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Abstract—A hybrid empirical-neural (HEN) model, to account for
a loading effect of arbitrary raised dielectric slab in a microwave
cylindrical metallic cavity, is presented. It is based on combination
of an approximate model, as a rough empirical knowledge holder, and
multi-layer perceptrons (MLP) neural network. In comparison with
the model based only on MLP network, more accurate and efficient
resonant frequencies calculation is achieved.

1. INTRODUCTION

The cylindrical metallic cavities loaded by homogeneous dielectric slabs
represent a configuration very suitable for good modeling of some
practical microwave applicators used for thermal dielectric material
processing in industry. The knowledge of the mode tuning behavior in a
cavity under loading condition (i.e., physical and electrical parameters
of the load) forms an integral part of the studies in microwave heating
and it can considerable help in designing these applicators [1].

Transverse resonance method (TRM) [2] is a conventional
approach for carrying a theoretical analysis of the partially loaded
cylindrical metallic cavities. Representing a loaded cavity as a cascade
connection of the equivalent transmission lines, characteristic equation
for resonance frequency calculation can be derived from the transverse
resonance condition. In a general case, this equation is complex
transcendental and its solution requires an appropriate numerical
technique and an efficient mode identification procedure [3]. Such
complex mathematical calculations are hardware and time consuming
representing a main disadvantage of TRM approach. In order
to overcome this limitation and allow an easy process of mode
identification and resonant frequency measuring, a numerically very
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simple empirical procedure for approximate determination of the
resonant frequencies in loaded microwave cylindrical cavities was
presented in [4]. However, it was applicable only to the simplified
case of dielectric slab placed at the bottom of the cavity.

Artificial neural networks represent an accurate and faster
alternative to the polynomial and empirical models conventionally
used in microwave area [5–11]. This is particularly true either in the
cases when device physics is not fully understood but device output
for specified input is known or in the cases of high-dimensional and
highly non-linear problems modeling. Classical multilayer perceptrons
(MLP) network [5, 12], as one of existing artificial neural networks, is
often used for that purposes allowing for extraction of all functional
dependences of the problem domain exclusively on the basis of the
training data. Thus, beginning of authors’ research concerning the
neural network application in loaded microwave cavity modeling was
based on MLP neural model [13]. Such model was trained by using
TRM as experimentally verified and therefore referent approach for
this type of problems [3].

In order to achieve the acceptable accuracy in the process of loaded
cavity resonant frequencies determination by using MLP model, a
large set of data was needed for training purposes leading to very
difficult and time-consuming process [14]. One way to decrease the
number of training samples and keep the required accuracy is to use a
knowledge based neural (KBN) network [5, 14]. Such neural network
allows for incorporation of already known functional dependences
about modeling problem into the transfer function of some KBN
neurons. In reference [15], a KBN model was proposed for loaded
cavity modeling providing the significantly better accuracy than MLP
model using fewer training samples. Presented model was intended
to solve only the particular case of cavity loaded with dielectric slab
placed at the cavity bottom and therefore it incorporated an existing
partial knowledge about resonant frequency behavior of such loaded
cavity. This KBN model was successfully validated by experimental
and referent TRM results.

In a number of practical microwave heating and drying
applications, dielectric slab can have changeable elevation from the
cavity bottom resulting in more complex configuration of microwave
applicators. Arbitrary raised dielectric slab represents a generalization
of the case when dielectric material is placed at the cavity bottom.
Such general cavity load form is very difficult to solve using KBN
network architecture presented in [15], because incorporated partial
knowledge of resonant frequency behavior does not include explicitly
the influence of dielectric slab elevation. One way to describe arbitrary
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raised dielectric slab influence on cavity resonant frequency and still
keep the advantages of neural network modeling is to modify empirical
approach based an approximate model [4] and to combine it with
appropriate neural network. In this paper, empirical approach is
modified in terms that linear approximation is used to account for
dependence of resonant frequency curves on arbitrary elevation of
cavity load. Such approximate model provides a rough resonant
frequency solution, which can be further refined using MLP network
forming a hybrid empirical-neural (HEN) model. This hybrid model is
able to provide accurate modeling when training set is too small and
when acceptable accuracy can not be achieved using classical MLP
model alone. In addition, previously analyzed case of load in the form
of dielectric slab located on the cavity bottom can be easily treated by
new model as a special case of more general raised dielectric load form.
HEN model accuracy and efficiency are illustrated through comparison
with experimental and referent TRM results obtained for the case of
resonant frequency determination of the TM112 mode in a cylindrical
metallic cavity with circular cross-section.

2. KNOWLEDGE ABOUT LOADED CAVITY
RESONANT FREQUENCY

Conducted research presented in [3] has shown that the resonant
frequency fr of excited TM/TEmnp mode in a cylindrical metallic
cavity loaded by homogeneous dielectric slab elevated from the cavity
bottom (Fig. 1) can be expressed as a following function:

fr = f(th, εr, eh) (1)

where: εr, is a relative dielectric permittivity, th is a filling factor
(th = t/h, where tis thickness of dielectric slab and h is height of the
cavity) and eh is an elevation factor eh (eh = e/h, where e is the
elevation of dielectric slab from the cavity bottom).

Using short-circuit boundary (electric wall) in a interface plane
between dielectric slab and air, for the the special case when eh = 0,
the following equations are derived from the condition of resonance
applied separately in air and dielectric part of the cavity:

h − t = � · λt0

2
(2)

t = k · λt

2
(3)

where λt0 is a wavelength of waveguide filled with air, λt is a wavelength
of waveguide filled with dielectric material and with the same cross-
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Figure 1. Microwave cylindrical metallic cavity with circular and
rectangular cross-section loaded by dielectric slab of thickness t and
elevation e from the cavity bottom.

section as considered cavity, while integers l and k are the number of
half waves of standing wave for electric field in corresponding part of
the cavity. From the expression for phase constant:

β2 =
(

2π

λt

)2

= (2πf)2 εµ − k2
c (4)

frequency f can be expressed as

f2 =

(
c√
εr

1
λt

)2

+

(
fc0√
εr

)2

(5)

where fc0 = ckc/(2π) represents the cutoff frequency of a waveguide
with the same cross-section as cavity and filled with air, while kc is
a constant that depends on mode of oscillation and waveguide cross-
section shape and dimensions [2].

From the Eqs. (2), (3) and (5), the appropriate expressions for
resonant frequency calculation in air and dielectric part of cavity can
be easily derived as a function of filling factor th:

f
(A)
r(	) (th) =

√(
� · f0

1 − th

)2

+ f2
c0 � =

{
0, 1, 2, . . . for TMmnp modes
1, 2, 3, . . . for TEmnp modes

(6)

f
(D)
r(k) (th, εr) =

√√√√(
k · f0√

εr

1
th

)2

+

(
fc0√
εr

)2

k = 1, 2, 3, . . . (7)
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where f0 = c/(2h).
Applying open-circuit boundary (magnetic wall) in the interface

plane between dielectric and air, for the the special case when eh =
0, the following equations are derived from anti-resonant condition
applied separately in air and dielectric part of the cavity:

h − t = (2� − 1) · λt0

4
(8)

t = (2k − 1) · λt

4
(9)

Similarly, from the Eqs. (5), (8) and (9), the appropriate
expressions for anti-resonant frequency calculation in air and dielectric
part of the cavity can be found as:

f (A)
a (th) =

√(
2� − 1

2
· f0

1 − t/h

)2

+ f2
c0 l = 1, 2, 3, . . . (10)

f (D)
a (th, εr) =

√√√√(
2k − 1

2
· f0√

εr
· 1
t/h

)2

+

(
fc0√
εr

)2

k = 1, 2, 3, . . .

(11)
Detailed semi-empirical analysis of cylindrical metallic cavities

loaded with raised dielectric slab [3] has shown that resonant frequency
curves, for considered TM/TEmnp mode excited in such cavities,
independently of the elevation factor value, are passing through
characteristic points RRl

k(εr) (Fig. 2a), already identify in [15] as a
crossing point of k-th resonant curve in dielectric part of the cavity
(RD curve) and l-th resonant curve in air part of the cavity (RA curve).
In addition, for the special case of cavity load position (cavity load
placed at the cavity bottom, ek = 0), characteristic points AAl

k(εr)
(Fig. 2b), as a crossing point of k-th anti-resonant curve in dielectric
part of the cavity (ARD curve) and l-th anti-resonant curve in air part
of the cavity (ARA curve) are also of interest for resonant frequency
curves determination. The characteristic points are easily found from
Eqs. (6), (7), (10) and (11) for known relative permittivity εr.

As it can be seen from Fig. 2(a), with the increase of filling factor
th, resonant frequency curves are passing through characteristic points
with the following order: FA

0 , RR(p−1)
1 , RR(p−2)

2 , . . . , RRmin(l)
p , where

FA
0 is the characteristic point determined by the resonant frequency of

an empty cavity. In these points, resonant frequencies of considered
oscillated mode, for a given value of dielectric permittivity, are the
same irrespectively to the value of elevation factor. In the areas
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Figure 2. Family of the resonant frequencies for TM11p mod obtained
using TRM for the cylindrical metallic cavity with circular cross-section
(r = 7 cm and h = 14.24) loaded with dielectric slab of relative
permittivity εr = 80 for: (a) different elevation factors eh, (b) for
elevation factor eh = 0. · · · resonant curves monotonous increasing
in air part (RA curves) and monotonous decreasing in dielectric part
of the cavity (RD curves). - - - anti-resonant curves monotonous
increasing in air part (ARA curves) and monotonous decreasing in
dielectric part of the cavity (ARD curves).
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between characteristic points RRl
k(εr), there are small deviations of

resonant frequencies in comparison with the whole range of their
changes. Thus, for each pair of characteristic points RRλ

k i RR	−1
k+1

and their corresponding filling factors (thp)εr

RR�
k

and (thp)εr

RR�−1
k+1

, linear

function passing through these points could be used for a rough
approximation of resonant frequency curve in [(thp)εr

RR�
k

, (thp)εr

RR�−1
k+1

]

segment.
In the area where filling factor is greater than the filling

factor corresponding to the last characteristic point in series (th >
(thp)εr

RR
min(�)
p

), point A’ on anti-resonant curve given by Eq. (11) for

k = p + 1, having the same value of resonant frequency as the last
characteristic point RRmin(l)

p , can be noticed. As an illustration,
location of point A’ for mode TM113 (p = 3) is shown in Fig. 3. Value
of filling factor corresponding to the point A’ is:

t′h = (thp)εr
A′ =

2p + 1
2

· f0√
εr ·

[
(frp)εr

RR
min(�)
p

]2

− f2
c0

(12)

On the same anti-resonant curve, an additional point A can be
defined. The filling factor corresponding to this point is:

tAh = (thp)εr
A = t′h +

(
t′h − (thp)εr

RR
min(�)
p

)
(13)

while the value of resonant frequency is:

(fr)
εr
A = f

(D)
a(p+1)

(
tAh , εr

)
=

√√√√(
2p + 1

2
· f0√

εr
· 1
tAh

)2

+

(
fc0√
εr

)2

(14)

Point A determines the segment [(thp)εr

RR
min(�)
p

, (thp)εr
A ] in which

the value of resonant frequency is approximated by linear function
passing through the last characteristic point and point A. For the filling
factor values th > (thp)εr

A , resonant frequency is approximated by anti-
resonant curve given by Eq. (11) for k = p + 1. Therefore, resonant
frequency curves of cylindrical metallic cavities loaded with raised
dielectric slab can be roughly described with the following general
function notation (so-called approximate model):
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Figure 3. Resonant frequencies of TM113 mode, for the cylindrical
metallic cavity with circular cross-section (r = 7 cm and h = 14.24)
loaded with dielectric slab of relative permittivity εr = 80, versus
filling factor th obtained by TRM for two different elevation factor
values (dotted line) and by linear approximation model (solid line).
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Fact that RRl
k(εr) and AAl

k(εr) points describe to some extent
the behavior of resonant frequency curves (mode tuning behavior)
for different values of elevation factor and that they are determined
directly by resonant frequency functions in air and dielectric part of
the cavity, given in analytical form, allows that approximate model
provides rough but quick solution of loaded cavity resonant frequency.

3. HYBRID EMPIRICAL-NEURAL MODEL OF LOADED
CAVITY

Architecture of the proposed hybrid empirical-neural model for
resonant frequency determination of the cylindrical metallic cavity
loaded with arbitrary raised dielectric slab is presented in Fig. 4. It
is based on so-called PKI (Prior Knowledge Input) approach in which
empirical model with corresponding connection to the neural network

...

...

hidden
layer 1

hidden
layer NH

th ε r
eh

fr

input layer

output layer

... hidden
layer 2

1 2

1

1

2

2

N1

N2

NH

fr

AP

Approximate
model

MLP network

Figure 4. Architecture of proposed hybrid empirical-neural (HEN)
model of the cylindrical metallic cavity loaded with arbitrary raised
dielectric slab.
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provides higher generalization of the network [5]. In this paper, this
is achieved by presenting extra information about the problem at the
input of the neural network.

Approximate model, defined in Section 2, is used as empirical
model in this hybrid structure. Input in such model is represented
by vector xAP = [th εr]T while its output is approximate value of
resonant frequency fAP

r . Approximate model determines the resonant
frequency fAP

r in three steps (Fig. 5). In the first step, resonant and
anti-resonant frequency curves in air and dielectric part of the cavity
are implemented in analytical form for TM/TEmnp modes and for
considered cavity; Eqs. (6), (7), (10), and (11). In the second step,
based on previously implemented resonant and anti-resonant modes,
the co-ordinates of characteristic points are numerically determined
for given mode and given relative permittivity of dielectric material.
Finally, for given filling factor the value of resonant frequency between
the characteristic points is approximated by linear function described
in Eq. (15).

Step 1: Resonant and anti-resonant
frequency curves determination

Step 2: Determination of
characteristic points co-ordinates

Step 3: Linea approximationr

TE/TM m n p εr th

fa

(D)( , , )εr t kh f tr h

(A)( , ) f t kr h

(D)( , , )εr

th co-ordinate of
characteristic

points

fr co-ordinate of
characteristic

points

fr

AP

hr

Figure 5. Flow chart of data processing in approximated model.

MLP network is used as a neural network of proposed HEN model
(Fig. 4). Its task is, based on resonant frequency information obtained
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from approximate model, fAP
r , and based on input parameters values,

to determine accurately the resonant frequencies of cylindrical metallic
cavity loaded with arbitrary raised dielectric slab. It consists of
neurons grouped into the following layers: an input layer, an output
layer and one or more hidden layers of sigmoid neurons. The buffered
input layer contains four neurons corresponding to fAP

r , th, εr and
eh, (x = [fAP

r th εr eh]T ), while output layer contains one linear
neuron which correspond to fr. The number of neurons in the hidden
layers can be variable. Among neurons in the same layer, there are no
connections. Inputs of each neuron from l-th hidden layers are outputs
of all neurons from (l − 1)-th hidden layer. Vector of l-th hidden layer
outputs of MLP network is:

yl = F (wlyl−1 + bl) (16)

where: yl is a Nl× 1 vector of l−th hidden layer outputs, yl−1 is a
Nl−1× 1 vector of (l − 1)-th hidden layer outputs, wl is a Nl × Nl−1

connection weight matrix among (l − 1)-th and l-th hidden layer
neurons and bl is a vector containing biases of l-th hidden layer
neurons. In the above notation y0 represents outputs of the buffered
input layer y0 = x = [fAP

r th εr eh]T . F is the transfer function of
hidden layer neurons and it is a hyperbolic tangent sigmoid transfer
function

F (u) =
eu − e−u

eu + e−u
(17)

All neurons from the last hidden layer H are connected with the neuron
of the output layer. Since the transfer function of output layer is linear,
the output of the KBN network is

fr = woyH (18)

where wo is a 1×NH connection weight matrix among the H-th hidden
layer neurons and output layer neuron. Based on this, MLP network
in HEN model can be described with the following general function
notation

fr = f(x, W ) (19)

where x represents vector of input variables in MLP part of HEN
model, x = [fAP

r th εr eh]T and W is weight matrix of MLP network,
W = {w1, . . . ,wH ,wo,b1, . . . ,bH}. General symbol of HEN model
is HENH −N1-. . . -Ni-. . . -NH where Hrepresents the total number of
hidden layers in MLP network while Ni is the number of neurons in
the i−th MLP hidden layer.

Important step in HEN model developing is training of its
neural network part. For presented architecture, neural network
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learning of relationship (1) uses a set of training data S ={
(x′

s, f
′d
rs), s = 1, 2, . . . , NS

}
where x′

s is a vector of input parameters
that includes, besides dielectric permittivity and filling factor, the
resonant frequency obtained from empirical part of the model and
the elevation factor (x′

s = [fAP ′
r t′h ε′r eh]T ), f ′d

rs is desired network
output for x′

s at its inputs and NS is a total number of data samples.
Training goal is to achieve the total error E(W ), between the desired
outputs and the actual outputs f ′

rs from MLP network, lower than the
prescribed value Ec by adjusting matrix parameters W .

Ec > E(W ) =
1
2

NS∑
s=1

(
f ′d

rs − f ′
rs

)2
(20)

As MLP network belongs to non-recurrent neural structures, gradient-
based algorithms, such as Quasi-Newton’s or Levenberg Marquardts
algorithms [5, 11], can be used for network parameters adjustment.

In order to reduce additionally the training set and to increase the
modeling efficiency, a modification of non-uniform distribution of the
training samples, presented in [15], is used. This is done according to
the behavior of resonant frequencies in th-εr space. For given εr and
eh, the values which correspond to the characteristic points RR of the
modeled TM/TEmnp mode, to three equidistant added points between
them, as well as to the boundary points (for th = 0 and th = 0.2) are
used for input parameter th

Ith =

{
0,

(th)RRP−1
1

4
,
(th)RRP−1

1

2
,
3 · (th)RRP−1

1

4
, (th)RRP−1

1
, . . . , 0.2

}

(21)
Values of εr are generated in the following way

εri = 1 + i2, i = 1, 2, . . . , 9 (22)

The values for input parameters eh, are

Ieh
= {0, 0.2, 0.4, 0.6, 0.8} (23)

For each combination of the input parameters from the set

XP =
9⋃

i=1

Ith × {εri} × Ieh
(24)

the corresponding resonant frequency is computed by TRM and in
that way the samples for the training set are provided. After the
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training process is finished, adjustable network parameters are not
changed any more during the model exploitation. Trained HEN model
has a generalization capability, i.e., to provide a fast response for
arbitrary vector from the input space without any additional change
of its structure or its parameters.

Testing process of trained models is conducted next. Purpose
of HEN model testing is to determine the training success, i.e. to
estimate the model accuracy in its real applications. For model testing,
a data set of the same format as training set (arrange set of 5 elements
which consists of testing vales of input parameters not used during the
training and value of expected resonant frequency at the model output
for these input parameters) is used. Based on HEN model values of
resonant frequency at its output, obtained for all input parameters
values from test set, and expected (referent) resonant frequency values
for the same input parameters, statistical analysis of error at HEN
model output is done. This analysis includes the calculation of
average test error (ATE [%]), worst-case error (WCE [%]), and Pearson
Product-Moment correlation coefficient (rPPM ) [5, 15].

4. MODELING EXAMPLE

In this section, the proposed HEN approach is applied to calculate
TM112 mode resonant frequencies of the experimental cylindrical
metallic cavity with circular cross-section with dimensions r = 7 cm
and h = 14.24 (Fig. 6(a) and Fig. 6(b)). Input parameters and
their ranges are given in Table 1. For the training purposes, a set of
non-uniform samples, whose distribution is described in the previous
section, is generated by using TRM (82 samples per elevation factor
giving in total 410 samples). In order to obtain a model as good as
possible, training of various HENH-N1-. . . -Ni-. . . -NH networks where
1 ≤ H ≤ 3 and 1 ≤ Ni ≤ 30, is done using the same training set P.
In addition, for the purpose of comparing HEN models with classical
MLP models, the same sample set is used for classical MLP models
training. Levenberg Marquardt’s training algorithm with prescribed
error value Eck = 10−4 is chosen.

Table 1. Ranges of input and output parameters of the neural model.

I/O parameter th εr eh fr

I/O type input input input output
Range 0–0.2 2–82 0–0.8 0–10 GHz
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(a) (b)

Figure 6. (a) Experimental cylindrical metallic cavity with circular
cross-section, (b) dielectric slab elevated from the cavity bottom by
using thin pertinax clip.

Figure 7. Scattering diagram for HEN2-9-9 model.

Testing of both HEN and classical MLP models, for testing data
set (320 uniformly distributed samples) not used in their training
process, is done. The testing results for eight HEN models and for eight
MLP models with the highest rPPM correlation coefficient are shown in
Table 2 and Table 3, respectively. It can be seen that the HEN models
show significantly lower average testing errors (ATE and WCE) and
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higher rPPM correlation coefficients than classical MLP models. For
HEN and MLP model with the highest rPPM correlation factor for a
given testing set (HEN2-9-9 and MLP2-12-12), appropriate scattering
diagrams (Fig. 7 and Fig. 8) show that HEN model has significantly
less deviation of output parameters from their expected values than
classical MLP model.

Table 2. Testing results for eight HEN models.

HEN model Worst case error [%] Average error [%] rPPM

HEN2-9-9 4.41 0.76 0.9990

HEN2-8-8 4.74 0.76 0.9990

HEN2-12-11 5.03 0.73 0.9990

HEN2-10-8 4.38 0.77 0.9990

HEN2-14-11 4.78 0.78 0.9988

HEN2-14-12 4.09 0.80 0.9988

HEN2-10-4 4.04 0.80 0.9987

HEN2-15-9 6.52 0.82 0.9986

Table 3. Testing results for eight MLP models.

MLP model Worst case error [%] Average error [%] rPPM

MLP2-12-12 8.83 1.41 0.9970

MLP2-12-8 12.59 1.30 0.9963

MLP2-20-20 8.65 1.54 0.9961

MLP2-20-15 9.87 1.54 0.9958

MLP2-14-11 18.56 1.23 0.9965

MLP2-22-22 10.37 1.60 0.9959

MLP2-9-9 11.06 1.58 0.9958

MLP2-18-16 12.32 1.81 0.9954

The same models are selected for the TM112 mode simulation:
HEN model (HEN2-9-9) and classical MLP model (MLP2-12-12). The
resonant frequency values obtained by these two models are compared
with the measured data, for the case when water slab is raised
from the cavity bottom at height e = 0.65h (Fig. 9). Elevation of
water is achieved by thin pertinax clip of thickness 0.9 mm and low
permittivity in considered frequency range, fixed by silicone glue to the
cavity walls in order to achieve waterproofing below clip (Fig. 6(b)).
Such clip parameters provide insignificant influence to the resonant
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Figure 8. Scattering diagram for MLP2-12-12 model.
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Figure 9. Resonant frequency of TM112 mode obtained by using
KBN-MLP model, MLP model, TRM and measurement vs. filling
factor for the case of water dielectric slab with elevation factor eh =
0.65.

frequency measurements. Measurement of the resonant frequencies
was performed using a HP8753C network analyzer in the frequency
range from 1 to 4 GHz at ambient temperature equals 20◦C (a detailed
description of used experimental set-up can be found in [16]). The
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Figure 10. Resonant frequency of TM112 mode obtained by using (a)
HEN model and TRM, (b) MLP model and TRM (referent curve) vs.
filling factor for different values of relative dielectric permittivity (3,
30, 80) and elevation factor eh = 0.65.

analysis of the presented results shows that simulated values obtained
using HEN2-9-9 model are closer to the measured values than the
values obtained using MLP2-11-11 model (Fig. 9).

In addition, TRM results follow experimental results confirming
the approach of using TRM for training and validation purposes of
developed neural models. Therefore, the values of resonant frequency
for elevation factor eh = 0.65 (Fig. 10(a) and Fig. 10(b)) and eh = 0.45
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0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

 TRM
 HEN2-9-9

e
r
 = 3

e
r
 = 80

e
r
 = 30

e
h
 = 0.45

f r [
G

H
z]

t
h

(a)

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

e
h
 = 0.45

e
r
 = 80

e
r
 = 30

e
r
 = 3

t
h

f r [
G

H
z]

 TRM
 MLP2-12-12

(b)

Figure 11. Resonant frequency of TM112 mode obtained by using a)
HEN model and TRM, b) MLP model and TRM (referent curve) vs.
filling factor for different values of relative dielectric permittivity (3,
30, 80) and elevation factor eh=0.45.

(Fig. 11(a) and Fig. 11(b)) and three values of relative permittivity εr

(3,30,80) obtained by these two models are compared with the referent
curves obtained using the TRM. Again, the same conclusion can be
derived that HEN2-9-9 model provides better accuracy than MLP2-
11-11 model.
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Figure 12. Resonant frequency of TM112 mode vs. cavity filling factor
and elevation factor obtained by using (a) TRM, (b) HEN model, and
(c) MLP model.

Further, a three-dimensional (3D) presentation of the resonant
frequency dependence versus the cavity filling factor th and elevation
factor eh obtained by these models is presented in Fig. 12(b) (HEN2-
9-9) and in Fig. 10(c) (MLP2-11-11). Comparing these 3D plots with
the referent surface obtained using TRM (shown in Fig. 10(a), it can
be seen that the surface obtained by HEN model is more similar to the
referent surface than the surface obtained by MLP model. For 3D plot
generating in 10000 points per area both models take 3–5 sec, while
transverse resonance method takes about 20 hours to run on Pentium
III 1.1 GHz–128 MB RAM hardware platform.
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5. CONCLUSION

Neural network models represents an accurate and faster alternative to
EM models, based on numerical methods (such as transverse resonant
method), for loaded microwave cavity modeling. However, classical
neural network approach based on MLP network needs a large number
of training samples to provide required model accuracy. Increase of
neural network modeling efficiency can be achieved by incorporating
an existing partial knowledge from problem domain into the model
architecture. First approach of knowledge incorporation is to use the
KBN network which at the moment can be applied only to particular
case of dielectric slab placed at the cavity bottom. However, in real
applications of microwave heating and drying, more general cavity
load case in the form of arbitrary raised dielectric slab can be often
found. Good solution for such loaded cavity modeling offers the
second knowledge incorporation approach, based on realization of the
hybrid empirical-neural network, presented in this paper. HEN model
provides the satisfied accuracy for significantly smaller number of
training samples than MLP network or in the case of fewer training
samples provides significantly better accuracy than MLP network on
the same training set. Such capabilities of developed HEN model
are illustrated on the example of resonant frequency determination
of the TM112 mode in an experimental cylindrical metallic cavity with
circular cross-section.
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