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Abstract—In this paper, a novel stochastic approach, i.e., the
electromagnetism-like (EM-like) algorithm, is applied to phase-only
syntheses of antenna arrays. The goal is to minimize the pattern
sidelobe under null-steering constraints by phase-only adjusting. The
mechanism of EM-like algorithm results from the Coulomb’s Law of
Electromagnetics. It does not require gradient calculations, and can
automatically converge at a good solution through the virtual charge of
each particle. Simulation results show that the EM-like algorithm can
well treat the phase-only optimization of antenna arrays. Although
the null-steering constraints will affect the optimization in sidelobe
reduction, it can be easily included in the EM-like based optimization
scheme. The EM-like algorithm can be applied not only to problems
of antenna arrays, but also to many other nonlinear optimization
problems in electromagnetic waves.

1. INTRODUCTION

The synthesis of an antenna array plays an important role in
radar and communication systems [1, 2]. In general, such types
of problems are strongly nonlinear. There are two types of
approaches for treating syntheses of antenna arrays, i.e., the gradient-
based and stochastic approaches. Although the gradient-based
methods are efficient, they sometimes get stuck in local optimum.
Alternatively, the stochastic methods become good candidates to treat
complex nonlinear optimization problems with large search spaces.
In recent years, stochastic approaches have attracted interests of
researchers in syntheses of antenna arrays. This is because they
can achieve nearly global optimum without any gradient operation.
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Famous stochastic techniques include the genetic algorithms (GA) [3],
simulated annealing (SA) algorithm [4], particle swarm optimization
(PSO) [5], ant colony optimization (ACO) [6], etc.

In this paper, we utilize a novel algorithm, i.e., the
electromagnetism-like (EM-like) algorithm [7] to treat optimum syn-
theses of antenna arrays. The phase-only syntheses of linear antenna
arrays are given by the EM-like algorithm. In other words, the op-
timization problem is treated by assuming that all elements have the
same exciting magnitudes and only the phase-control is allowable. The
EM-like algorithm is a random-search based algorithm for finding the
globally optimum solution. The mechanism of EM-like algorithm re-
sults from the Coulomb’s Law of Electromagnetics. The concept of
EM-like algorithm is to produce one group of random solutions from
the feasible domain, and regard each solution as a virtually charged
particle. The virtual charges among particles will generate resultant
electromagnetic forces, and then the particles move automatically ac-
cording to the resultant electromagnetic forces between particles. Be-
sides, the charge of each particle is determined by a cost function rep-
resenting the optimization goals of problems. The resultant forces be-
tween particles are divided into two kinds, i.e., attraction or repulsion.
The virtual electromagnetic force is calculated from the Coulomb’s
law and superposition principle. In the mechanism, a larger charge
will have larger attraction or repulsion, and the resultant force will be
small as two particles are far from each other. In other words, the
resultant forces are determined by the charges and distances between
particles. In addition, the EM-like algorithm can improve the current
optimum solution through local search and then modify the feasibility
for global search. The EM-like algorithm has no gradient operation. It
can be used in decimal system directly. Neither coding nor encoding
procedure (as in GA) is required in the EM-like algorithm. Moreover,
this method has the advantages of SA, i.e., movement of particle is
gradually slow in latter stages of iteration. In general, this method
is similar to PSO, but requires fewer particles than PSO. Based on
above points, we are convinced that the EM-like algorithm is suitable
for our phase-only syntheses of antenna arrays. The good convergence
of the EM-like algorithm has been verified in [8]. The formulations,
simulation results and conclusions are given in the following.

2. FORMULATIONS

2.1. Electromagnetism-like Algorithm

The EM-like algorithm is a stochastic evolutionary technique based on
the electromagnetic theory in physics. This method includes four main
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stages [7], i.e., initialization, local search, calculation, and movement,
respectively. These stages are interpreted in the following.
Stage 1) Initialization

Some parameters must be set before utilizing the EM-like
algorithm to optimize a problem. These parameters include the
population size, the criterion (e.g., iteration number), the dimension of
the solution, and the feasible region of each dimension. In general, the
population size should be greater than three because the movement
of particle involves the resultant forces of particles. The criterion
dominates the execution of EM-like iteration. In other words, the
iteration will be terminated as the predetermined loop or allowable
error is met. The dimension of the solution is determined according to
the cost function and the region of each dimension is determined from
the problem.

Initially, the EM-like algorithm creates one group of initial
solution randomly. Each solution is regarded as a virtually charged
particle. All particles are assumed to be uniformly distributed between
the upper and lower bounds. The optimum particle of the population
will then be found according to the cost function. The cost function is
determined from the problem.
Stage 2) Local search

Local search can be divided into three kinds, i.e., no local search,
local search only on current better particle and local search on all
particles. Theoretically, the local search is expected to find a better
solution, especially when it is applied to all particles. However, the
local search is usually time-consuming. Therefore, this local search
can be neglected in some cases. In this study, the EM-like algorithm
is implemented with local search on the current better particle. The
reason for choosing this way is to balance the reliability of optimization
against its executing time.
Stage 3) Calculation

The virtual charge of the i-th particle is determined by the cost
function value, and is calculated by

qi = exp{− f(pi) − f(popt)
m∑

k=1

[f(pk) − f(popt)]
}, ∀i, (1)

where f(·) denotes the cost function and m denotes the population size.
The f(popt) denotes the best cost function value. The particle with
largest charge (i.e., best cost function value) is called the “optimum
particle”. A particle will have stronger attraction, as it appears near
the optimum particle. The particle attracts other particles with better
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cost function values, and repels other particles with worse cost function
values.

The resultant force on the i-th particle is determined from the
Coulomb’s law and superposition principle, and is given as

F i =
m∑

j=1
j �=i




(pj − pi)
qiqj

‖pj − pi‖2
if f(pj) < f(pi)

(pi − pj)
qiqj

‖pj − pi‖2
if f(pj) ≥ f(pi)

, ∀i, (2)

where f(pj) < f(pi) represents attraction and f(pj) ≥ f(pi) represents
repulsion. From (2), we conclude that the resultant force between
particles is proportional to the product of the charges and is in inverse
proportion to the distance between the particles. Of course, a particle
will not produce the force to affect itself. In general, the force in (2)
is normalized as

F i =
F i

‖F i‖ , ∀i. (3)

for simplicity.
Stage 4) Movement

The update of each particle depends on the resultant force, and is
given as

pi =
{

pi + α · F i(bupper − pi) if F i > 0
pi + α · F i(pi − blower) if F i ≤ 0 ,

i = 1, 2, ..., m; i 	= best,
(4)

where bupper is the upper bound, blower is the lower bound, and α
is a random value uniformly distributed between zero and one. The
particle moves toward the upper bound by a random step length α as
the resultant force is positive, whereas it moves toward the lower bound
as the resultant force is negative. In the mechanism, the optimum
particle of the population does not move, because it has the best cost
function value and then attracts all other particles.

2.2. Uniformly Spaced Linear Array

In this study, we consider the synthesis of a linear array, as shown in
Fig. 1. The linear array has 2N elements and is equally spaced with
spacing of 0.5λ, where λ is the wavelength. Assume each element is
isotropic and there exist no mutual coupling effects within the array.
In addition, the array elements in Fig. 1 are assumed to be symmetric
as

φi = φ2N+1−i, i = 1, 2, . . . , N, (5)
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Figure 1. Schematic of a 2N -element linear array.

where φi denotes the phase of the i-th array element. Note that the
proposed scheme has no limitations on array geometry, number of array
elements and mutual coupling effects. The reason why we utilized such
a simple array is that it is easy to illustrate the proposed scheme and
compare the results with those of other existing approaches. For such
a symmetric array, the array factor is given as [9]

AF (θ, φ) = 2
N∑

i=1

ejφi cos[(i − 0.5)π sin θ], (6)

where θ denotes the azimuth angle. For convenience, (6) is usually
rewritten in decibels as

AFdB(θ, φ) = 20 · log

∣∣∣∣∣
AF (θ, φ)
AF (θo, φ)

∣∣∣∣∣ , (7)

where θo is the direction of main beam. In this study, we assume the
main beam is at θo = 0◦. The phases of array elements in (6) constitute
a phase vector as

φ = [φ1, φ2, . . . , φN ]T . (8)

The goal becomes to adjust the phases of array elements in (8) to
achieve the desired array performance, i.e., to optimize (7). So we use
the phases of array elements, i.e., (8), to compute the cost function of
each particle. In this study, the optimization goals of array synthesis
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include the sidelobe reduction and null steering. Therefore, we define
the cost function of each particle as

f(p) = κ1 · fSL(φ) + κ2 · fNS(φ), (9)

where κ1 and κ2 are two parameters representing the weights of the
two goals. The first term of the right-hand side in (9) is for suppressing
the maximal sidelobe level of array pattern, and is given as

fSL(φ) = max{AFdB(θ, φ)}θ∈S , (10)

where S denotes the feasible region of sidelobe excluding the main
beam. The second term of the right-hand side in (9) is for null steering,
and is given as

fNS(φ) = k ·
∑
k

AFdB(θk
null, φ), (11)

where θk
null denotes the direction of k-th null. The nulls are

symmetrical in this problem. To compare the performance of different
arrays with a given power limitation, the relative array efficiency is
defined as [9]

η =
P

Po
, (12)

where P and Po are the power density of main beam for simulated
array and for uniformly excited array, respectively.

3. SIMULATION RESULTS

In this study, we consider the linear and equally spaced array, as shown
in Fig. 1. The element spacing is fixed as 0.5λ. The array is synthesized
using the EM-like algorithm described above. In EM-like procedures,
the population size is chosen as 20 and the maximum iteration loops are
chosen as 20000. The parameters κ1 and κ2 in (9) are chosen as 1 and
0.1. In this paper, the feasible region of phase control is chosen to be
in the range of [−180◦, 180◦]. In addition, the minimum manageable
amount of phase difference and the resolution of azimuth angle are
both assumed to be 0.1◦. In order to illustrate the proposed scheme,
different examples are simulated below. The following simulation was
implemented by using the hardware of personal computer with Intel
Core-2 6420 CPU (2.13 GHz), and the software of Fortran 90 in Absoft
ProFortran 6.2.
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3.1. Maximal Sidelobe Minimization

In the first example, the array synthesis for maximal sidelobe reduction
is given. Different numbers of array elements are considered. The final
optimum results for the case of 20-element array are shown in Fig. 2.
The dashed line is the pattern of the uniformly excited array, i.e.,
no array synthesis. The solid line is the final optimum pattern by
phase-only synthesis. From Fig. 2, it shows that the maximal sidelobe
reduction is improved by 2.95 dB (from −13.19 dB to −16.14 dB). This
optimum result is slightly better than that of [9] by about 0.3 dB.
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Figure 2. Final optimum array patterns for the uniformly excited
array and the phase-only synthesis.

Figure 3 shows the optimum reduction of maximal sidelobe and
the array efficiency versus the number of array elements. Note that
the horizontal axis of Fig. 3 is in logarithmic scale. For comparison,
the results calculated by the steepest descent method (SDM) [9] are
also given in Fig. 3. From Fig. 3, we find that the results by these
two approaches are consistent in most cases. In addition, the maximal
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sidelobe reduction by EM-like algorithm is slightly better than that by
SDM in the case of 20-element array. From Fig. 3, we find that the
optimum reduction of maximal sidelobe and the array efficiency are
both highly correlated with the logarithm of array element number.
Therefore, one can easily predict the results for other cases from the
simulated data in Fig. 3.
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Figure 3. Final optimum results for maximum sidelobe level and
array efficiency with respect to the number of array elements.

3.2. Unidirectional Null Steering

The second example of phase-only synthesis discusses the optimum
sidelobe reduction under the constraint of null steering at a specific
direction. In the simulation, the pattern value fewer than −60 dB
is viewed as the null. Fig. 4 and Fig. 5 show the final optimum
array patterns of 32-element and 40-element arrays, respectively. The
dashed line in Fig. 4 represents the pattern of the 32-element array
by phase-only synthesis without the constraint of null steering, and
the final maximal sidelobe is about −17.34 dB at 58.73◦. The half-
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power beamwidth, first null beamwidth, and array efficiency are
about 3.34◦, 7.94◦, and 79.2%, respectively. As the constraint of
unidirectional null steering at ±9% is imposed on the problem, the final
optimum maximal sidelobe of the 32-element array becomes −13.03 dB
(sacrificed by 4.31 dB), as illustrated by the solid line of Fig. 4. With
such a null-steering constraint, the half-power beamwidth, first null
beamwidth, and array efficiency are changed to 3.23◦, 7.42◦, and
71.7%, respectively. Fig. 5 shows the results for the case of 40-element
array. As the null-steering constraint is imposed on the problem,
the final optimum sidelobe reduction is sacrificed by 1.69 dB (from
−17.86 dB to −16.17 dB). In addition, the half-power beamwidth, first
null beamwidth, and array efficiency are changed from 2.75◦ to 2.65◦,
from 6.48◦ to 6.3◦, and from 77% to 77.5%, respectively.
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Figure 4. Final optimum array patterns of the 32-element array by
phase-only synthesis with unidirectional null steering and without null
steering.



288 Lee and Jhang

0 10 20 30 40 50 60 70 80 90
Azimuth angle θ (deg)

-60

-50

-40

-30

-20

-10

0

A
rr

ay
 fa

ct
or

 (
dB

)

-16.17dB

-17.86dB

with unidirectional null steering
without null steeringnull

Figure 5. Final optimum array patterns of the 40-element array by
phase-only synthesis with unidirectional null steering and without null
steering.

3.3. Bidirectional Null Steering

The third example of phase-only synthesis discusses the sidelobe
reduction under the constraint of null steering at two specific
directions, i.e., bidirectional null steering. Fig. 6 shows the
final optimum pattern of 20-element array with the constraint of
bidirectional null steering. The solid line in Fig. 6 represents the results
that the two directions of null steering are chosen as ±14◦ and ±20.5◦.
The optimum maximal sidelobe is −11.37 dB at 5.42◦. The half-power
beamwidth, first null beamwidth, and array efficiency are 5.51◦, 13.4◦,
and 69.1%, respectively. The dashed line in Fig. 6 represents the results
that the two directions of null steering are chosen as ±33.5◦ and ±40◦.
The optimum maximal sidelobe is −12.41 dB at 8.4◦. The half-power
beamwidth, first null beamwidth, and array efficiency are 5.42◦, 12.2◦,
and 75%, respectively.



Progress In Electromagnetics Research, PIER 83, 2008 289

0 10 20 30 40 50 60 70 80 90
Azimuth angle θ (deg)

-60

-50

-40

-30

-20

-10

0

A
rr

ay
 fa

ct
or

 (
dB

)

-11.37dB

-12.41dB

14
ο
 & 20.5

ο

33.5
ο
 & 40

οnull null null null

Figure 6. The final optimum pattern of 20-element array with the
constraint of bidirectional null steering.

4. CONCLUSIONS

This paper utilized a novel stochastic algorithm, i.e., the
electromagnetism-like (EM-like) algorithm, to implement phase-only
syntheses of antenna arrays. The EM-like algorithm has been success-
fully combined with the array pattern formulas to achieve an efficient
array synthesis scheme. Many array characteristics, such as the side-
lobe reduction and the steering-null control can be easily optimized by
the EM-like algorithm. Although only the change of excitation phase
is considered in our simulation, other parameters such as amplitude
factors can be easily added to our array synthesis scheme. Simulation
results show that the constraints of null steering will degrade the op-
timization performance in reducing the maximal sidelobe level. Such
constraints can be easily included in the iteration procedures of the
EM-like algorithm. The mechanism of EM-like algorithm results from
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the Coulomb’s Law of Electromagnetics. Due to the inherent stochastic
property of EM-like algorithm, the optimization scheme in this study
does not require the gradient operation and can automatically achieve
nearly global optimum solutions. Although the stochastic approaches
such as GA, SA, PSO, ACO algorithms can also achieve nearly global
optimum without any gradient operation, the EM-like algorithm gives
more related physical meanings in such a problem. The EM-like al-
gorithm based optimization scheme is easy to implement. Therefore,
it is suitable not only for problems of antenna arrays, but also for
many other nonlinear optimization problems in electromagnetic waves
[10–20].
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