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Abstract—Scattering of dipole field by a perfect electromagnetic
conductor (PEMC) cylinder is studied theoretically. Electric dipole
and magnetic dipole are considered separately as source of excitation.
Plots are given for different values of admittance parameter of the
PEMC cylinder.

1. INTRODUCTION

Few years before, the concept of perfect electromagnetic conductor
(PEMC) [1] as generalization of the perfect electric conductor (PEC)
and perfect magnetic conductor (PMC) has been introduced and has
attracted the attention of many researchers [2–16]. It is well known
that PEC boundary may be defined by the conditions

n × E = 0, n · B = 0

while PMC boundary may be defined by the boundary conditions

n × H = 0, n · D = 0

The PEMC boundary conditions are of the more general form

n × (H + ME) = 0, n · (D − MB) = 0

where M denotes the admittance of the PEMC boundary. It is obvious
that PMC corresponds to M = 0, while PEC corresponds to M = ±∞.

It has been demonstrated theoretically that a PEMC material
acts as a perfect reflector of electromagnetic waves, but differs from
the PEC and PMC in that the reflected wave has a cross-polarized
component. This non-reciprocal effect has been demonstrated for the
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planar cylindrical, and spherical geometries [1–17]. We have studied
scattering of electromagnetic wave from a PEMC circular cylinder. The
cylinder has been excited by a dipole. Electric and magnetic dipole
cases have been treated separately. Behavior of potential functions
has been studied with respect to the admittance parameter.

2. SCATTERING BY A PEMC CYLINDER

Consider a perfect electromagnetic conductor (PEMC) circular
cylinder of infinite extent which is excited by a dipole placed at location
r0 = (ρ0, φ0, z0). Radius of the circular cylinder is a. It is assumed
that dipole is parallel to the axis of the cylinder. Our interest is to
find scattered field at arbitrary observation point r = (ρ, φ, z). It is
assumed that medium around PEMC cylinder is free space described by
constitutive parameters µ0 and ε0. Time dependency is time harmonic
as exp(jωt).

The radiated field due to a dipole may be obtained by introducing
the vector potentials, that is magnetic vector potentials A for electric
dipole and electric vector potential F for magnetic dipole. It may be
noted that if dipole is electric type and oriented in z-direction then
z-component of magnetic vector potential Az is sufficient to find all
components of radiated fields due to dipole. On the other hand, if
dipole is magnetic type and oriented in z-direction then z-component
of electric vector potential Fz is sufficient to find all field components.
Vector potentials and fields are related as

B = ∇× A, E = −jω

[
A +

1
k2

∇∇ · A
]

(1a)

and
E = −jωµ0∇× F, H = ∇∇ · F + ω2µ0ε0F (1b)

For axially directed dipole in the presence of PEMC cylinder, it
is possible to satisfy the boundary conditions by using component of
vector potential in z-direction. However if one proceeds to find the
scattered or diffracted fields by assuming the existence of magnetic
vector potential component Az only or electric vector potential
component Fz only. That is, same polarization as primary field,
difficulties arise because the boundary conditions cannot be satisfied.
In order to satisfy boundary conditions for PEMC cylinder, it is
required to consider both Az and Fz to calculate all components of
scattered fields. In present discussion, we have considered electric
dipole and magnetic dipole as source of excitation separately.
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2.1. Electric Dipole

Each component of vector potential of electric dipole field may
be expanded in terms of Fourier transform with respect to z
parameter [18].

A�(ρ, φ, z) =
1
2π

∞∑
n=−∞

exp
[
jn(φ − φ0)

] ∞∫
−∞

Ã�n(ρ, h) exp[−jh(z−z0)]dh,

� = ρ, φ, z (2)

In above equation variation with respect to φ in transformed functions
Ã�(ρ, φ, z) has been expanded in terms of Fourier series and Ã�n are
the coefficients of Fourier series of the transformed function.

Ã�(ρ, h, φ) =
∞∑

n=−∞
exp

[
jn(φ − φ0)

]
Ã�n(ρ, h) (3)

In present geometry, the electric dipole is z−directed in the presence of
PEMC cylinder. It is assumed that vector potentials for the scattered
fields in terms of unknown are

As
z(ρ, φ, z) =

µ0Jz

8πj

∞∑
n=−∞

exp
[
jn(φ − φ0)

] ∞∫
−∞

an exp
[
−jh(z − z0)

]
dh

(4a)

F s
z (ρ, φ, z) =

ε0Z0Jz

8πj

∞∑
n=−∞

exp
[
jn(φ − φ0)

] ∞∫
−∞

cn exp
[
−jh(z − z0)

]
dh

(4b)

Using above vector potentials, Fourier transform of the tangential
components of radiated or incident field due to dipole and scattered
electromagnetic fields due to PEMC cylinder are given below.

Ẽi
zn = −Z0Jz

4
χ2

k
H(2)

n (χρ0)Jn(χρ) (5a)

Ẽs
zn = −Z0Jz

4
χ2

k
anH(2)

n (χρ) (5b)

Ẽi
φn = −Z0Jz

4
nh

kρ
H(2)

n (χρ0)Jn(χρ) (5c)

Ẽs
φn = −Z0Jz

4
nh

kρ
anH(2)

n (χρ) +
jJzZ0

4
cnH(2)

n
′(χρ) (5d)
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H̃ i
φn =

jJz

4
χH(2)

n (χρ0)J ′
n(χρ) (5e)

H̃s
φn = −jJz

4
χanH(2)

n
′(χρ) − Jz

4
nh

kρ
cnH(2)

n (χρ) (5f)

H̃ i
zn = 0 (5g)

H̃s
zn = −Z0Jz

4
χ2

k
cnH(2)

n (χρ) (5h)

Unlike the case of standard scattering theory, in which only coefficient
an are needed in the scattered field expansion, here, due to mixing
of the electric and magnetic fields in the boundary conditions, the
coefficients cn have to be added. These new coefficients represent the
cross-polarized components of the scattered field. Actual components
of the field may be obtained using the following relation

E�(ρ, φ, z) =
1
2π

∞∑
n=−∞

exp
[
jn(φ−φ0)

] ∞∫
−∞

Ẽ�n(ρ, h) exp
[
−jh(z−z0)

]
dh,

� = ρ, φ, z (6a)

H�(ρ, φ, z) =
1
2π

∞∑
n=−∞

exp
[
jn(φ−φ0)

] ∞∫
−∞

H̃�n(ρ, h) exp
[
−jh(z−z0)

]
dh,

� = ρ, φ, z (6b)

The tangential field components have to satisfy the boundary condition
at the cylinder surface

H i
t + MEi

t + Hs
t + MEs

t = 0 (7)

and the boundary condition for the radial component is

ε0E
i
ρ − Mµ0H

i
ρ + ε0E

s
ρ − Mµ0H

s
ρ = 0 (8)

In equation (7) subscript t stands for tangential components. Applying
the condition (7) to the φ and z components of the fields, we obtain
the following system of linear equations

MZ0H
(2)
n (χρ0)Jn(χa) + cnH(2)

n (χa) + MZ0anH(2)
n (χa) = 0 (9)[

MjZ0χH(2)
n

′(χa)−nh

ka
H(2)

n (χa)
]
cn−

[
MZ0

nh

ka
H(2)

n (χa)−χH(2)
n

′(χa)
]
an

= MZ0
nh

ka
H(2)

n (χρ0)Jn(χa) − jχH(2)
n (χρ0)J ′

n(χa) (10)
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From these equations we find that the expansion coefficients an and cn

are given by

an =
H

(2)
n (χρ0)H

(2)
n (χa)J ′

n(χa) − (MZ0)2H
(2)
n (χρ0)Jn(χa)H(2)

n
′(χa)[

(MZ0)2 + 1
]
H

(2)
n (χa)H(2)

n
′(χa)

(11)

cn = an

[
MZ0

nh

ka
H(2)

n (χa) + jχH(2)
n

′(χa)
]

MjZ0χH(2)
n

′(χa) − nh

ka
H(2)

n (χa)

+
MZ0

nh

ka
H(2)

n (χρ0)Jn(χa) − jχH(2)
n (χρ0)J ′

n(χa)

MjZ0χH
(2)
n

′(χa) − nh

ka
H(2)

n (χa)
(12)

It can be shown that this solution also satisfies the boundary condition
for normal components (8)

2.2. Magnetic Dipole

When the magnetic dipole is z−directed in the presence of PEMC
cylinder. The Fourier transform of the tangential components of its
incident and scattered electromagnetic fields can be determined from
(1) by using the duality principle, since the magnetic dipole is dual to
the electric dipole.

F�(ρ, φ, z) =
1
2π

∞∑
n=−∞

exp
[
jn(φ−φ0)

] ∞∫
−∞

F̃�n(ρ, h) exp
[
−jh(z−z0)

]
dh,

� = ρ, φ, z (13)

vector potentials for the scattered fields in terms of unknown are

F s
z =

ε0Mz

8πj

∞∑
n=−∞

exp
[
jn(φ − φ0)

] ∞∫
−∞

bn exp
[
−jh(z − z0)

]
dh (14a)

As
z =

µ0Mz

8πZ0j

∞∑
n=−∞

exp
[
jn(φ − φ0)

] ∞∫
−∞

dn exp
[
−jh(z − z0)

]
dh (14b)

Where Mz is the magnetic current density. Using above vector
potentials, Fourier transform of the tangential components of radiated
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or incident field due to dipole and scattered electromagnetic fields due
to PEMC cylinder are given below.

Ẽi
zn = 0 (15a)

Ẽs
zn = −Mz

4
χ2

k
dnH(2)

n (χρ) (15b)

Ẽi
φn =

Mz

4j
χH(2)

n (χρ0)J ′
n(χρ) (15c)

Ẽs
φn =

Mz

4j
χbnH(2)

n
′(χρ) − Mz

4
nh

kρ
dnH(2)

n (χρ) (15d)

H̃ i
φn = − Mz

4Z0

nh

kρ
H(2)

n (χρ0)Jn(χρ) (15e)

H̃s
φn = − Mz

4Z0

nh

kρ
bnH(2)

n (χρ) − Mz

4Z0
dnH(2)

n
′(χρ) (15f)

H̃ i
zn = − Mz

4Z0

χ2

k
H(2)

n (χρ0)Jn(χρ) (15g)

H̃s
zn = − Mz

4Z0

χ2

k
bnH(2)

n (χρ) (15h)

Again, in addition to the usual coefficients bn, we have to add the
coefficients dn, to account for the cross polarized components of the
scattered fields.

The application of the boundary conditions (7) at ρ = a yields

H(2)
n (χρ0)Jn(χa) − bn

Z0
H(2)

n (χa) − MdnH(2)
n (χa) = 0 (16)

[
M

nh

ka
H(2)

n (χa)+
χ

Z0j
H(2)

n
′(χa)

]
dn−

[Mχ

j
H(2)

n
′(χa)− nh

Z0ka
H(2)

n (χa)
]
bn

= − nh

Z0ka
H(2)

n (χρ0)Jn(χa) +
Mχ

j
H(2)

n (χρ0)J ′
n(χa) (17)

Solving for the expansion coefficients we obtain

bn =
H

(2)
n (χρ0)Jn(χa)H(2)

n
′(χa) − (MZ0)2H

(2)
n (χρ0)H

(2)
n (χa)J ′

n(χa)[
(MZ0)2 + 1

]
H

(2)
n (χa)H(2)

n
′(χa)

(18)

dn =

[Mχ

j
H(2)

n
′(χa) − nh

Z0ka
H(2)

n (χa)
]
bn

M
nh

ka
H(2)

n (χa) +
χ

Z0j
H(2)

n
′(χa)
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+
− nh

Z0ka
H(2)

n (χρ0)Jn(χa) +
Mχ

j
H(2)

n (χρ0)J ′
n(χa)

M
nh

ka
H(2)

n (χa) +
χ

Z0j
H(2)

n
′(χa)

(19)

With these coefficients, it is easily shown that the normal boundary
condition (8) is also satisfied.

3. APPLICATION TO SCATTERING CALCULATIONS

We note that in the PEC limit, M → ∞, the scattering coefficients
reduce to the well known form [18]

an = −H
(2)
n (χρ0)Jn(χa)

H
(2)
n (χa)

(20)

bn = −H
(2)
n (χρ0)J ′

n(χa)

H
(2)
n

′(χa)
(21)

while the cross polarization coefficients cn and dn vanish. In the PMC
case, M = 0 the coefficients become

an = −H
(2)
n (χρ0)J ′

n(χa)

H
(2)
n

′(χa)
(22)

bn = −H
(2)
n (χρ0)Jn(χa)

H
(2)
n (χa)

(23)

and the cross polarization coefficients again vanish. It should be
noted that the formulas for an and bn are interchanged when the PEC
cylinder is substituted by a PMC one.

All the scattering coefficients depend on the M parameter, but
from (11) and (18) we find that

an + bn = −H
(2)
n (χρ0)Jn(χa)

H
(2)
n (χa)

− H
(2)
n (χρ0)J ′

n(χa)

H
(2)
n

′(χa)
(24)

which is independent of M .
The largest cross polarized scattered fields occur for MZ0 =

±1, which can be shown to maximize the magnitude of the cross
polarization coefficients cn and dn. Also, in this case we find that
an = bn, so that the scattering pattern for electric and magnetic dipole
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are equal. The dependence of polarization coefficients is shown in
Fig. 1. This figure shows the variation of an and bn for the limiting
cases of MZ0. It may be noted that the behavior of an for PEC limit
(i.e., M → ∞) is same as the behavior of bn for PMC limit (i.e., for
M → 0) and vice versa. Fig. 1 also proves the validity of our results
for the cylinder of any size parameter.

Figure 1. Curve (a) is for a PEC cylinder and electric dipole, and
for a PMC cylinder and magnetic dipole. Curve (c) is for a PEC
cylinder and magnetic dipole, and for a PMC cylinder and electric
dipole. Curve (b) is for a cylinder with MZ0 = ±1, for both electric
and magnetic dipoles. Curve (c) also shows the scattering coefficients
for an un-polarized incident wave, for arbitrary value of M .

Infinite integrals for the scattered field or corresponding potential
functions As

z and F s
z has been evaluated using steepest descent

technique taking observation point in the far zone. Plots are given
for Fz and Az for a cylinder having a size parameter χa = 10.
These results are shown in Figure 2. The cross-polarized scattered
fields vanish in the PEC and PMC cases. The plot for MZ0 = 0
and electric dipole is same the plot for MZ0 → ±∞ and magnetic
dipole. Similarly, The plot for MZ0 → ±∞ and electric dipole is
same the plot for MZ0 = 0 and magnetic dipole. For MZ0 = ±1,
the plots for the co-components of electric and magnetic dipole are
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Figure 2. Far scattered field pattern of a cylinder of size parameter 10,
and MZ0 = 0,±1,±∞, for electric and magnetic dipole respectively.
The full and the dashed curves show the patterns of the co-polarized
and the cross-polarized scattered fields, respectively.
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same. These results proved our analytical formulation. Although
expansion coefficients depend upon admittance parameter, it is shown
that the sum of the expansion coefficients of scattered fields, for electric
and magnetic dipole excitation, becomes independent of the PEMC
admittance parameter M .
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