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Abstract—Current driven electrostatic ion cyclotron instability has
been studied for parallel flow velocity shear with perpendicular a.c.
electric field to the ambient magnetic field for bi-Maxwellian density
drift distribution function. The method adopted for expression for
dispersion relation and growth rate is kinetic approach and method
of characteristic solution for ionospheric plasma. The effect of a.c.
frequency, density gradient, and velocity shear scale length has been
discussed.

1. INTRODUCTION

The plasma has been assumed to be essentially infinite and
homogeneous in accordance with the model originally proposed by [1].
A series of papers [2–5] have given a detailed account of non-local
EICI theories. They have studied the influence of magnetic shear as
well as that of a finite width of the current channel. The dynamics
that govern the release of free energy associated with sheared flows
have been a matter of interest both in hydrodynamics [6] and in
plasma physics [7]. This release of free energy is accompanied almost
invariably by the onset of instabilities, which in turn, play an important
role in a variety of physical processes. For example, in hydrodynamic
systems, shear-driven instabilities can cause a transition from laminar
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to turbulent flow [8] while in fusion plasma, sheared flows have been
found to modify significantly the magneto-hydrodynamic equilibrium
and ballooning stability of toroidal confinement devices [8, 9]. More
importantly, shear-driven turbulence can have a significant effect on
particle, momentum and energy transport. Velocity shear, for instance,
has been recently identified as an important element in the transition
from L to H-mode confinement in tokamak plasmas [10–13]. Due to
parametric constraints, however, in fusion studies, assumption is made
for shear driven phenomena that the shear scale length is much larger
than the ion Larmor radius. Although this assumption is in conformity
with the experimental observations, it fixes the time scale of variation
of the radiant shear-driven phenomena to be much larger than the ion
gyro period (provided that the maximum drift speed is not much larger
than the electron thermal speed).

Electrostatic ion-cyclotron waves are of interest due to the
collissionless ion damping inherent to these types of waves.
Consequently, their production in plasma could be an important means
of heating ions in many plasma devices such as tokamaks and multiples.
Recently, several papers have discussed the excitation of electrostatic
ion-cyclotron waves by parametric instabilities. Electrostatic ion-
cyclotron waves can act as a means of transferring the energy of a
magneto-sonic wave to the ions of a plasma, it would be useful to
understand the manner in which density, temperature and magnetic
field gradients as well as shear, alter the dispersion of the waves and
their excitation by parametric processes. This is especially true in view
of the significant effect which density gradients have seen on parametric
instabilities when ω ≈ ωpe (where ωpe is the electron plasma frequency).

Considering the specific case of electrostatic ion cyclotron waves
in the presence of density gradient and a uniform magnetic field, the
energy loss across the gradient and so the damping of the wave can
be expected to be minimized if the primary propagation is in the y
direction (i.e., ky � |kz|). Next, it is assumed that the gyro-radius ρs

are much smaller than the density gradient scale length Ln as well as
the scale length of the waves in the absence of a pump magneto-sonic
wave.

The presence of gradients in plasma can localize parametric
instabilities in space in three different ways. First there is the
possibility that gradients can change the wave number in the direction
of the inhomogeneity and thereby create a mismatch in the wave
significant for the case of the decay instability with ω ≈ ωp. A
second possibility which may occur is to have coupling coefficients or
functions of position. This is particularly important for the purely
growing mode and in the convective or absolute nature of the decay
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instability in bounded plasma. Generation of ion-cyclotron like wave
by parallel flow velocity shear in the presence of inhomogeneous D.C.
electric field in an anisotropic magnetoplasma has been studied by [14].
Density and magnetic field gradients can influence the dispersion of
electrostatic ion-cyclotron waves and their excitation by the cyclotron
decay instability. Temperature gradients are not so significant since
electrostatic ion-cyclotron waves are much more sensitive to magnetic
field variations.

Density gradients affect the threshold of the cyclotron decay
instability due to wave energy transport across the gradient and the
resultant enhancement of the damping for one of the excited waves
while magnetic field gradients introduce a mismatch in wave number,
which if large enough, can increase the threshold.

The motivation for this work is provided by observations of both
space and laboratory plasmas in which flows have been reported, whose
shear scale length can be of the order of the ion Larmor radius or
smaller. In auroral phenomena; for example, electric fields called
paired electrostatic shocks have been found to exist whose scale length
of variation is of the order of the ion Larmor radius [15, 16]. These
electric fields cause localized cross-field flows, which excite instability
with frequency and growth rate in the vicinity of the ion cyclotron
frequency [17, 18]. A distinctive feature of this instability is that it
can exist even when the field-aligned current is sub-critical. Another
example of a strongly sheared system is given by the dynamical
evolution of the plasma sheet just prior to the on set of a magnetic
sub storm. During this time, the neutral plasma sheet region becomes
thin and its width becomes smaller than the ion Larmor radius.

In this paper, electrostatic ion-cyclotron parallel flow velocity
shear instability has been studied in the presence of perpendicular
AC electric field. The method of characteristic solution has been used
for the study. The effect of AC electric field, density gradient and
velocity shear length has been studied in the region of ionosphere for
long wavelength.

2. DISPERSION RELATION

A spatially homogeneous an-isotropic collision less plasma subjected
to an external magnetic field B0 = B0e

′z and an electric fields E0x =
(E0 sin υte′x) has been considered. In order to obtain the dispersion
relation in this case, the Vlasov-Maxwell equations are linearized. The
linearized equations obtained after neglecting the higher order terms
and separating the equilibrium and non equilibrium parts, following
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the techniques of [19, 20], are given as
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where force is defined as F = mdv/dt

F = es [E0 Sin υt + (v ×B0)] (3)

The practical trajectories are obtained by solving the equation of
motion defined in Equation (3) and S(r, v, t) is defined as
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where s denotes species and E1, B1 and fs1 are perturbed and
are assumed to have harmonic dependence in fs1, B1 and E1 ∼
exp i(k.r − ωt). The method of characteristic solution is used to
determine the perturbed distribution function. fs1, which is obtained
from Equation (2) by
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The phase space coordinate system has been transformed from (r, v, t)
to (r0, v0, t− t′). The particle trajectories which have been obtained
by solving Equation (3) for the given external field configuration and
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and the velocities are

vx0 = vxcos Ωcst
′ − vysin Ωcst

′ +
{
νΓx(cos υt′− cos Ωcst

′)
Ω2

cs − υ2

}

vy0 = vxsin Ωcst
′ + vycos Ωcst

′ −
{

Γx(Ωcssin υ t′−υ sin Ωcst
′)

Ω2
cs − υ2

}
vz0 = vz

(7)

where υ=a.c.frequency, Ωcs = esB0
ms

is the cyclotron frequency of species
“s” and Γx = esE0

ms
. Equation (2) can be written in terms of a perturbed

quantities as
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The unperturbed distribution function with velocity and density
gradient is given by [20, 21].
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where ε′′ being constant of motion
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After using the unperturbed trajectories with perpendicular AC
electric field and unperturbed distribution function, also doing some
lengthy simplifications the perturbed distribution function has been
found as
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Now simplifying m = n, g = p and using the definition of current
density, conductivity and dielectric tensor, we get the dielectric tensor
as
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Now, we consider electrostatic Ion cyclotron instability;

‖εii‖ = N2 (15)

where N = refractive index.
The required electrostatic dispersion relation can be obtained by
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using the technique of [14, 19] and from Equation (1) to (15)
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Now above dispersion relation Equation (16) reduces to that of [21]
if inhomogeneous AC electric field is set to zero, α⊥ = α‖s and n equals
to zero. If AC field is removed and inhomogeneous DC electric field is
introduced with the condition n 	= zero the above dispersion relation
Equation (16) reduces to that of [14].

Following [19, 21] for p = 1, g = 0 and s = ie, we get dispersion
relation for electrons and ions. For electrons, k⊥ρe 
 1 and for ions
no such assumption is made. Thus above equation becomes:
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After substituting Z(ξi) = −(1/ξi) − (1/2ξ3
i ), n0i = n0e and
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Multiplying throughout in Equation (18) by
(
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a quadratic dispersion as:
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From this expression, dimensionless growth rate has been calculated
by computer technique when b21 = 4a1c1. Hence, this criteria gives a
condition for the growth rate of wave when
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If the contribution of AC electric field is removed α‖s is made equal to
α⊥s and n equals to zero, Equation (18) reduces to that of [21] and in
the absence of AC electric field and in the presence of DC electric field
and n 	= zero, growth rate expression given by Equation (18) reduces
to that of [14].

3. RESULT AND DISCUSSION

Following plasma parameters taken from [14, 21] suited to the
ionospheric region, have been used to evaluated the growth rate.
Magnetic field B0 has been taken to vary from 4×10−7 T to 6×10−7 T ,
energy of the electrons KBT‖ = 10 eV, velocity shear scale length Ai

has been allowed to vary between 0.5 to 0.55 and temperature gradient
scale length εnρi between 0.02 to 0.05 and temperature ratio Te/Ti

between 2 to 4. The value of AC electric field has been fixed on
E0 = 4× 10−3 V/m where as it frequency υ is allowed to vary between
2 KHz and KHz. Temperature anisotropy varies between 0.25 and 0.5
the value of θ varies from 88◦ to 88.5◦ where as θ = tan−1

(
k⊥
k‖

)
.

Growth rate variations with k⊥ρi have been calculated from
expression (18) for first and second harmonics n = 1, for various
values of above given plasma parameters. Figure 1 exhibits the
variation of growth rate with respect to k⊥ρi for two shear scale
lengths at different harmonics. It is obvious from the figure that the
growth rate increases by increasing the velocity shear scale length and
maxima shifts towards higher values of k⊥ρi. Growth rate increases
with increase of harmonics. If the present results are compared
with that obtained by [14] in which instead of A.C. electric field,
they have studied the effect of inhomogeneous D.C. electric field and
have performed calculations for the growth rate for the same plasma-
parameters. It is found that while in the presence of D.C. electric
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Figure 1. Variation of growth rate with k⊥ρi for various values of
velocity shear scale length at other fixed plasma parameters.

field, the growth rate decreases and the instability is excited for value
k⊥ρi > 1 in short wave length region, the presence of AC electric field
increases the growth rate and instability is excited for k⊥ρi > 1 for
a wide range of wave length region. The mechanism for instability
of this mode is due to coupling of regions of positive and negative
wave energy. This coupling occurs if velocity shear is non-uniform
and the shear is the source of energy. Figure 2 deals with variation
of growth rate with k⊥ρi for different values of θ. The growth rate
increases by increasing the values of theta for 88◦ to 88.5◦ and maxima
shifts towards lower value of k⊥ρi for both harmonics. In Figure 3,
it is shown that change in magnetic field affects the growth rate. It
increases by increasing the value of B0 and maxima slightly shifts for
lower values of k⊥ρi. In homogeneity in magnetic field introduces a
shear in velocity flow and couples positive and negative energy waves
leading to growth of the wave. In Figure 4, the growth rate is affected
by the ratio Te/Ti. It is increased by increasing the value of Te/Ti

and maxima shifts towards higher values of k⊥ρi as the velocity shear
term is proportional to Te/Ti. In all the cases growth rate is less for
higher harmonics. When shear flow is dominated by electron flows,
the maxima flows towards lower wave lengths as in the case when
Te/Ti = 3. As it is clear from Figure 5 the growth rate increases by
increasing the value of temperature anisotropy, growth rate is higher
for higher harmonics and maxima coincides without any shift. The
non-isothermal plasma changes the velocity shear required for onset of
this instability.
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Figure 2. Variation of growth rate with k⊥ρi for various values of
θ = tan−1

(
k⊥
k‖

)
at other fixed plasma parameters.

Figure 3. Variation of growth rate with k⊥ρi for various values of
magnetic field B0 at other fixed plasma Parameters.

In Figure 6, the effect of temperature gradient on growth rate
has been shown. The growth rate increases by increasing the value
of temperature gradient scale length with no change of the maxima.
For εnρi = 0.02, there is no change in the growth rate. But with the
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Figure 4. Variation of growth rate with k⊥ρi for various values of
temperature ratio Te/Ti other fixed plasma parameters.

Figure 5. Variation of growth rate with k⊥ρi for various values of
temperature anisotropy AT at other fixed plasma parameters.

increase of the temperature gradient scale length, growth rate is higher.
The temperature gradient has weak stabilizing effect on shear-driven
K-H instability. If the temperature gradient is weaker than electron
density gradient, then it is having stabilizing effect. However, the large
temperature gradient in perpendicular direction increases the growth
rate. It shows the stabilizing nature in K-H instability for β > 1.
Figure 7 shows the variation of growth rate with respect to k⊥ρi for
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Figure 6. Variation of growth rate with k⊥ρi for various values of
density gradient scale length at other fixed plasma parameters.

Figure 7. Variation of growth rate with k⊥ρi for various values of
frequency of AC field at other fixed plasma parameters.

various values of AC field frequency. It is obvious from the figure
that the growth rate decreases with the increase of AC field frequency
with the shift of the maxima towards higher values of k⊥ρi. For lower
values of AC field frequency, the instability is excited in a localized
region below k⊥ρi < 2, but for higher AC field frequency the maxima
shifts towards higher values of k⊥ρi and excitation of instability does
not remain localized. Values of AC field frequency remain effective for
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a wide range of wavelength region for excitation of instability.
This effect would be of importance when electromagnetic effects

are included. In general, this has a stabilizing effect introducing
resonant and non-resonant interactions affecting the growth and real
frequency.

Comparing these results with that of [14] in which they have
studied the effect of inhomogeneous DC electric field instead of AC
field, it is found that although the inhomogeneity in DC electric field
has significant effect on the growth rate, but it remains effective only
in localized region k⊥ρi < 3. The increase in inhomogeneity increases
the growth rate whereas increase of AC field frequency decreases the
growth rate.

4. SUMMARY

Electrostatic ion-cyclotron parallel flow velocity shear instability has
been studied in the presence of perpendicular AC electric field. The
method of characteristic and kinetic approach has been adopted to
evaluate the dispersion relation and growth rate. The effect of AC
electric field, density gradient and velocity shear length has been
studied in the region of ionosphere for long wavelength.
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