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Abstract—In this paper, the region of interest consists of a
perfect conductor, coated with the two layer dielectrics under the
air. The completed analytical formulas have been derived for the
electromagnetic field due to a vertical electric dipole in the four-layered
region when both the source point and observation point are located
in the upper dielectric layer. Similar to the three-layered case, the
trapped surface wave, which is contributed by the sums of residues of
the poles, can also be excited efficiently by a vertical electric dipole
in the four-layered region. The lateral wave is determined by the
integrations along the branch cuts.

1. INTRODUCTION

The electromagnetic field of a dipole source in a layered region has
been visited by many investigators in the past decades [1–35]. In
the pioneering works by Wait [1–5], the Sommerfeld integrals for the
electromagnetic field in the layered region were evaluated by using
asymptotic methods, contour integration, and branch cuts. Further
developments were carried out by other pioneers. In particular, the
electromagnetic fields due to horizontal and vertical electric dipoles in
the two- and three-layered media were treated by King et al. [8–13].
Lately, in a series of works by Li et al. [20–22], the dyadic Green’s
function technique is applied to examine the electromagnetic field in a
four-layered forest environment.
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In 1990’s, Wait [14] and Mahmoud [16] wrote comments on
the work by King and Sandler [15] and regarded that the trapped
surface wave, varying as ρ−1/2 in the far-field region, should not be
overlooked at three-layered case. In the 2004 Collin’s paper [27], the
analysis supports the conclusions reached by Wait and Mahmoud.
Lately, several investigators have revisited the old problem and drawn
conclusions that the trapped surface wave, which is determined by
the sums of residues of the poles, can be excited efficiently by a
dipole source in the presence of a three-layered region [31–34]. It is
concluded, naturally, that the trapped surface wave can also be excited
efficiently by a dipole source in the four-layered region. In the available
references [31–34], the term being contributed by the sums of residues
of the poles, is named the surface wave, and the electromagnetic field
of a point source in a multi-layered region is examined in detail.

In the former paper [36], the complete formulas are derived for the
electromagnetic field of a vertical electric dipole in the presence of a
four-layered region. However, when both dipole source and observation
point are located in the second layer, because of multi-refection, the
problem becomes more complex. In what follows, we will attempt to
derive the completed formulas of the electromagnetic field generated
by a vertical electric dipole in the four-layered region. The region
of interest consists of a perfect conductor, coated with the two layer
dielectrics under the air and both the source point and observation
point are located in the upper dielectric layer. In Section 2, the
integrated formulas of the electromagnetic field are derived by using
Fourier transform technique. In Section 3, both the trapped surface
wave and the lateral wave are evaluated. It is noted that the trapped
surface wave and the lateral wave are determined by the residues of
the poles and the integrations of the branch cuts, respectively. In
Section 4, computations and discussions are carried out. It is concluded
that the far field is determined primarily by the trapped surface wave
in the four-layered region when both the the dipole point and the
observation point are on or near the boundary between Regions 1 and
2. In Section 5, some conclusions are drawn.

2. THE INTEGRATED FORMULAS FOR THE
ELECTROMAGNETIC FIELD BY USING FOURIER
TRANSFORM TECHNIQUE

The relevant geometry and Cartesian coordinate system are illustrated
in Fig. 1, where a vertical electric dipole in the ẑ direction is located
at (0, 0, d). The space above the two-layered dielectrics is Region 0
(z ≥ h) occupied by the air. The upper dielectric layer is Region 1
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Figure 1. Geometry of a vertical electric dipole in the four-layered
region.

(0 ≤ z ≤ h) characterized by the permeability µ0 and permittivity ε1.
The lower dielectric layer is Region 2 (−l ≤ z ≤ 0) characterized by the
permeability µ0 and ε2. The rest space is Region 3 (z ≤ −l) occupied
by a perfect conductor or a dielectric characterized by the permeability
µ0 and permittivity ε3. With the time dependence of e−iωt, Maxwell
equations can be written as follows:

�× Ej = iωBj (1)

�× Bj = −i
k2

jEj

ω
+ µ0J (2)

where

kj = ω
√
µ0εj ; j = 0, 1, 2, 3 (3)

J = ẑIdlδ(x)δ(y)δ(z − d) (4)

is the externally maintained current in the active dipole.
The integrated formulas of the field in the four-layered region may

be derived by using Fourier transform technique. Let

E(x, y, z) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
ei(εx+ηy)Ẽ(ξ, η, z)dξdη. (5)

Similar transforms apply to B and J. Then, it follows that(
d

dz2
+ γ2

1

)
B̃1x = −iηµ0δ(z − d) (6)
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d

dz2
+ γ2

j

)
B̃jx = 0 (7)

where γj =
√
k2

j − ε2 − η2, j = 0, 1, 2, 3 and Imγj ≥ 0. The rest five

components can be expressed in terms of B̃jx.

Ẽjx = −i ω
k2

j

∂B̃jy

∂z
= i

ω

k2
j

ξ

η

∂B̃jx

∂z
(8)

Ẽjy = i
ω

k2
j

∂B̃jx

∂z
(9)

Ẽjz =
ω

ηk2
j

(
d

dz2
+ k2

j

)
B̃jx (10)

B̃jy = − ξ

η
B̃jx (11)

B̃jz = 0. (12)

Because the dipole source is in Region 1, the solutions for the four
layers can be written as

B̃0x = C3e
iγ0z (13)

B̃1x = C1e
iγ1z + C2e

−iγ1z − ηµ0

2γ1
eiγ1|z−d| (14)

B̃2x = C4e
iγ2z + C5e

−iγ2z (15)

B̃3x = C6e
−iγ3z. (16)

The boundary conditions for the components B̃jx and Ẽjy lead to the
following equations.

C1e
iγ1h + C2e

−iγ1h − ηµ0

2γ1
eiγ1(h−d) = C3e

iγ0h (17)

γ1

k2
1

[
C1e

iγ1h − C2e
−iγ1h − ηµ0

2γ1
eiγ1(h−d)

]
=

γ0

k2
0

C3e
iγ0h (18)

C1 + C2 −
ηµ0

2γ1
eiγ1d = C4 + C5 (19)

γ1

k2
1

(
C1 − C2 +

ηµ0

2γ1
eiγ1d

)
= (C4 − C5)

γ2

k2
2

(20)

C4e
−iγ2l + C5e

iγ2l = C6e
iγ3l (21)(

C4e
−iγ2l − C5e

iγ2l
) γ2

k2
2

= C6e
iγ3l−γ3

k2
3

. (22)
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With (21) and (22), we have

γ2

k2
2

(
C4e

−iγ2l − C5e
iγ2l

)
=

−γ3

k2
3

(
C4e

−iγ2l + C5e
iγ2l

)
(23)

then,

C4e
−iγ2l =

γ2

k2
2

− γ3

k2
3

γ2

k2
2

+
γ3

k2
3

C5e
iγ2l. (24)

With (17) and (18), we have

γ1

k2
1

[
C1e

iγ1h − C2e
−iγ1h − ηµ0

2γ1
eiγ1(h−d)

]
=

γ0

k2
0

[
C1e

iγ1h + C2e
−iγ1h − ηµ0

2γ1
eiγ1(h−d)

]
(25)

(
γ0

k2
0

+
γ1

k2
1

)
C2e

−iγ1h =
(
γ1

k2
1

− γ0

k2
0

)
C1e

iγ1h−
(
γ1

k2
1

− γ0

k2
0

)
ηµ0

2γ1
eiγ1(h−d). (26)

Multiplying e−iγ2l to both sides of (19) leads to(
C1+C2−

ηµ0

2γ1
eiγ1d

)
e−iγ2l =

(
C4e

−iγ2l + C5e
−iγ2l

)

=


γ2

k2
2

− γ3

k2
3

γ2

k2
2

+
γ3

k2
3

eiγ2l+e−iγ2l

C5. (27)

Similarly, multiplying e−iγ2l to both sides of (20) yields to

γ1

k2
1

(
C1−C2+

ηµ0

2γ1
eiγ1d

)
e−iγ2l =

γ2

k2
2

(
C4e

−iγ2l − C5e
−iγ2l

)

=
γ2

k2
2


γ2

k2
2

− γ3

k2
3

γ2

k2
2

+
γ3

k2
3

eiγ2l−e−iγ2l

C5. (28)

From (27) and (28), it follows that

γ1

k2
1

(
C1−C2+

ηµ0

2γ1
eiγ1d

)[(
γ2

k2
2

− γ3

k2
3

)
eiγ2l +

(
γ2

k2
2

+
γ3

k2
3

)
e−iγ2l

]
=
γ2

k2
2

(
C1+C2−

ηµ0

2γ1
eiγ1d

)
×

[(
γ2

k2
2

− γ3

k2
3

)
eiγ2l−

(
γ2

k2
2

+
γ3

k2
3

)
e−iγ2l

]
. (29)
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Then, we write

C1

(
γ1

k2
1

− i
γ3γ1k

2
2

k2
3k

2
1γ2

tan γ2l +
γ3

k2
3

− i
γ2

k2
2

tan γ2l

)

+
ηµ0

2γ1
eiγ1d

(
γ1

k2
1

− i
γ3γ1k

2
2

k2
3k

2
1γ2

tan γ2l + i
γ2

k2
2

tan γ2l −
γ3

k2
3

)

= C2 ·
(
γ1

k2
1

− i
γ3γ1k

2
2

k2
3k

2
1γ2

tan γ2l + i
γ2

k2
2

tan γ2l −
γ3

k2
3

)
. (30)

In this paper, the case of interest is that Region 3 is a perfect conductor.
We assume

m = lim
k3→∞

(
γ1

k2
1

− i
γ3γ1k

2
2

k2
3k

2
1γ2

tan γ2l

)
=

γ1

k2
1

(31)

n = lim
k3→∞

(
γ3

k2
3

− i
γ2

k2
2

tan γ2l

)
= −iγ2

k2
2

tan γ2l (32)

(30) can be rewritten as

C1(m+ n) +
ηµ0

2γ1
eiγ1d(m− n) = C2(m− n) (33)

(
γ1

k2
1

− γ0

k2
0

)
eiγ1hC1 −

(
γ1

k2
1

− γ0

k2
0

)
ηµ0

2γ1
eiγ1(h−d) =

(
γ1

k2
1

+
γ0

k2
0

)
e−iγ1hC2. (34)

With (33) and (34), it is obtained readily.

C1 = −ηµ0

2γ1
·Q (35)

where

Q =
(m− n)(

m
γ0

k2
0

+ n
γ1

k2
1

)
− i tan γ1h

(
m
γ1

k2
1

+ n
γ0

k2
0

)
·
[
γ1

k2
1

cos γ1d+ i
γ0

k2
0

sin γ1d+
(
γ1

k2
1

sin γ1d− i
γ0

k2
0

cos γ1d

)
tan γ1h

]
.

(36)

Similarly,

C2 = −ηµ0

2γ1
eiγ12hP (37)
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where

P =

(
γ1

k2
1

− γ0

k2
0

) [
(m cos γ1d− in sin γ1d) · (1 − i tan γ1h)

]
[
m

(
γ0

k2
0

− i
γ1

k2
1

tan γ1h

)
+ n

(
γ1

k2
1

− i
γ0

k2
0

tan γ1h

) ] . (38)

Then, we have

B̃1x = −ηµ0

2γ1
Qeiγ1z − ηµ0

2γ1
ei2γ1hPe−iγ1z − ηµ0

2γ1
eiγ1|z−d|

= −ηµ0

2γ1

[
Qeiγ1z + Peiγ1(2h−z) + eiγ1|z−d|

]
. (39)

From the relations in (8)–(12), we have

B̃1y =
εµ0

2γ1

[
Qeiγ1z + Peiγ1(2h−z) + eiγ1|z−d|

]
(40)

B̃1z = 0 (41)

Ẽ1x =
ωεµ0

2k2
1

[
Qeiγ1z − Peiγ1(2h−z) ± eiγ1|z−d|

]
(42)

Ẽ1y =
η

ε
Ẽ1x =

ωηµ0

2k2
1

[
Qeiγ1z − Peiγ1(2h−z) ± eiγ1|z−d|

]
(43)

Ẽ1z =
ω

ηk2
1

(
d

dz2
+ k2

1

)
B̃1x

= − ωµ0

2γ1k2
1

λ2
[
Qeiγ1z + Peiγ1(2h−z) + eiγ1|z−d|

]
. (44)

It is now convenient to express the field components in the cylindrical
coordinates ρ, φ, z with the relations

x = ρ cosφ, y = ρ sinφ (45)
ξ = λ cosφ′, η = λ sinφ′ (46)

and the integrated representations of the Bessel functions, viz.,

Jn(λρ) =
i−n

2π

∫ 2π

0
ei(λρ cos θ+nθ)dθ. (47)

From (39)–(44), using the Fourier integrals like (5) and the following
relations

E1ρ = E1x cosφ+ E1y sinφ (48)
B1φ = −B1x sinφ+B1y cosφ (49)
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the field components in Region 1 may be written as follows:

E1ρ = − iωµ0

4πk2
1

[ ∫ ∞

0
∓eiγ1|z−d|λ2J1(λρ)dλ−

∫ ∞

0
Qeiγ1zλ2J1(λρ)dλ

+
∫ ∞

0
Peiγ1(2h−z)λ2J0(λρ)dλ

]
(50)

E1z = − ωµ0

4πk2
1

[∫ ∞

0
eiγ1|z−d|γ−1

1 J0(λρ)λ3dλ+
∫ ∞

0
Qeiγ1zγ−1

1 J0(λρ)λ3dλ

+
∫ ∞

0
Peiγ1(2h−z)γ−1

1 J0(λρ)λ3dλ

]
(51)

B1φ =
iµ0

4π

[ ∫ ∞

0
eiγ1|z−d|λ2γ−1

1 J1(λρ)dλ+
∫ ∞

0
Qeiγ1zλ2γ−1

1 J1(λρ)dλ

+
∫ ∞

0
Peiγ1(2h−z)λ2γ−1

1 J1(λρ)dλ

]
(52)

where the upper sign in (50) is for the region z ≥ d, and the lower
sign for 0 ≤ z ≤ d. In order to see useful physical insights, and
taking into account the relationship H

(1)
n (−λρ) = H

(2)
n (λρ)(−1)n+1, it

is convenient to rewrite the integrated formulas in the following forms.

E1ρ = E
(1)
1ρ + E

(2)
1ρ + E

(3)
1ρ (53)

E1z = E
(1)
1z + E

(2)
1z + E

(3)
1z (54)

B1φ = B
(1)
1φ +B

(2)
1φ +B

(3)
1φ (55)

where

E
(1)
1ρ = − i

8πωε1

∫ ∞

−∞
∓eiγ1|z−d|H(1)

1 (λρ)λ2dλ (56)

E
(2)
1ρ =

i

8πωε1

∫ ∞

−∞
Qeiγ1zH

(1)
1 (λρ)λ2dλ (57)

E
(3)
1ρ =

i

8πωε1

∫ ∞

−∞
−Peiγ1(2h−z)H

(1)
1 (λρ)λ2dλ (58)

E
(1)
1z = − 1

8πωε1

∫ ∞

−∞
eiγ1|z−d|γ−1

1 H
(1)
0 (λρ)λ3dλ (59)

E
(2)
1z = − 1

8πωε1

∫ ∞

−∞
Qeiγ1zγ−1

1 H
(1)
0 (λρ)λ3dλ (60)

E
(3)
1z = − 1

8πωε1

∫ ∞

−∞
Peiγ1(2h−z)γ−1

1 H
(1)
0 (λρ)λ3dλ (61)
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B
(1)
1φ =

iµ0

8π

∫ ∞

−∞
eiγ1|z−d|γ−1

1 H
(1)
1 (λρ)λ2dλ (62)

B
(2)
1ϕ =

iµ0

8π

∫ ∞

−∞
Qeiγ1zγ−1

1 H
(1)
1 (λρ)λ2dλ (63)

B
(3)
1ϕ =

iµ0

8π

∫ ∞

−∞
Peiγ1(2h−z)γ−1

1 H
(1)
1 (λρ)λ2d.λ (64)

It is seen that (56), (59), and (62) stand for the direct wave, which have
been evaluated in the monograph by King, Owens, and Wu [8]. When
k0 = k1, the above formulas can be reduced to those for three-layered
case addressed in [29]. Obviously, the above integrals including the
Bessel functions Ji(λρ) or H

(1)
i (λρ) (i = 0, 1) with high oscillatory,

these integrals converge very slowly. It is necessary to evaluate the
above integrals including Q and P by using analytical techniques.

3. EVALUATIONS FOR THE INTEGRALS

In order to evaluate the six integrals E(2)
1ρ , E(3)

1ρ , E(2)
1z , E(3)

1z , B(2)
1φ , and

B
(3)
1φ , it is necessary to shift the contour around the branch lines at

λ = k0, λ = k1, and λ = k2. The configuration of the poles and the
branch cuts is shown in Fig. 2. The main tasks in this section are to
determine the poles and to evaluate the integrations along the branch
cuts Γ0, Γ1, and Γ2.

The pole equation reads in the following form.

f(λ) =
γ1

k2
1

γ0

k2
0

− i
γ2

k2
2

tan γ2l ·
γ1

k2
1

−i
(
γ2

1

k4
1

tan γ1h− i
γ0

k2
0

γ2

k2
2

tan γ2l tan γ1h

)
= 0. (65)

Comparing with the corresponding three-layered case as addressed
in [29], the pole equation becomes more complex. It will be analyzed
in the following four cases.

In the first case of positive real λ with λ < k0, then γ0, γ1, and γ2

are positive real numbers. Then, we have

γ1γ0

k2
1k

2
0

− γ0γ2

k2
0k

2
2

tan γ2l tan γ1h− i

(
γ1γ2

k2
1k

2
2

tan γ2l +
γ2

1

k4
1

tan γ1h

)
= 0. (66)

Obviously, no pole exists in the interval λ < k0.
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Γ0 1 2

Figure 2. The configuration of the poles and the branch cuts.

In the second case with k0 < λ < k1, γ0 = i
√
λ2 − k2

0 = iγ′0, γ
′
0,

γ1, and γ2 are positive real numbers. Then, we obtain

γ1γ
′
0

k2
0k

2
1

− γ1γ2 tan γ2l

k2
1k

2
2

− γ′0γ2 tan γ2l tan γ1h

k2
0k

2
2

− γ2
1 tan γ1h

k4
1

= 0. (67)

The poles can be determined by (67).
In the third case with k1 < λ < k2, γi = i

√
λ2 − k2

i = iγ′i
(i = 0, 1). γ′0, γ

′
1, and γ2 are positive real numbers. Then, we get

−γ′1γ
′
0

k2
1k

2
0

+
γ′1γ2 tan γ2l

k2
1k

2
2

+
γ′0γ2

k2
0k

2
2

tan γ2l tanh γ′1h− γ′1
2

k4
1

tanh γ′1h = 0. (68)

The poles can be determined by (68).
In the fourth case with λ > k2, γi = i

√
λ2 − k2

i = iγ′i (i = 0, 1, 2).
γ′0, γ

′
1, and γ′2 are positive real numbers. Then, we write

−γ′1γ
′
0

k2
1k

2
0

− γ′1γ
′
2

k2
1k

2
2

tanh γ′2l −
γ′0γ

′
2

k2
0k

2
2

tanh γ′2l tanh γ′1h− γ2′
1

k4
1

tanh γ′1h = 0.(69)

From (69), it is found that no pole existed in the interval λ > k2.
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From the above analysis, it is concluded that the poles may exist in
the intervals k0 < λ∗j < k2, which can be determined by using Newton

method as addressed in [29]. Then, the integrals E(2)
1z and E

(3)
1z can be

expressed as follows:

E
(2)
1ρ = −ωµ0

4k2
1

∑
j

Q′(λ∗j )e
iγ∗

1jzH
(1)
1 (λ∗jρ)λ

∗2

+
i

8πωε1

∫
Γ0+Γ1+Γ2

Qeiγ1zH
(1)
0 (λρ)λ2dλ (70)

E
(3)
1ρ =

ωµ0

4k2
1

∑
j

P (λ∗j )e
iγ∗

1jzH
(1)
1 (λ∗jρ)λ

∗2

− 1
8πωε1

∫
Γ0+Γ1+Γ2

Peiγ1(2h−z)H
(1)
0 (λρ)λ2dλ. (71)

where

Q(λ∗j ) =
(
γ∗1j

k2
1

− n∗
)
·
(
γ∗1j

k2
1

cos γ∗1jd+
γ∗1j

k2
1

tan γ∗1jh sin γ∗1jd

−i
γ∗0j

k2
0

tan γ∗1jh cos γ∗1jd+ i
γ∗0j

k2
0

sin γ∗1jd

)
/q′(λ∗) (72)

P (λ∗j ) =

(
γ∗1j

k2
1

−
γ∗0j

k2
0

)
·
(
γ∗1j

k2
1

cos γ∗1jd−in∗sin γ∗1jd

)
·
(
1−i tan γ∗1jh

)
q′(λ∗j )

(73)

q(λ) = −iγ1
2

k4
1

tan γ1h− i
γ0

k2
0

n∗ tan γ1h+
γ1n

∗

k2
1

+
γ1γ0

k2
1k

2
0

(74)

q′(λ) = λ

[
i

k4
1

(
2 tan γ1h+ hγ1 sec2 γ1h

)
+

1
k2

0k
2
2

(
γ2

γ0
tan γ2l tan γ1h+

γ0

γ2
tan γ2l tan γ1h

+γ0l sec2 γ2l tan γ1h+
γ0γ2h

γ1
tan γ2l sec2 γ1h

)
+i

1
k2

1k
2
2

(
γ2 tan γ2l

γ1
+
γ1

γ2
tan γ2l + γ1l sec2 γ2l

)
− 1
k2

1k
2
0

(
γ0

γ1
+
γ1

γ0

) ]
(75)

γ∗ij =
√
k2

i − λ∗j
2, i = 0, 1 (76)
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n∗ = −iγ
∗
2

k2
2

tan γ∗2 l. (77)

Because both the integrands P (λ) and Q(λ) are even functions of
γ2, the integrals in (70) and (71) along the branch cut Γ2 are zero.
Next, we will evaluate the integrals in (70) and (71) along the branch
cuts Γ1 and Γ0.

Taking into account the conditions of k1ρ 
 1 and (z+d) � ρ, the
dominant contribution of the integral along the branch line Γ1 comes
from the vicinity of k1. Let λ = k1(1 + iτ2), γ0, γ1, and γ2 at the
vicinity of k0 can be approximated as follows:

γ01 =
√
k2

0 − λ2 ≈ i
√
k2

1 − k2
0 (78)

γ11 =
√
k2

1 − λ2 ≈
√

2k1e
i 3π

4 τ (79)

γ21 =
√
k2

2 − λ2 ≈
√
k2

2 − k2
0. (80)

Considering the case of interest that both h and d are not very large,
we arrive at the following expressions.

cos γ11d ≈ 1; tan γ11h ≈ γ11h; sin γ11d ≈ γ11d. (81)

Substituting (81) into (36), and neglecting the high-order terms of γ11,
we have

Q =

τ+
ik1

√
k2

2 − k2
1 tan

√
k2

2 − k2
1l√

2k2
2e

i 3π
4


(

1
k2

1

+
iγ01

k2
0

d− i
γ01

k2
0

h

)√
2ei 3π

4

k1

(
−iγ01

k2
0

n1h+
n1

k2
1

+
γ01

k2
1k

2
0

)
(82)

where

n1 = −i

√
k2

2 − k2
1

k2
2

tan
√
k2

2 − k2
1l. (83)

Let

Aρpk1 =
ik1

√
k2

2 − k2
1 tan

√
k2

2 − k2
1l√

2k2
2e

i 3π
4

(84)

Bρpk1 =

(
1
k2

1

+
iγ01

k2
0

d− i
γ01

k2
0

h

)√
2ei 3π

4

k1

(
−iγ01

k2
0

n1h+
n1

k2
1

+
γ01

k2
0k

2
1

) (85)
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then, we write

i

8πωε1

∫
Γ1

Qeiγ1zH
(1)
1 (λρ)λ2dλ

=
iωµ0

8πk2
1

∫ ∞

−∞
Qei

√
2k1ei 3π

4 τz

√
2

πk1ρ
ei(k1ρ− 3π

4 )e−k1ρτ2 · k2
1 · i2k1τdτ

=
−ωµ0k1

4π

√
2

πk1ρ
e
i

(
k1ρ− 3π

4
+

k1z2

2ρ

) ∫ ∞

−∞
τ(τ +Aρpk1)

×Bρpk1e
−k1ρ

(
τ− i√

2ρ
ei 3π

4 z

)2

dτ. (86)

Considering the condition ρ 
 z, we find

e
ik1ρ+i

k1z2

2ρ ≈ eik1

√
ρ2+z2

. (87)

With the changes of the variable τ = t+ i z√
2ρ
ei 3π

4 , we have

i

8πωε1

∫
Γ1

Qeiγ1zH
(1)
1 (λρ)λ2dλ

=
ωµ0k1

4π

√
2

πk1ρ
e
i

(
k1

√
ρ2+z2+π

4

)
Bρpk1

∫ ∞

−∞

(
t+ i

z√
2ρ
ei 3π

4

)

·
(
t+ i

z√
2ρ
ei 3π

4 +Aρpk1

)
e−k1ρt2dt

=
ωµ0

2
√

2πρ
e
i

(
k1

√
ρ2+z2+π

4

)
·Bρpk1

[
1
k1ρ

+ i

(
z2

2ρ2
+Aρpk1

z√
2ρ
ei 3π

4

)]
.

(88)

Similarly, we have

P =

(
γ11

k2
1

− γ01

k2
0

)
·
(
γ11

k2
1

− in1γ11d

)
−iγ01

k2
0

n1γ11h+
γ11n1

k2
1

+
γ11γ01

k2
1k

2
0

=

(
γ11

k2
1

− γ01

k2
0

)
·
(

1
k2

1

− in1d

)
−iγ01

k2
0

n1h+
n1

k2
1

+
γ01

k2
1k

2
0

=

(
τ − γ01k1e

−i 3π
4

√
2

)
·

√
2ei 3π

4

(
1
k2

1

− in1d

)
k1

(
−iγ01

k2
0

n1h+
n1

k2
1

+
γ01

k2
0k

2
1

) . (89)
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Let

Aρqk1 = −γ01k1e
−i 3π

4√
2k2

0

(90)

Bρqk1 =

√
2ei 3π

4

(
1
k2

1

− in1d

)
k1

(
−iγ01

k2
0

n1h+
n1

k2
1

+
γ01

k2
0k

2
1

) . (91)

With the similar procedures, it is obtained readily.

−i
8πωε1

∫
Γ1

Peiγ1(2h−z)H
(1)
1 (λρ)λ2dλ

= − ωµ0

2
√

2πρ
ei

(
k1

√
ρ2+(2h−z)2+π

4

)
·Bρqk1

×
[

1
k1ρ

+ i

(
z2

2ρ2
+Aρqk1

z√
2ρ
ei 3π

4

)]
. (92)

In the next step, we consider the branch cut Γ0. Let

Apk0 =

∣∣∣∣∣∣∣∣∣∣
k0

(
γ10γ20

k2
1k

2
2

tan γ20l +
γ2

10

k4
1

tan γ10h

)
√

2
(
γ10

k2
1

− γ20 tan γ10h tan γ20l

k2
2

)
∣∣∣∣∣∣∣∣∣∣

(93)

Bpk0 =
k0e

−i 3π
4

(
γ10

k2
1

− n0

)
√

2
(
γ10

k2
1

− in0 tan γ10h

)2

[ (
γ10

k2
1

cos γ10d+
γ10

k2
1

tan γ10h sin γ10d

)
(
γ10

k2
1

− in0 tan γ10h

)
− i(sin γ10d− tan γ10h cos γ10d)

·
(
γ10

k2
1

n0 − i
γ2

10

k4
1

tan γ10h

) ]
(94)

γ10 =
√
k2

1 − k2
0; (95)

γ20 =
√
k2

2 − k2
0; (96)



Progress In Electromagnetics Research B, Vol. 8, 2008 227

n0 = −iγ20

k2
2

tan γ20l. (97)

Then, we write

Q=
i(sin γ10d−tan γ10h cos γ10d)·

(
γ10

k2
1

−n0

)
γ10

k2
1

−in0 tan γ10h
+

Bpk0

τ±Apk0

(98)

i

8πωε1

∫
Γ0

Qeiγ1zH
(1)
1 (λρ)λ2dλ

=
iωµ0

8πk2
1

eiγ10zei(k0ρ− 3π
4 )

√
2

πk0ρ

∫ ∞

−∞
2ik3

0τe
−k0ρτ2 Bpk0

τ ±Apk0e
i 3π

4

dτ

= −ωµ0k
3
0

4πk2
1

ei(γ10z+k0ρ− 3π
4 )

√
2

πk0ρ
Bpk0

×
[√

π

k0ρ
+

∫ ∞

−∞

(
Apk0e

i 3π
4

)2

τ2 −
(
Apk0e

i 3π
4

)2 e
−k0ρτ2

dτ

]
. (99)

In terms of the variable t =
√
k0ρτ , and use is made of the formula

(pp.609) in [37], the result becomes

i

8πωε1

∫
Γ0

Qeiγ1zH
(1)
1 (λρ)λ2dλ

= −ωµ0k
3
0

4πk2
1

ei(γ10z+k0ρ− 3π
4 )

√
2

πk0ρ
Bpk0

·
[√

π

k0ρ
+

∫ ∞

−∞

Apk0e
i 3π

4

(√
k0ρApk0e

i 3π
4

)
t2 −

(√
k0ρApk0e

i 3π
4

)2 dt

]

= −ωµ0k
3
0

4πk2
1

ei(γ10z+k0ρ− 3π
4 )

√
2

πk0ρ
Bpk0

·
[√

π

k0ρ
+ πApk0erfc

(
ei π

4

√
k0ρApk0

)
e
i

(
5π
4

+k0ρA2
pk0

)]
. (100)

Similarly, it is also obtained readily.

−i
8πωε1

∫
Γ0

Peiγ1(2h−z)H
(1)
1 (λρ)λ2dλ=

ωµ0k
3
0

4πk2
1

ei[γ10(2h−z)+k0ρ− 3π
4 ]
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×Bqk0

√
2

πk0ρ

[√
π

k0ρ
+πAqk0erfc

(
ei π

4

√
k0ρAqk0

)
e
i

(
5π
4

+k0ρA2
qk0

)]
(101)

where

Aqk0 =

∣∣∣∣∣∣∣∣∣∣
k0

(
γ10γ20 tan γ20l

k2
2k

2
1

+
γ2

10

k4
1

tan γ10h

)
√

2
(
γ10

k2
1

− γ20

k2
2

tan γ10h tan γ20l

)
∣∣∣∣∣∣∣∣∣∣

(102)

Bqk0 = k0e
−i 3π

4

(
γ10

k2
1

cos γ10d− in0 sin γ10d

)
· (1 − i tan γ10h)

·

γ2
10

k4
1

− i
γ10

k2
1

n0 tan γ10h+
γ10

k2
1

n0 − i
γ2

10

k4
1

tan γ10h

√
2

(
γ10

k2
1

− in0 tan γ10h

)2 . (103)

Substituting (88) and (100) into (70), we write

E
(2)
1ρ = −ωµ0

4k2
1

∑
j

Q(λ∗j )e
iγ∗

1jzH
(1)
0 (λ∗jρ)λ

∗
j
2 +

ωµ0e
i

(
k1

√
ρ2+z2+π

4

)
2
√

2πρ

·Bρpk1

[
1
k1ρ

+ i

(
z2

2ρ2
+Aρpk1

z√
2ρ
ei 3π

4

) ]

−ωµ0k
3
0

4πk2
1

ei(γ10z+k0ρ− 3π
4 )

√
2

πk0ρ
Bpk0

[√
π

k0ρ

+iπApk0e
i 3π

4 e
ik0ρA2

pk0 erfc
(
ei π

4

√
k0ρApk0

) ]
. (104)

Similarly, Substituting (92) and (101) into (71), we write

E
(3)
1ρ =

ωµ0

4k2
1

∑
j

P (λ∗j )e
iγ∗

1jzH
(1)
0 (λ∗jρ)λ

∗
j
2 − ωµ0e

i
(
k1

√
ρ2+(2h−z)2+π

4

)
2
√

2πρ

·Bρqk1

[
1
k1ρ

+ i

(
z2

2ρ2
+Aρqk1

z√
2ρ
ei 3π

4

) ]

+
ωµ0k

3
0

4πk2
1

ei[γ10(2h−z)+k0ρ− 3π
4

] ·
√

2
πk0ρ

Bqk0
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×
[√

π

k0ρ
+ πAqk0erfc

(
ei π

4

√
k0ρAqk0

)
e
i

(
5π
4

+k0ρA2
qk0

)]
. (105)

Considering the contributions of the residues of the poles and those
of the integrations of the branch cuts, the integrals E(2)

1z , E(3)
1z , B(2)

1φ ,

and B
(3)
1φ can be expressed as follows:

E
(2)
1z = −iωµ0

4k2
1

∑
j

Q(λ∗j )e
iγ∗

1jzH
(1)
0 (λ∗jρ)λ

∗
j
3γ∗1j

−1

− 1
8πωε1

∫
Γ0+Γ1+Γ2

Qeiγ1zγ−1
1 H

(1)
0 (λρ)λ3dλ (106)

E
(3)
1z = −iωµ0

4k2
1

∑
j

P (λ∗j )e
iγ∗

1jzH
(1)
0 (λ∗jρ)λ

∗
j
3γ∗1j

−1

− 1
8πωε1

∫
Γ0+Γ1+Γ2

Peiγ1(2h−z)γ−1
1 H

(1)
0 (λρ)λ3dλ (107)

B
(2)
1φ = −µ0

4

∑
j

Q(λ∗j )e
iγ∗

1jzH
(1)
1 (λ∗jρ)λ

∗
j
2γ∗1j

−1

+
iµ0

8π

∫
Γ0+Γ1+Γ2

Qeiγ1zγ−1
1 H

(1)
1 (λρ)λ2dλ (108)

B
(3)
1φ = −µ0

4

∑
j

P (λ∗j )e
iγ∗

1j(2h−z)H
(1)
1 (λ∗jρ)λ

∗
j
2γ∗1j

−1

+
iµ0

8π

∫
Γ0+Γ1+Γ2

Peiγ1(2h−z)γ−1
1 H

(1)
1 (λρ)λ2dλ. (109)

Because the evaluations of the integrals in (106)–(109) along the branch
cut Γ2 are zero, it is necessary to evaluate the integrations along the
branch cuts Γ1 and Γ0.

Following the similar procedures, we arrive at the following
expression.

iµ0

8π

∫
Γ1

Qeiγ1zH
(1)(λρ)
1 λ2γ−1

1 dλ =
iµ0k

2
1

8π

×
∫ ∞

−∞
Qeik1

√
2ei 3π

4 τz

√
2

πk1ρ
ei(k1ρ− 3π

4 )e−k1ρτ2 2ik1τ√
2k1e

i 3π
4 τ

dτ

=
iµ0k

2
1

4π

√
1

πk1ρ
eik1

√
ρ2+z2

∫ ∞

−∞
Qe

−k1ρ(τ− iz√
2
ei 3π

4 )2
dτ. (110)
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where

Apk1 =
n1k1e

−i 3π
4√

2
(111)

Bpk1 =

√
2ei 3π

4

(
1
k2

1

+ i
γ01

k2
0

d− i
γ01

k2
0

h

)
k1

(
n1

k2
1

+
γ01

k2
1k

2
0

− i
γ01

k2
0

n1h

) (112)

With the change of the variable t = τ − z√
2ρ
ei 5π

4 , it becomes

iµ0

8π

∫
Γ1

Qeiγ1zH
(1)(λρ)
1 λ2γ−1

1 dλ =
iµ0k

2
1

4π

√
1

πk1ρ
eik1

√
ρ2+z2

×
∫ ∞

−∞

(
t+

z√
2ρ
ei 5π

4 −Apk1

)
Bpk1e

−k1ρt2dt

=
iµ0k1

4πρ
Bpk1

(
z√
2ρ
ei 5π

4 −Apk1

)
eik1

√
ρ2+z2

. (113)

Obviously, we can also get

− 1
8πωε1

∫
Γ1

dλQeiγ1zH
(1)
0 (λρ)λ3γ−1

01

= − iωµ0

4πρ
Bpk1

(
z√
2ρ
ei 5π

4 −Apk1

)
eik1

√
ρ2+z2

. (114)

The integrals including the factor P in (107) and (109) along the
branch cut Γ1 can be evaluated readily. They are

iµ0

8π

∫
Γ1

Peiγ1(2h−z)H
(1)
1 (λρ)λ2γ−1

1 dλ

=
iµ0k1

4πρ
Bqk1

(
z√
2ρ
ei 5π

4 −Aqk1

)
eik1

√
ρ2+(2h−z)2 (115)

− 1
8πωε1

∫
Γ1

dλPeiγ1(2h−z)H
(1)
0 (λρ)λ3γ−1

1

=
−iωµ0

4πρ
Bqk1

(
z√
2ρ
ei 5π

4 −Aqk1

)
eik1

√
ρ2+(2h−z)2 (116)

where

Aqk1 =
γ01k1e

−i 3π
4

k2
0

√
2

(117)
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Bqk1 =

√
2ei 3π

4

(
1
k2

1

− in1d

)
k1

(
−iγ01

k2
0

n1h+
n1

k2
1

+
γ01

k2
1k

2
0

) . (118)

With a similar manner in the evaluations of the integrals (70) and
(71) along the branch cut Γ0, we can obtain

iµ0

8π

∫
Γ0

Qeiγ1zH
(1)
1 (λρ)λ2γ−1

1 dλ

= −µ0k
3
0

4π
ei(γ10z+k0ρ− 3π

4 )γ−1
10 ·

√
2

πk0ρ
Bpk0

×
[√

π

k0ρ
+ πApk0erfc

(
ei π

4

√
k0ρApk0

)
e
i

(
5π
4

+k0ρA2
pk0

)]
(119)

iµ0

8π

∫
Γ0

Peiγ1(2h−z)H
(1)
1 (λρ)λ2γ−1

1 dλ

= −µ0k
3
0

4π
γ−1

10 e
i[γ10(2h−z)+k0ρ− 3π

4
] ·

√
2

πk0ρ
Bqk0

×
[√

π

k0ρ
+ πAqk0erfc

(
ei π

4

√
k0ρAqk0

)
e
i

(
5π
4

+k0ρA2
qk0

)]
(120)

− 1
8πωε1

∫
Γ0

Qeiγ1zH
(1)
0 (λρ)λ3γ−1

1 dλ

=
ωµ0k

4
0γ

−1
10

4πk2
1

ei(γ10z+k0ρ− 3π
4 ) ·

√
2

πk0ρ
Bpk0

×
[√

π

k0ρ
+ πApk0erfc

(
ei π

4

√
k0ρApk0

)
e
i

(
5π
4

+k0ρA2
pk0

)]
(121)

− 1
8πωε1

∫
Γ0

Peiγ1(2h−z)H
(1)
0 (λρ)λ3γ−1

1 dλ

=
ωµ0k

4
0

4πk2
1

γ−1
10 e

i[γ10(2h−z)+k0ρ− 3π
4

] ·
√

2
πk0ρ

Bqk0

×
[√

π

k0ρ
+ πAqk0erfc

(
ei π

4

√
k0ρAqk0

)
e
i

(
5π
4

+k0ρA2
qk0

)]
. (122)

Here, Apk0 , Aqk0 , Bpk0 , and Bqk0 are defined by (93), (102), (94),
and (103), respectively. Substituting (113)–(116) and (119)–(122) into
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(106)–(109), we have

E
(2)
1z = −iωµ0

4k2
1

∑
j

Q(λ∗j )e
iγ∗

1jzH
(1)
0 (λ∗jρ)λ

∗
j
3γ∗1j

−1

− iωµ0

4πρ
Bpk1 ·

(
z√
2ρ
ei 5π

4 −Apk1

)
eik1

√
ρ2+z2

−ωµ0k
4
0γ

−1
10

4πk2
1

ei(γ10z+k0ρ− 3π
4 )

√
2

πk0ρ
·Bpk0

×
[√

π

k0ρ
+ πApk0erfc

(
ei π

4

√
k0ρApk0

)
e
i

(
5π
4

+k0ρA2
pk0

)]
(123)

E
(3)
1z = −iωµ0

4k2
1

∑
j

P (λ∗j )e
iγ∗

1jzH
(1)
0 (λ∗jρ)λ

∗
j
3γ∗1j

−1

− iωµ0

4πρ
Bqk1 ·

(
z√
2ρ
ei 5π

4 −Aqk1

)
eik1

√
ρ2+(2h−z)2

+
ωµ0k

4
0

4πk2
1

γ−1
10 e

i[γ10(2h−z)+k0ρ− 3π
4

] ·
√

2
πk0ρ

Bqk0

×
[√

π

k0ρ
+ πAqk0erfc

(
ei π

4

√
k0ρAqk0

)
e
i

(
5π
4

+k0ρA2
qk0

)]
(124)

B
(2)
1φ = −µ0

4

∑
j

Q(λ∗j )e
iγ∗

1j(2h−z)H
(1)
1 (λ∗jρ)λ

∗
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(125)

B
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1φ = −µ0
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∑
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×
[√

π

k0ρ
+πAqk0erfc

(
ei π

4

√
k0ρAqk0

)
e
i

(
5π
4

+k0ρA2
qk0

)]
. (126)

Using the above derivations and the results for the direct field
addressed in [8], the final completed formulas for the three components
are obtained readily. They are

E1ρ(ρ, φ, z) = − ωµ0

4πk1
eik1γ0

(
ρ

r1

) (
z − d

r1

) (
ik1

r1
− 3
r3
1

− 3i
k1r3

1

)
+E(2)

1ρ + E
(3)
1ρ (127)

E1z(ρ, φ, z) =
ωµ0

4πk1
eik1r1

[
ik1

r1
− 1
r2
1

− i

k1r3
1

−
(
z − d

r1

)2

·
(
ik1

r1
− 3
r2
1

− 3i
k1r3

1

) ]
+ E

(2)
1z + E

(3)
1z (128)

B1φ(ρ, φ, z) = −µ0

4π
eik1r1

(
ρ

r1

) (
ik1

r1
− 1
r2
1

)
+B

(2)
1φ +B

(3)
1φ . (129)

4. COMPUTATIONS AND DISCUSSIONS

From the expressions of the six integrals E(2)
1ρ in (104), E(3)

1ρ in (105),

E
(2)
1z in (123), E(3)

1z in (124), B(2)
1φ in (125), and B

(3)
1φ in (126), it is

seen that the first terms of them are the sums of residues of the poles
λ∗j . The terms, which are contributed by the sums of residues of the
poles, are named the trapped surface wave. When k1 ≤ λ∗j ≤ k2,

γ∗1j = i
√
λ∗j

2 − k2
1 is a positive imaginary number, that is to say,

the terms of the trapped surface wave including the factor eiγ∗
1jz will

attenuates exponentially as e−
√

λ∗
j
2−k2

1z in the ẑ direction when the
wave numbers λ∗j are between k1 and k2. Evidently, it is also seen that
the terms of the trapped surface wave have not an attenuated factor
in the ẑ direction when the wave numbers λ∗j are between k0 and k1.

The wave numbers of the trapped surface wave are the poles λ∗j ,
which are determined by the operating frequency f , the thicknesses h
and l of the two dielectric layers, the relative permittivity ε1r of the
upper dielectric layer, and the relative permittivity ε2r of the lower
dielectric layer. The number of the poles λ∗j can not be seen directly
from the pole equation. In this paper the poles λ∗j , which are between
k0 and k2, can be determined by using Newton method.

If assuming that both Regions 0 and 1 are occupied the air, it
is found that the factor P , which is expressed in (36), reduces to
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Figure 3. Electric field Ez in V/m with f = 1 GHz, ε1r = 2.65,
ε2r = 4, k1h = 5, k2l = 2, and z = d = 0.

zero and the problem will reduces to that of the three-layered case.
For conveniences in evaluating the integrals including the reflection
coefficients Q and P , in this paper the terms of the ideal reflected
wave are not separated with those of the lateral wave. Obviously, the
integrations along the branch cuts Γ1 and Γ0 includes the terms of
the ideal reflected wave and the lateral wave. When the conditions
k1ρ 
 1 and z + d � ρ are satisfied, the lateral waves with the wave
numbers being k0 and k1 can be excited efficiently. Evidently, it is seen
that the lateral waves propagate in Region 0 along the boundary z = 0
and propagate in Region 1 along the boundary z = h.

In Figs. 3–5, for the components E1z, the total field, the trapped
surface wave, and the DRL waves, which include the direct wave,
the reflected wave, and the lateral wave, are computed and shown
in three cases of z = d = 0, k1z = k1d = 0.5, and k1z = k1d = 0.75,
respectively. In Figs. 7–9, the similar results for the components E1ρ

are computed and shown, respectively. In Fig. 6, the total field for the
component E1z is computed and shown in three cases of z = d = 0,
k1z = k1d = 0.5, and k1z = k1d = 0.75, respectively. Similar graphs
for the components E1ρ are shown in Fig. 10. Computations show that
there is a significant contribution from the trapped surface wave for the
total field in the four-layered region when both the dipole point and
the observation point are located in the upper dielectric layer under
the air.
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Figure 4. Electric field Ez in V/m with f = 1 GHz, ε1r = 2.65,
ε2r = 4, k1h = 5, k2l = 2, and k1z = k1d = 0.5.
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Figure 5. Electric field Ez in V/m with f = 1 GHz, ε1r = 2.65,
ε2r = 4, k1h = 5, k2l = 2, and k1z = k1d = 0.75.
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Figure 6. The total fields Ez in V/m with f = 1 GHz, ε1r = 2.65,
ε2r = 4, k1h = 5, k2l = 2 at three cases of z = d = 0, k1z = k1d = 0.5,
and k1z = k1d = 0.75.
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Figure 7. Electric field Eρ in V/m with f = 1 GHz, ε1r = 2.65,
ε2r = 4, k1h = 5, k2l = 2, and z = d = 0.
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Figure 8. Electric field Eρ in V/m with f = 1 GHz, ε1r = 2.65,
ε2r = 4, k1h = 5, k2l = 2, and k1z = k1d = 0.5.
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Figure 9. Electric field Eρ in V/m with f = 1 GHz, ε1r = 2.65,
ε2r = 4, k1h = 5, k2l = 2, and k1z = k1d = 0.75.
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Figure 10. The total fields Eρ in V/m with f = 1 GHz, ε1r = 2.65,
ε2r = 4, k1h = 5, k2l = 2 at three cases of z = d = 0, k1z = k1d = 0.5,
and k1z = k1d = 0.75.

5. CONCLUSIONS

In the above derivations and analysis, the completed formulas have
been derived for the electromagnetic field generated by a vertical
electric dipole in the four-layered region when both the dipole point
and observation point are located in the upper dielectric layer under the
air. It is noted that the wave numbers of the trapped surface wave are
between k0 and k2 and those of the lateral wave are k0 and k1. The
computations and discussions show that the field components in far
regions are determined primarily by the terms of the trapped surface
waves in the four-layered region. Evidently, the results obtained can
be reduced to those for three-layered case as addressed in [29] if we
assume k0 = k1.
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