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Abstract—Geometrical analysis of basic equations of electromagnet-
ics waves propagation in anisotropic dielectric materials with mag-
netic isotropy are presented in two complementary papers (Part I and
Part II). In this paper, analysis arises from local properties of dielec-
tric permittivity tensor and Möhr’s plane graphical construction com-
patible with circumferences that represent general plane wave equa-
tion. This theoretical study allows to know how rays propagate in
left-handed metamaterials (LHMs) exhibiting dielectric anisotropy and
magnetic isotropy.

Geometrical analysis yields plane graphical procedures for ray
tracing, that are extremely easy. In particular, indefinite dielectric
media, where dielectric permittivities are not all the same sign, has
been investigated and a joint study of materials having the same
eigenvalues of ε̃, but with opposite values of µr is performed. The
opposite sense of propagation of rays in “opposite media” (media
with opposite values of εi and µr) has been also shown. It must be
pointed out that the presented method always allows graphical plane
constructions, even when dealing with biaxial media.

1. INTRODUCTION

Since the theoretical study of Veselago [1] and the works of Pendry [2]
and Smith et al. [3], the interest of left-handed metamaterials (LHMs)
is growing [4–19].

To take into account anisotropic character of LHMs, geometrical
analysis of basic equations of wave propagation in anisotropic dielectric
materials with magnetic isotropy are presented in two complementary
papers. The methodology is valid also for negative values of dielectric
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permittivities and magnetic permeability and allows the study of
propagation of locally plane electromagnetic waves in LHMs.

In this paper, geometrical analysis arises from local properties
of dielectric permittivity tensor (ε̃) and Möhr’s plane graphical
construction compatible with circumferences that represent general
plane wave equation (relation of dispersion) (See Section 2). It must
be noted that the approach presents many advantages, because it
facilitates both quantitative and qualitative analysis inherent to a plane
geometry. Some examples on ray tracing in RHMs and LHMs with
dielectric anisotropy and magnetic isotropy are shown in Section 3,
where, the so called indefinite media are considered [4–6]. This term
refers to a material for which the eigenvalues of the permittivity and
permeability tensor are not all the same sign.

In the complementary part (Part I) of this paper [22], another
kind of geometrical analysis of ray propagation in RH and LH media,
involving the compatibility between quadrics associated with relative
dielectric tensor (ε̃) and conical surfaces representing the general plane
wave equation (relation of dispersion) has been carried out.

2. GEOMETRICAL PLANE CONSTRUCTION IN LHMS
WITH DIELECTRIC ANISOTROPY

2.1. General

We are only concerned with linear media, with dielectric anisotropy
and magnetic isotropy (µ = µ0 µr), free of currents and charges (j = 0;
� = 0).

An orthonormal cartesian frame (u1, u2 and u3) along the main
directions of relative dielectric permittivity tensor ε̃ is used. The
eigenvalues of ε̃, are named ε1 > ε2 > ε3 and they can be positive
or negative.

Our starting point is the corresponding relation of dispersion or
general plane wave equation for these media, which can also be written
as [20]:

ν − (n · ν)n = a εν (1)

where unit vector ν is defined as ν = E/|E|, bound vector εν = ε̃ν =
D/(ε0 |E|). If n is an unit vector along the direction of propagation,
wave vector k is expressed as: k = k n = (ω/vp)n, where ω and vp, are
the angular frequency and the phase velocity, respectively. Parameter
a is equal to µr v

2
p/c

2.
In an anisotropic medium, there are two normal eigen modes of

locally plane waves for each direction of propagation. Our study only
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deals with the eigen mode that does not behave isotropically. This
means that the directions of Poynting vector and wave vector k are
non collinear. Thus, in uniaxial media, we are only interested in the
extraordinary ray.

In this paper, intrinsic components (τν , σν) of bound vectors
εν = ε̃ν play an important role. They are defined as [20]:

σν = εν · ν; τ2
ν = |εν |2 − σ2

ν

Since D is parallel to εν (note that D = ε0 |E| εν), and D ·n = 0,
the dot product of Eq. (1) and vector εν gives:

σν = a |εν |2 (2)

that can be written in the form:

τ2
ν + σ2

ν − σν

a
= 0 (3)

Eq. (3) describes the locus of the end of the bound vector εν in the
plane cartesian coordinate system (σ, τ). The locus is a circumference
centered at point (1/(2 a), 0) of radius R = 1/(2|a|). Since parameter
a might be negative, the radius has always a positive value and its
center defines, as a function of a, the location of this circumference.
The method applies for both positive and negative values of a. We call
this circumference, vector D circumference, since D is parallel to εν .
It follows immediately that the angle θ between E and D is given by:

cos θ = a |εν | (4)

An alternative expression of Fresnel’s equation of wave normals in
terms of intrinsic components of bound vector εn was derived in [20]:

τ2
n + σ2

n − σn

(
I − 1

a

)
+ a∆ = 0 (5)

where (τn, σn) are the intrinsic componentes of εn, I and ∆, trace and
determinant of tensor ε̃, respectively, and a = µr v

2
p/c

2.
Eq. (5) describes the locus of the end of εn in the plane

cartesian coordinate system (σ, τ). This locus is a circumference
centered at point ((I − 1/a)/2, 0) of radius R given by R =√

((I − 1/a)/2)2 − a∆. In what follows, this circumference is named
Fresnel’s circumference.

If t is an unit vector along the extraordinary ray direction, defined
as t = (E×H)/|E×H|, it is shown [20] that the angle between t and
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n is the same as the angle between E and D (given by Eq. (4)), and
then t · n = a |εν |.

Since a = µr v
2
p/c

2, only media with µr = −1 give values of θ
greater than π/2. This is the case of LHMs.

2.2. Graphical Procedures of Ray Tracing

General graphical procedures of ray tracing based on Möhr’s
construction, can be found in [20, 21]. In short, Möhr’s plane
construction [23], allows to obtain the intrinsic components of bound
vector εν from the knowledge of ν. Reciprocally, if vector εν is given,
the direction ν to which is associated, can be easily found. To perform
this graphical construction only the knowledge of the eigenvalues of ε̃
is required.

Möhr’s construction for uniaxial media is extremely easy and uses
an unique circumference of diameter ε1 − ε3 drawn in plane (σ, τ),
whose center lies on a point of σ-axis of coordinates ( ε1+ε2

2 , 0). The
equation of this circumference is:

τ2 + σ2 − σ(ε1 + ε3) + ε1 ε3 = 0 (6)

If an unit vector n forms an angle φ with u1 axis, this angle is
marked off on the vertical through ε1. Let A be the intersection point
between this sloped line and Möhr’s circle. This point A is the end of
bound vector εn traced from the origin (see Fig. 1).

Figure 1. Möhr’s construction for an uniaxial indefinite medium
(ε1 > 0 and ε3 < 0) from the knowledge of angle φ between n (unit
wave vector) and u1 axis. The end of bound vector εn lies on a Möhr’s
circumference passing through ε1 and ε3.

In [21], a more simplified construction is also outlined, where there
is no need to draw the Möhr’s circle. The construction is shown in
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Fig. 2. As an example, principal permittivities are not all the same
sign (ε1 = ε2 > 0 and ε3 < 0). These are the steps of the procedure:

(i) Values of ε1 and ε3 are marked on the straight line along the
direction of propagation n, that forms an angle φ with u1 axis.

(ii) A normal to axis u1 passing through ε1 and a normal to axis u3

passing through ε3 are traced. The intersection of these lines is
point P , that becomes the end of εn.

Figure 2. A more simplified Möhr’s construction in the (u1, u3)
plane for an uniaxial indefinite medium (ε1 > 0 and ε3 < 0) from
the knowledge of angle φ between n (unit wave vector) and u1 axis.
Tracing of two straight lines is only needed.

Figure 1 and Fig. 2 describe two simple graphical constructions to
find εn if vector n is known. Similarly, one can easily find n from εn,
as it was also outlined in [21].

Nevertheless, Möhr’s construction only states the tensor relation
between ν (direction of E) and εν (parallel to D) in the (σ, τ) plane.
In order to take into account the relation of dispersion given by (1),
Equations (5) or (3) are needed. In fact, (3) and (5) are the loci of the
end of vectors εν and εn, respectively. Moreover, in both equations
parameter a = µr v

2
p/c

2 is involved. Möhr’s construction does not
impose retrictions and can be applied to both positive and negative
eigenvalues. Since Eq. (1) derives directly from Maxwell equations for
plane waves, occurrence of negative values of µ is also regarded.

Figure 3 shows the plots of Möhr’s circumference, D vector and
Fresnel’s circumferences for a LH metamaterial with ε1 = 2; ε2 = ε3 =
−1, and for a = −1/2.

Property 1. Angle θ between E and D and angle θn between n
and εn verify the following relation in uniaxial indefinite media:

cos2 θ = cos2 θn
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Figure 3. Möhr’s circumference for a left-handed uniaxial indefinite
medium (ε1 > 0, ε3 < 0, µr = −1). D vector circumference (locus of
the ends of bound vector εν) and Fresnel’s circumference (locus of the
ends of bound vector εn) are drawn for v2

p = c2/2.

Proof: The abscissa of the point of intersection between Möhr’s
circle given by Eq. (6) and Eq. (3) becomes:

σν =
ε1 ε3

ε1 + ε3 − 1
a

The angle θ between E and D can be obtained from the expression:

cos θ =
σν

|εν |
(7)

where |εν |2 = σν/a.
When dealing with the so called left-handed and right-handed

indefinite media, values of a can be either positive or negative, so it is
advisable to use the square of Eq. (7):

cos2 θ =
σ2

ν

|εν |2
= a σν =

a ε1 ε3

ε1 + ε3 − 1
a

(8)

Similarly, the abscissa of the point of intersection between Möhr’s
circumference and Fresnel’s circumference, given by (5), is:

σn = a ε1 ε3 =
a∆
ε2

(9)
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Taking into account that σ2
n + τ2

n = |εn|2, direct substitution of
Eq. (9) into Eq. (5) leads to:

|εn| =

√
a ε1 ε3

(
ε1 + ε3 −

1
a

)

The angle θn between n and εn can be obtained from:

cos θn =
σn

|εn|
(10)

and, then

cos2 θn =
σ2

n

|εn|2
=

σn(
ε1 + ε3 − 1

a

) =
a ε1 ε3

ε1 + ε3 − 1
a

(11)

Then, for indefinite media, we can write:

cos2 θ = cos2 θn � (12)

Property 2. The locus of the ends of vectors εn in plane (u1, u3)
is an ellipse of semiaxes |ε1| and |ε3|.

Proof: From Fig. 4, one can writes:

εn = ε1 cos φu1 − |ε3| sin φu3 = x1 u1 + x3 u3

and, consequently: (
x1

ε1

)2

+
(
x3

ε3

)2

= 1 � (13)

The locus of the ends of vectors εn is the ellipse with semiaxes
a = |ε1| and b = |ε3|.

To relate vector εn with unit vector t, we recall that in uniaxial
media with positive eigenvalues of ε̃, vector εn is collinear with the
extraordinary ray direction t, as it was shown in [20].

In uniaxial indefinite media, εn also lies in the same plane that ν,
εν and n. Since the angle between E and D is the same as the angle
between t and n and Cauchy theorem [20] states that εn · ν(= n · εν)
also vanishes, vector εn is collinear with t, but may be antiparallel.

Nevertheless, from a graphical point of view, there is no
uncertainty in tracing the direction of extraordinary ray. If a > 0,
the angle between t (the ray) and n is acute (less than π/2), and if
a < 0, the corresponding angle is greater than π/2, as it is depicted in
Fig. 3.
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Figure 4. Locus of the ends of bound vector εn in an uniaxial
indefinite medium (ε1 > 0 and ε3 < 0). The locus is an ellipse of
semiaxes ε1 and ε3.

In order to state the correspondence between the proposed
methods and those used by other authors, uniaxial media are
considered. In [24–27], a relation between the slopes of the direction
of propagation and the extraordinary ray direction is obtained. The
alternative method leads to the same relation.

Property 3. There holds the following relation between the slope
of the direction of propagation (tan φ) and that of the extraordinary
ray direction (tan ψ), in the plane (u1,u3):

tan ψ = −ε3
ε1

tan φ

Proof: Let us consider the simplified construction given in Fig. 5.
From the scheme, one has that:

tan ψ =
AB

OA
=

|ε3| sin φ
|ε1| cos φ

= −ε3
ε1

tan φ �

3. SOME EXAMPLES OF RAY TRACING IN RHM AND
LHM UNIAXIAL INDEFINITE MEDIA

In this section, the method is applied to four media with dielectric
anisotropy and magnetic isotropy [4] with the following material
parameters:
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Figure 5. Graphical construction showing the equivalence between
traditional and alternative methods in ray tracing, when propagation
along an uniaxial indefinite medium is considered.

Medium Class ε1 ε2 ε3 µr

“1” RHM 1 1 -2 1
“2” LHM 2 -1 -1 -1
“3” RHM 2 -1 -1 1
“4” LHM 1 1 -2 -1

It must be pointed out that solutions of plane and non-evanescent
waves impose some restrictions on the allowed values of velocity of
propagation, vp and then on possible directions of propagation.

In these media allowed values of 1/a are either greater than ε1
or less than ε3. Thus, values of a in the interval ε3 < 1/a < ε1 are
not possible. For instance, for right-handed medium “3” (µr = 1 and
θ ≤ π/2), Eq. (3) restricts possible values of velocity of propagation
vp, which must fulfill that: vp < c/

√
2, because 1

a > 2 to give
non-evanescent waves. Consequently, possible values of directions of
propagation are restricted.

Let us now consider certain cases that deserve attention in the
study of light propagation of plane waves in these media. It may be
noted that Eq. (6) determine the bound vectors, whereas Eqs. (3) and
(5) give the phase velocity vp and relative permeability µr in terms of
εν and εn, respectively.
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3.1. Direction of Propagation Is Known: Joint Treatment
for LHMs and RHMs

When direction of propagation n is known and, for instance, the angle
that n forms with axis u1 is given, any of the procedures outlined in
Section 2 (Fig. 1 and Fig. 2) can be followed.

To find extraordinary ray direction (vector t) we must only take
into account that the sign of the dot product t · n coincides with the
sign on µr.

(a) (b)

Figure 6. Graphical determination of the extraordinary ray direction
from the knowledge of angle φ between n (unit wave vector) and u1

axis, for RH and LH uniaxial indefinite media. (a) Construction for
a RH medium. Angle θ between direction of propagation and ray
direction is less than π/2. (b) Construction for a LH medium. Angle
θ between direction of propagation and ray direction is greater than
π/2. Dielectric eigenvalues of both media are identical (ε1 > 0 and
ε3 < 0). Procedure is based on Möhr’s construction.

Thus, in Figs. 6 and 7 two constructions dealing with dielectric
indefinite media are depicted. If the medium is right-handed, (µr = 1)
the θ angle between n and t is less than π/2. If the medium is left-
handed, (µr = −1), θ is greater than π/2. There is no uncertainty in
tracing the extraordinary ray direction. This dual construction allows
the joint study of RH and LH media.

The dielectric permittivities of the materials are ε1 = ε2 = 1; ε3 =
−2, that correspond to media “1” and “4”. Vector n forms an angle
of 19◦ with the u1 axis, and the procedure allows to determine the
extraordinary ray direction from the direction of n = k/k.
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(a) (b)

Figure 7. A more simplified procedure to obtain extraordinary ray
direction from the knowledge of angle φ between n (unit wave vector)
and u1 axis, for RH and LH uniaxial indefinite media. Dielectric
eigenvalues of both media are identical (ε1 > 0 and ε3 < 0).
(a) Construction for a RH medium. Angle θ between direction of
propagation and ray direction is less than π/2. (b) Construction for
a LH medium. Angle θ between direction of propagation and ray
direction is greater than π/2.

3.2. Direction of the Extraordinary Ray Is Known

From Property 3 and taking into account a procedure outlined in [21],
it is immediate to find the direction of propagation from the direction
of the extraordinary ray.

Let us consider the plane (u1, u3). Let us assume that the
extraordinary ray direction forms an angle ψ with axis u1.

(i) Values of ε1 and ε3 are marked on the straight line along the
extraordinary ray.

(ii) A parallel to axis u1 passing through ε1 and a parallel to axis
u3 passing through ε3 are traced. If P is the intersection point
between these lines, the straight line OP is the direction of
propagation given by n (see Fig. 8).

Figure 8 shows the graphical construction for medium “2”.

3.3. Inverse Problem: Phase Velocity Is Known

In this case, parameter a is also known, since a = µr v
2
p/c

2. There are
two procedures to find the angle between t and n.

First procedure

(i) Let us trace the corresponding Möhr’s circumference, in plane σ,
τ , and assume that vector ν lies along σ axis.
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Figure 8. Graphical determination of the direction of propagation
n = k/k from the knowledge of extraordinary ray direction in an
uniaxial indefinite medium (medium “2”).

Figure 9. First graphical procedure to obtain angle θ between the
extraordinary ray and direction of propagation n = k/k when phase
velocity vp is known in a LH uniaxial indefinite medium. Point
A is the intersection between Möhr’s circumference and D vector
circumference, for v2

p = c2/2 in medium “2”.

(ii) D vector circumference (Eq. (3)) for this value of a is drawn.
(iii) The intersection point between these circumferences, A, is the end

point of vector εν .
(iv) The angle θ between ν and εν is the same angle between n and t

and can be measured directly from the drawing.

Figure 9 depicts the procedure for medium “2” and a = −1/2.
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Second procedure

(i) Möhr’s circumference is traced, assuming that vector n lies along
σ axis.

(ii) Fresnel’s circumference (Eq. (5)) for this value of a is drawn.
(iii) The intersection point between these circumferences, B, is the end

point of vector εn.
(iv) The sign of a determines the sign of the dot product t · n.

Figure 10 depicts the procedure for medium “2” and a = −1/2.
In this case, a < 0, and then the t is along −εn. Angle θ is shown in
the drawing.

Obviously, the direction of n is immediate to find, following Möhr’s
construction, as one can see from Fig. 10: The angle that segment Bε1
forms with the vertical through ε1 is the angle φ that n forms with u1

axis. The angle that n forms with u3 is π/2 − φ.

Figure 10. Second graphical procedure to obtain angle θ between the
extraordinary ray and direction of propagation n = k/k when phase
velocity vp is known in a LH uniaxial indefinite medium. Point B is the
intersection between Möhr’s circumference and Fresnel’s circumference
for v2

p = c2/2 in medium “2”.

Finally, Fig. 11 shows graphical construction for both procedures
in the same picture: D vector circumference (Eq. (3)) and Fresnel’s
circumference (Eq. (5)) are shown jointly.
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Figure 11. Joint representation of both procedures to obtain angle
θ between the extraordinary ray and the direction of propagation
n = k/k when phase velocity vp is known in a LH uniaxial indefinite
medium (medium “2”) for v2

p = c2/2.
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Figure 12. Ray tracing in “opposite” media. “Opposite” media are
media with opposite values of their dielectric and magnetic parameters
(eigenvalues εi of ε̃ and µr). For a given n = k/k, the angle between n
and the extraordinary ray in medium “1” and the angle between n and
the extraordinary ray in medium “2” become a pair of supplementary
angles. (a) Construction for medium “1” (ε1 = ε2 = 1, ε3 = −2, µr

= 1). The medium is RH and θ < π/2. (b) Construction for medium
“2”, opposite of medium “1” (ε1 = 2, ε2 = ε3 = −1, µr = −1). The
medium is LH and θ > π/2.

3.4. “Opposite” Media

One can observe that parameters of media “2” and “3” are the opposite
values of those corresponding to “1” and “4”. Thus an interesting
property raises:
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Property 4: For a given direction of propagation n, the angle
between the ray t1 in medium “1” and n and the angle between the
ray t2 in medium “2” and n, become a pair of supplementary angles.

Proof: A given direction of propagation forms an angle φ with
the optic axis (u3) in medium “1”, and the same angle φ with the optic
axis of medium “2” (u1). Then, the phase velocity is the same in both

(a)

(b)

Figure 13. Ray tracing in “opposite” media. The angle between n and
u3 axis in medium “1” is equal to the angle between n and u1 axis in
medium “2”. (a) Construction for medium “1” (ε1 = ε2 = 1, ε3 = −2,
µr = 1). (b) Construction for medium “2”, opposite of medium “1”
(ε1 = 2, ε2 = ε3 = −1, µr = −1).
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media, but a changes sign. From Eq. (9), one has:

σn1 = −σn2 �

where σn1 and σn2 are the abscissas of the points of intersection
between Möhr circumference and Fresnel’s circumference in medium
“1” and medium “2”, respectively. Figs. 12 and 13 show the property
for medium “1” and medium “2”.

4. CONCLUSIONS

An extension of the geometrical interpretation of the basic equations of
wave propagation in terms of the intrinsic components of bound vectors
εν = ε̃ν, eigenvalues εi of tensor ε̃, relative magnetic permeability µr

and phase velocity vp has been carried out in order to study left-handed
metamaterials with dielectric anisotropy and magnetic isotropy.

The locus described by Fresnel’s equation of wave normals in the
plane of the intrinsic components of εn is a circumference. And a
circumference is the locus of another main equation describing the
projection D onto E. The use of plane geometry is one of the
advantages of the method, which facilitates both quantitative and
qualitative analysis.

The correspondence with other analogous works has been also
stated. Characteristic phenomena of LHMs, like imperfect backward-
wave propagation have been easily explained.

A detailed discussion on wave propagation along indefinite
dielectric media, where dielectric permittivities are not all the same
sign, has been carried out and, as an example, four dielectric
uniaxial media with given parameters have been investigated. Several
properties of propagation of light along these media are demonstrated.

The discussion proposes extremely easy graphical constructions to
obtain the extraordinary ray direction t from the knowledge of n = k/k
and, reciprocally, to obtain n if t is given: it suffices to trace two
straight lines. Moreover, graphical procedures allow a joint study of
materials having the same eigenvalues of ε̃, but with opposite values
of µr.

If phase velocity vp is known, two graphical and versatile
constructions are also outlined. They involve intersections between
Möhr’s circumference and the other circumferences (loci of εν and
εn). The knowledge of vp also allows the immediate obtention of n
direction: it suffices to trace a straight line. Finally, the opposite sense
of propagation of light in “opposite media” (media with opposite values
of εi and µr) has been also discussed.
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