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Abstract—This paper proposes the application of the Wiener filter in
an adaptive manner in speech enhancement. The proposed adaptive
Wiener filter depends on the adaptation of the filter transfer function
from sample to sample based on the speech signal statistics (mean and
variance). The adaptive Wiener filter is implemented in time domain
rather than in frequency domain to accommodate for the varying
nature of the speech signal. The proposed method is compared to
the traditional Wiener filter and the spectral subtraction methods and
the results reveal its superiority.

1. INTRODUCTION

Speech enhancement is one of the most important topics in speech
signal processing. Several techniques have been proposed for this
purpose like the spectral subtraction approach, the signal subspace
approach, adaptive noise canceling and the iterative Wiener filter [1–
5]. The performances of these techniques depend on the quality and
intelligibility of the processed speech signal. The improvement in the
speech signal-to-noise ratio (SNR) is the target of most techniques.

Spectral subtraction is the earliest method for enhancing speech
degraded by additive noise [1]. This technique estimates the spectrum
of the clean (noise-free) signal by the subtraction of the estimated noise
magnitude spectrum from the noisy signal magnitude spectrum while
keeping the phase spectrum of the noisy signal. The drawback of this
technique is the residual noise.

Another technique is the signal subspace approach [3]. It is used
for enhancing speech signals degraded by uncorrelated additive noise or
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colored noise [6, 7]. The idea of this algorithm is based on the fact that
the vector space of the noisy signal can be decomposed into a signal
plus noise subspace and an orthogonal noise subspace. Processing
is performed on the vectors in the signal plus noise subspace only,
while the noise subspace is removed first. Decomposition of the vector
space of the noisy signal is performed by applying the singular value
decomposition or the Karhunen-Loeve transform (KLT) on the speech
signal[8]. Mi et al. have proposed the signal/noise KLT based approach
for the removal of colored noise [9]. The idea of this approach is that
noisy speech frames are classified into speech-dominated frames and
noise-dominated frames. In the speech-dominated frames, the signal
KLT matrix is used and in the noise-dominated frames, the noise KLT
matrix is used.

In this paper, we present a new technique to improve the SNR in
the enhanced speech signal by using an adaptive implementation of the
Wiener filter. This implementation is performed in the time domain
to accommodate for the varying nature of the signal.

The paper is organized as follows. In Section 2, a review of
the spectral subtraction technique is presented. In Section 3, the
traditional Wiener filter in frequency domain is revisited. Section 4
proposes the adaptive Wiener filter approach for speech enhancement.
In Section 5, a comparative study between the proposed adaptive
Wiener filter, the Wiener filter in frequency domain and the spectral
subtraction approach is presented.

2. SPECTRAL SUBTRACTION

The spectral subtraction approach can be categorized as a non-
parametric approach, which simply needs an estimate of the noise
spectrum. It is assumed that there is an estimate of the noise spectrum
which is obtained during periods of speaker silence. Let x(n) be a noisy
speech signal:

x(n) = s(n) + v(n) (1)

where s(n) is the clean signal, and v(n) is the white gaussian noise. In
this case, the noise and the clean signal can be assumed uncorrelated.
So, the spectral subtraction approach can be used to estimate the
short term magnitude spectrum of the clean signal |S(ω)| by the
subtraction of the estimated noise magnitude spectrum

∣∣∣V̂ (ω)
∣∣∣ from

the noisy signal magnitude spectrum |X(ω)|. It is sufficient to use the
noisy signal phase spectrum as an estimate of the clean speech phase
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spectrum as follows [10]:

Ŝ(ω) = (|X(ω)| −
∣∣∣N̂(ω)

∣∣∣) exp(j∠X(ω)) (2)

The estimated time-domain speech signal is obtained as the inverse
Fourier transform of Ŝ(ω).

Another way to recover the clean signal s(n) from the noisy signal
x(n) using the spectral subtraction approach is performed by assuming
that there is an estimate of the power spectrum of the noise Pv(ω),
which is obtained by averaging over multiple frames of a known noise
segment. An estimate of the short-time squared magnitude spectrum
of the clean signal using this method can be obtained as follows [8]:

∣∣∣Ŝ(ω)
∣∣∣2 =




|X(ω)|2 − P̂v(ω), if |X(ω)|2 − P̂v(ω) ≥ 0

0, otherwise
(3)

It is possible to combine this magnitude spectrum estimate with
the phase of the noisy signal and then get the Short Time Fourier
Transform (STFT) estimate of the clean signal as follows::

Ŝ(ω) =
∣∣∣Ŝ(ω)

∣∣∣ ej∠X(ω) (4)

A noise-free signal estimate can then be obtained with the inverse
Fourier transform. This noise reduction method is a specific case of
the general technique given by Weiss et al. and extended by Berouti et
al. [2, 12].

The spectral subtraction approach can be viewed as a filtering
operation where high SNR regions of the measured spectrum are
attenuated less than low SNR regions. This formulation can be given
in terms of the SNR defined as:

SNR =
|X(ω)|2

P̂v(ω)
(5)

Thus, Eq. (3) can be rewritten as:
∣∣∣Ŝ(ω)

∣∣∣2 = |X(ω)|2 − P̂v(ω) ≈ |X(ω)|2
[
1 +

1
SNR

]−1

(6)

An important property of noise suppression using the spectral
subtraction approach is that the attenuation characteristics change
with the length of the analysis window. A common problem of using
the spectral subtraction approach is the musicality that results from
the rapid coming and going of waves over successive frames [13].



170 Abd El-Fattah et al.

3. WIENER FILTER IN FREQUENCY DOMAIN

The Wiener filter is a popular technique that has been used in many
signal enhancement methods. The basic principle of the Wiener filter
is to obtain an estimate of the clean signal from that corrupted by
additive noise. This estimate is obtained by minimizing the Mean
Square Error (MSE) between the desired signal s(n) and the estimated
signal ŝ(n). The frequency domain solution to this optimization
problem gives the following filter transfer function [13]:

H(ω) =
Ps(ω)

Ps(ω) + Pv(ω)
(7)

where Ps(ω) and Pv(ω) are the power spectral densities of the clean and
the noise signals, respectively. This formula can be derived considering
the signal s and the noise v as uncorrelated and stationary signals. The
SNR is defined by [13]:

SNR =
Ps(ω)
P̂v(ω)

(8)

This definition can be incorporated to the Wiener filter equation as
follows:

H(ω) =
[
1 +

1
SNR

]−1

(9)

The drawback of the Wiener filter is the fixed frequency response
at all frequencies and the requirement to estimate the power spectral
density of the clean signal and noise prior to filtering.

Space-
variant

h(n)

Measurement
of speech

local statistics

Degraded speech
signal x(n)

Enhanced speech
signal )(ns

Figure 1. Adaptive Wiener filtering approach for speech
enhancement.

4. THE PROPOSED ADAPTIVE WIENER FILTER

This section presents an adaptive implementation of the Wiener filter
which benefits from the varying local statistics of the speech signal. A
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block diagram of the proposed approach is illustrated in Fig. 1. In this
approach, the estimated speech signal mean mx and variance σ2

x are
exploited.

It is assumed that the additive noise v(n) is of zero mean and has
a white nature with variance of σ2

v . Thus, the power spectrum Pv(ω)
can be approximated by:

Pv(ω) = σ2
v (10)

Consider a small segment of the speech signal, in which the signal
x(n) is assumed to be stationary, The signal x(n) can be modeled by:

x(n) = mx + σxw(n) (11)

where mx and σx are the local mean and standard deviation of x(n).
w(n) is a unit variance noise.

Within this small segment of speech, the Wiener filter transfer
function can be approximated by:

H(ω) =
Ps(ω)

Ps(ω) + Pv(ω)
=

σ2
s

σ2
s + σ2

v

(12)

From Eq. (12), because H(ω) is constant over this small segment of
speech, the impulse response of the Wiener filter can be obtained by:

h(n) =
σ2

s

σ2
s + σ2

v

δ(n) (13)

From Eq. (13), the enhanced speech signal ŝ(n) in this local segment
can be expressed as:

ŝ(n) = mx + (x(n) − mx) ∗ σ2
s

σ2
s + σ2

v

δ(n) = mx +
σ2

s

σ2
s + σ2

v

(x(n) − mx)

(14)

If mx and σs are updated at each sample, we can say:

ŝ(n) = mx(n) +
σ2

s(n)
σ2

s(n) + σ2
v

(x(n) − mx(n)) (15)

In Eq. (15), the local mean mx(n) and (x(n) − mx(n)) are modified
separately from segment to segment and then the results are combined.
If σ2

s is much larger than σ2
v the output signal ŝ(n) will be primarily

due to x(n) and the input signal x(n) is not attenuated. If σ2
s is smaller

than σ2
v , the filtering effect is performed.
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Notice that mx is identical to ms when mv is zero. So, we can
estimate mx(n) in Eq. (15) from x(n) by:

m̂s(n) = m̂x(n) =
1

(2M + 1)

n+M∑
k=n−M

x(k) (16)

where (2M +1) is the number of samples in the short segment used in
the estimation.

To measure the local statistics of the speech signal, we need to
estimate the signal variance σ2

s . Since σ2
x = σ2

s + σ2
v , then σ2

s(n) may
be estimated from x(n) as follows:

σ̂2
s(n) =




σ̂2
x(n) − σ̂2

v , if σ̂2
x(n) > σ̂2

v

0, otherwise
(17a)

where

σ̂2
x(n) =

1
(2M + 1)

n+M∑
k=n−M

(x(k) − m̂x(n))2 (17b)
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Figure 2. PSNR results for white noise case at −10 dB to +35 dB
SNR levels for Handle signal.

By this method, we guarantee the adaptation of the filter transfer
function from sample to sample based on the local statistics of the
speech signal.
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Figure 3. PSNR results for white noise case at −10 dB to +35 dB
SNR levels for Laughter signal.
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Figure 4. PSNR results for white noise case at −10 dB to +35 dB
SNR levels for Gong signal.
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Figure 5. The clean signal. (a) The spectrogram. (b) The time signal.

5. EXPERIMENTAL RESULTS

For evaluation purposes, we use different speech signals; the handle, the
laughter and the gong signals. The noisy signal is obtained by adding
white gaussian noise to the speech signal with different SNR values.
The output peak signal to noise ratio (PSNR) results for the wiener
filter, the spectral subtraction approach and the proposed adaptive
wiener filter are shown in Figs. 2, 3 and 4. From these figures, it is
clear that the proposed adaptive wiener filter has the best performance
for different SNR values. The adaptive wiener filter approach gives
about 3–5 dB improvement at different values of SNR.

Some experiments are carried out on the handle signal shown
in Fig. 5 with SNR values from of 5 to 20 dB to test all the speech
enhancement algorithms mentioned in this paper. In all of these
experiments, the spectrogram is used with the time signal to clarify
the time and frequency contents of the signal. The noisy handle signal
with SNR values from 5 to 20 dB in 5 dB steps are shown in Fig. 6.

The results of the spectral subtraction approach, the Wiener
filter approach and the adaptive Wiener filter approach are shown in
Figs. 7, 8 and 9, respectively. The PSNR results of all these speech
enhancement approaches are tabulated in Table 1. From the figures
and the table, it is clear that the best performance is that of the
proposed adaptive Wiener filter because it considers the variation of
the local statistics of the noisy speech signal.
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Figure 6a. The noisy signal at SNR = 5 dB (a) The spectrogram, (b)
The time signal.
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Figure 6b. The noisy signal at SNR = 10 dB (a) the spectrogram,
(b) The time signal.
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Figure 6c. The noisy signal at SNR = 15 dB (a) The spectrogram,
(b) The time signal.
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Figure 6d. The noisy signal at SNR = 20 dB (a) the spectrogram,
(b) The time signal.
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Figure 7a. The spectral subtraction technique at SNR = 5 dB (a) the
spectrogram, (b) The time signal.
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Figure 7b. The spectral subtraction at SNR = 10 dB (a) The
spectrogram, (b) The time signal.
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Figure 7c. The spectral subtraction technique at SNR = 15 dB (a)
The spectrogram, (b) The time signal.
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Figure 7d. The spectral subtraction technique at SNR = 20 dB (a)
the spectrogram, (b) The time signal.
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Figure 8a. The Wiener filter technique At SNR = 5 dB (a) The
spectrogram, (b) The time signal.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2000

4000

6000

8000

Time
(a)

)z
H( ycneuqer

F

0 1 2 3 4 5 6 7 8

x 10
4

-1

-0.5

0

0.5

1

Time(msec)
(b)

edutilp
m

A

Figure 8b. The Wiener filter technique At SNR = 10 dB (a) The
spectrogram, (b) The time signal.
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Figure 8c. The Wiener filter technique At SNR = 15 dB (a) The
spectrogram, (b) The time signal.
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Figure 8d. The Wiener filter technique At SNR = 20 dB (a) The
spectrogram, (b) The time signal.
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Figure 9a. The adaptive Wiener filter technique At SNR = 5 dB (a)
The spectrogram, (b) The time signal.
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Figure 9b. The adaptive Wiener filter technique At SNR = 10 dB (a)
The spectrogram, (b) The time signal.
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Figure 9c. The adaptive Wiener filter technique At SNR = 15 dB (a)
The spectrogram, (b) The time signal.
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Figure 9d. The adaptive Wiener filter technique At SNR = 20 dB (a)
The spectrogram, (b) The time signal.
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Table 1. PSNR results in dB for the speech enhancement approaches
applied to the handle signal at different SNR values.

SNR Noisy Signal Spectral
subtraction

Frequency
domain Wiener

filter

Adaptive
Wiener Filter

5 dB 19.1383 19.1407 22.7568 28.6086
10 dB 24.1217 24.1228 28.9876 32.9784
15 dB 29.1543 29.1547 32.0856 37.3434
20 dB 34.1144 34.1146 37.5216 40.1843

6. CONCLUSION

An adaptive Wiener filter approach for speech enhancement has been
proposed in this paper. A mathematical derivation of the filter transfer
function has been introduced. This filter is applied by the adaptation of
its transfer function from sample to sample based on the speech signal
statistics (mean and variance). The experimental results indicate
that the proposed filter provides the best PSNR improvement among
the spectral subtraction approach and the traditional Wiener filter
approach which is implemented in the frequency domain.
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