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Abstract—Maximum likelihood (ML) direction-of-arrival (DOA)
estimation is essentially an optimization of multivariable nonlinear
cost function. Since the final estimate is highly dependent on the
initial estimate, an initialization is critical in nonlinear optimization.
Alternating Projection (AP) initialization has been proposed as
computationally efficient method for the initialization of the ML
DOA cost function. In this paper, we propose a multi-dimensional
(M-D) search scheme of uniform exhaustive search and improved
exhaustive search. Improved exhaustive search is used to reduce the
computational load of uniform exhaustive search. In the improved
exhaustive search algorithm, the two-step procedure is applied to
reduce the computational load of the uniform exhaustive search
initialization scheme. In numerical results, it is shown that the
performance of the proposed scheme is better than that of AP
initialization.

1. INTRODUCTION

Direction-of-arrival (DOA) estimation [1–6] is an important task for
wireless communications and radar [7–30]. The maximum likelihood
(ML) algorithm [31] gives a superior performance compared to other
methods. However, the likelihood function is multi-variate and highly
nonlinear, and therefore requires much computational load.

ML DOA estimation is essentially optimization of multivariable
nonlinear cost function. The global convergence of the problem is
highly dependent on the initial estimate. AP (Alternating Projection)
has been proposed as a computationally efficient initialization
scheme [32]. AP algorithm consists of successive 1-D search.
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To improve the performance of initialization in the viewpoint of
RMSE (Root-mean-square error) of an initial estimate, we propose
exhaustive M-D (multi-dimensional) search.

The paper is organized as follows. In Section 2, the data model
for DOA in uniform circular array (UCA) is formulated and maximum-
likelihood estimation is briefly described. Next, we propose uniform
exhaustive search method and improved exhaustive search method in
Section 3. In Section 4, simulation results are given to compare the
performance of three different algorithms. Our concluding remarks are
given in Section 5.

2. PROBLEM FORMULATION

2.1. Array Signal Model

It is assumed that L narrowband sources from far fields in the directions
of Θ = [θ1, . . . , θL] are impinging on the array consisting of M
antennas. The received signals can be modeled as

x(t) = A(Θ)s(t) + n(t) (1)

where A(Θ) = [a(θ1), . . . , a(θL)] is array manifold, s(t) =
[s1(t), . . . , sL(t)]T is the L source signals at time t, and n(t) is the
additive white Gaussian noise which is not correlated to the signals.

2.2. Uniform Circular Array

We assume a uniform circular array (UCA) with identical antennas and
uniform spacing d as shown in Fig. 1 where θ is the azimuth angle, r is
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Figure 1. Geometry of the UCA with M elements.
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the radius of the array, and θ0 = 2π/M is the angle between adjacent
elements. φ is elevation angle measured from the z-axis. The response
of the mth sensor to the ith signal is given by

am(θi) = ejΨm(θi) (2)

where ψm is given by

ψm = 2π
r

λ
cos(θ − (m− 1)θ0) (3)

and θi lies in [0, 2π).

2.3. Maximum Likelihood Estimate

Assuming that the signals s(t) are deterministic and unknown
sequence, the maximum likelihood estimate of the DOA vector Θ =
[θ1, . . . , θL] is given by [8]

Θ̂ = arg max
Θ

tr
{
PA(Θ)R̂

}
(4)

where PA(Θ)= A(Θ)(A(Θ)HA(Θ))−1A(Θ)H is the projection oper-
ator onto the space spanned by the columns of the matrix A(Θ),
R̂ = (1/N)

∑N
t=1 x(t)xH(t) is the sample covariance matrix and N

denotes the number of data snapshots.

3. INITIALIZATION ALGORITHM

Once initial estimates of L-DOA’s are available, (4) is a nonlinear
L-variable optimization problem. It can be solved via gradient based-
Newton iteration.

3.1. Alternating Projection Initialization

AP (Alternating Projection) algorithm is one-dimensional (1-D)
optimization. AP initialization started on solving (4) for the first DOA

θ̂1 = arg max
θ1

tr
{
Pa(θ1)R̂

}
. (5)

Next, it is solved for the second source with θ1 = θ̂1:

θ̂2 = arg max
θ2

tr

{
P[a(θ̂1),a(θ2)]R̂

}
(6)
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Figure 2. The search range and the search increment of the
alternating projection for two signals.

The same procedure is repeated for all L sources :

θ̂l = arg max
θl

tr

{
P[a(θ̂1),a(θ̂2), ...,a(θ̂l−1),a(θl)]R̂

}
l = 1, . . . , L (7)

We get all the initial estimates for all L sources Θ̂ = [θ̂1, . . . , θ̂L].
Fig. 2 shows the search increment and the search range of AP algorithm
for two signals (L = 2). In this paper, the computational load KAP

denotes the number of cost function evaluations for AP initialization,
which is given by

KAP = L ·
⌈
2π
∆

⌉
. (8)

where �� rounds an argument towards plus infinity.

3.2. Uniform Exhaustive Search Initialization

Exhaustive search initialization is proposed to improve the AP-based
initial estimates. AP algorithm is computationally efficient 1-D search
algorithm, but the performance degrades since all the DOA’s are
not optimized simultaneously. To alleviate this problem, we propose
a uniform exhaustive search method which performs L-Dimensional
search:
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Figure 3. The search range and the search increment of the uniform
exhaustive search for two signals.

[
θ̂1, . . . , θ̂L

]
= arg max

θ1, ..., θL

tr
{
P[a(θ1), ...,a(θL)]R̂

}
(9)

where the search range for each source is [0, 2π), and the search
increment is ∆. To be more specific, it is L-Dimensional search, whose
increment between adjacent search angle is ∆. The computational load
of the scheme rapidly increases. At each search point of L-D space, we
evaluate cost function, and select the angle which maximizes the cost
function. Fig. 3 shows the search increment and the search range of
the uniform exhaustive search method for two signals (L = 2). The
number of cost function evaluation, K, is given by

KUES =
⌈
2π
∆

⌉L

. (10)

3.3. Improved Exhaustive Search Initialization

In this section, we explain the improved exhaustive search algorithm.
We describe how to reduce the computational load of the uniform
exhaustive search initialization scheme. The proposed scheme is based
on two-step procedure of coarse search and fine search.

The coarse search can be formulated as follows:[
θ̂Coarse
1 , . . . , θ̂Coarse

L

]
= arg max

[θCoarse
1 , ..., θCoarse

L ]

tr
{
P[a(θCoarse

1 ), ...,a(θCoarse
L )]R̂

}
(11)
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where the search range is [0, 2π), and the search increment is k∆ which
is k times search increment of the uniform exhaustive search, ∆. k is a
constant that sets the coarse search increment. The second step, called
the fine search, is a refinement procedure;[
θ̂Fine
1 , . . . , θ̂Fine

L

]
=arg max

[θFine
1 , ..., θFine

L ]
tr

{
P[a(θFine

1 ), ...,a(θFine
L )]R̂

}
(12)

where the search range is around [θ̂Coarse
1 , . . . , θ̂Coarse

L ], and the search
increment is ∆. Fig. 4 shows the search increment and the search range
of the improved exhaustive search method for two signals (L = 2). The
number of cost function evaluation for the improved exhaustive search,
K, is given by

KIES =
⌈

2π
k∆

⌉L

+ (2k + 1)L (13)

k is dependent on ∆, therefore, k is determined based on the following
criterion:

k = arg min
k
KIES (14)

In Fig. 5, we compare the computational load of the improved
exhaustive search with that of the AP and the uniform exhaustive
search with respect to ∆. The optimum k value is determined on
the basis of (13) and (14), and is dependent on ∆. The improved
exhaustive search is much more efficient than the uniform exhaustive
search in terms of computational load. The computational load of the
improved exhaustive search is approximately two times that of the AP
algorithm.

Figure 4. The search range and the search increment of the improved
exhaustive search for two signals.
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Figure 5. Comparison of the computational load with respect to ∆.
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Figure 6. The computational load of improved exhaustive search
method with respect to k.

4. SIMULATION RESULTS

In these simulations, three different initialization algorithms are
compared in terms of computational load and estimation accuracy.
Consider a uniform circular array composed of M = 10 isotropic
sensors. The radius of the array is half a wavelength and the number of
snapshots is 30. Two narrowband signals are incident from directions
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Figure 7. Comparison of DOA estimates with respect to SNR
(Improved exhaustive search with k = 15 and ∆ = 0.8◦).

of Θ = [θ1, θ2] = [60◦, 120◦]. It is assumed that two signals are fully
correlated and that the power of the direct signal is greater than that
of the reflected signal by 5 dB.

Figure 6 shows the computational load in improved exhaustive
search with respect to k when the fine search increment, ∆, is 0.8
degree. From Fig. 6, we select k = 15 since the computational load
increases at k > 15.
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Figure 7 depicts the RMSE’s for two signals obtained by AP,
uniform exhaustive search and improved exhaustive search, versus the
SNR. As shown in the figures, both exhaustive search methods show
better performance than AP algorithm, and the performance of the
improved exhaustive search and that of the uniform exhaustive search
are similar in terms of the estimation accuracy. But, the computational
burden of the uniform exhaustive search is much greater than that of
the improved exhaustive search.

5. CONCLUSION

In this paper, we propose the improved exhaustive search to reduce the
computational load for the initialization of the ML DOA algorithm and
to improve the accuracy of the initial estimate of ML DOA algorithm.
The computational load of the improved exhaustive search is much
less than that of the uniform exhaustive search method. Moreover,
the performance of the improved exhaustive search is better than AP
algorithm and is similar to the performance of the uniform exhaustive
search. There is a tradeoff between the accuracy of estimation and the
computational load.
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