is
obtained using fractional TM111 fields inside the cavity resonator.
Following relation has been used to obtained the fractional surface
current density Jsfd

Jsfd = n̂ × Hfd

where n̂ is the outward normal to the walls of cavity and Hfd is the
fractional magnetic field intensity on the walls. In components form,
we can write

Jsfd(x = 0) = −ŷHzfd + ẑHyfd = −Jsfd(x = a) (12a)
Jsfd(y = 0) = x̂Hzfd − ẑHzfd = −Jsfd(y = b) (12b)
Jsfd(z = 0) = −x̂Hyfd + ŷHxfd = −Jsfd(z = d) (12c)

In the above relations we have assumed cos(kξξ − απ
2 ) ≈ 1 for each

surface. Where ξ is x or y or z. To elaborate a clear picture of fractional
surface current density, the results are represented in 3-dimensional
and 2-dimensional graphs as shown in Figs. 3 to 6. For α = 0 and
α = 1, the results are explicitly given in 3-D. These results report
that electric surface current density transform to magnetic surface
current density when α changes from 0 to 1. Which also reveal the
change of boundary condition, from Jsfd = n̂ × Hfd = n̂ × H = Je

s
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Figure 4. 2-D fractional surface current density wave patterns in
yz-plane for various values of fractional order α.
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Figure 5. 2-D fractional surface current density wave patterns in
xz-plane for various values of fractional order α.

Figure 6. 2-D fractional surface current density in xy-plane for various
values of fractional order α.

to Jsfd = n̂ × Hfd = −n̂ × E = Jm
s . For 0 < α < 1, the plots are

reported in 2-D as shown in Fig. 4, Fig. 5 and Fig. 6, respectively,
which corresponds to intermediate steps between the electric current
density Je

s and magnetic current density Jm
s .
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5. CONCLUSIONS

In this paper we have discussed the field behavior as well as behavior
of surface current density in fractional rectangular cavity resonator.
When α = 0, we get the original TM field and electric surface current
density in PEC walls Cavity resonator. For α = 1 the TM field and
electric surface current density behavior in PEC walls cavity resonator
change to TE field and magnetic surface current density in PMC walls
cavity, respectively. For 0 < α < 1, we get intermediate steps between
the two canonical cases.
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