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Abstract—A new and effective direct method to determine the
numerical solution of specific nonlinear Volterra-Fredholm integral and
integro-differential equations is proposed. The method is based on
vector forms of block-pulse functions (BPFs). By using BPFs and
its operational matrix of integration, an integral or integro-differential
equation can be transformed to a nonlinear system of algebraic
equations. Some numerical examples are provided to illustrate
accuracy and computational efficiency of the method. Finally, the error
evaluation of this method is presented. The benefits of this method are
low cost of setting up the equations without applying any projection
method such as Galerkin, collocation, . . . . Also, the nonlinear system
of algebraic equations is sparse.
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1. INTRODUCTION

Over several decades, numerical methods in Electromagnetics have
been the subject of extensive researches [1–11]. On the other hand,
many problems in Electromagnetics can be modeled by integral and
integro-differential equations (see [12–21]); for example, electric field
integral equation (EFIE) and magnetic field integral equation (MFIE).
In recent years, several numerical methods for solving linear and
nonlinear integro-differential equations have been presented. Some
authors use decomposition method [22, 23]. In most methods, a set of
basis functions and an appropriate projection method such as Galerkin,
collocation, . . . or a direct method have been applied [24–29]. These
methods often transform an integral or integro-differential equation to
a linear or nonlinear system of algebraic equations which can be solved
by direct or iterative methods. In general, generating this system needs
calculation of a large number of integrations.

This paper considers specific cases of Volterra-Fredholm integral
and integro-differential equations of the forms

x(s)+λ1

∫ s

0
k1(s, t)F (x(t)) dt+λ2

∫ 1

0
k2(s, t)G(x(t)) dt = y(s),

0 � s < 1,
(1)

and 

x′(s) + q(s)x(s) + λ1

∫ s

0
k1(s, t)F (x(t)) dt

+ λ2

∫ 1

0
k2(s, t) G(x(t)) dt = y(s),

x(0) = x0, 0 � s < 1,

(2)

where the functions F (x(t)) and G(x(t)) are polynomials of x(t) with
constant coefficients. For convenience, we put F (x(t)) = [x(t)]n1 and
G(x(t)) = [x(t)]n2 where, n1, n2 are positive integers. Note that the
method presented in this article can be easily extended and applied to
any nonlinear integral and integro-differential equations of the forms
Eqs. (1) and (2). It is clear that for n1, n2 = 1, Eqs. (1) and (2)
are linear integral and integro-differential equations respectively. Also,
without loss of generality, it is supposed that the interval of integration
is [0, 1), since any finite interval [a, b) can be transformed to interval
[0, 1) by linear maps [26].

For solving these equations, this paper uses the orthogonal block-
pulse functions (BPFs). By using vector forms of BPFs and its
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operational matrix of integration, Eqs. (1) and (2) can be easily
reduced to a nonlinear system of algebraic equations.

Finally, we apply the proposed method on some examples to show
its accuracy and efficiency. Also, the error evaluation of this method
is presented.

2. REVIEW OF BLOCK-PULSE FUNCTIONS

Block-pulse functions are studied by many authors and applied for
solving different problems; for example, see [30, 31].

2.1. Definition

An m-set of block-pulse functions (BPFs) is defined over the interval
[0, T ) as

φi(t) =


1,

iT

m
� t <

(i+ 1)T
m

,

0, otherwise,
(3)

where, i = 0, 1, . . . ,m − 1, with a positive integer value for m. Also,
consider h = T/m, and φi is the ith block-pulse function.

In this paper, it is assumed that T = 1, so BPFs are defined over
[0, 1), and h = 1/m.

There are some properties for BPFs, the most important
properties are disjointness, orthogonality, and completeness.

The disjointness property can be clearly obtained from the
definition of BPFs:

φi(t)φj(t) =
{
φi(t), i = j,

0, i �= j,
(4)

where i, j = 0, 1, . . . ,m− 1.
The other property is orthogonality. It is clear that∫ 1

0
φi(t)φj(t)dt = h δij , (5)

where, δij is the Kronecker delta.
The third property is completeness. For every f ∈ L2([0, 1)), when

m approaches to the infinity, Parseval’s identity holds:∫ 1

0
f2(t)dt =

∞∑
i=0

f2
i ‖ φi(t) ‖2, (6)
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where,

fi =
1
h

∫ 1

0
f(t) φi(t)dt. (7)

2.2. Vector Forms

Consider the m terms of BPFs and write them concisely as m-vector:

Φ(t) = [φ0(t), φ1(t), . . . , φm−1(t)]T , t ∈ [0, 1). (8)

Above representation and disjointness property, follows:

Φ(t)ΦT (t) =



φ0(t) 0 . . . 0

0 φ1(t) . . . 0
...

...
. . .

...
0 0 . . . φm−1(t)


 , (9)

∫ 1

0
Φ(t)ΦT (t)dt =



h 0 . . . 0
0 h . . . 0
...

...
. . .

...
0 0 . . . h


 = hIm×m = D, (10)

ΦT (t)Φ(t) = 1, (11)

Φ(t)ΦT (t)V = Ṽ Φ(t), (12)

where, V is an m-vector and Ṽ = diag(V ). Moreover, it can be clearly
concluded that for every m×m matrix B:

ΦT (t)BΦ(t) = B̂T Φ(t), (13)

where, B̂ is an m-vector with elements equal to the diagonal entries of
matrix B.

2.3. BPFs Expansion

The expansion of a function f(t) over [0, 1), with respect to φi(t),
i = 0, 1, . . . ,m− 1 may be compactly written as

f(t) �
m−1∑
i=0

fi φi(t) = F T Φ(t) = ΦT (t)F, (14)
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where, F = [f0, f1, . . . , fm−1]T and fi is defined by (7).
Now, assume k(t, s) is a function of two variables in L2([0, 1) ×

[0, 1)). It can be similarly expanded with respect to BPFs as

k(t, s) � ΦT (t)KΨ(s), (15)

where, Φ(t) and Ψ(s) are m1 and m2 dimensional BPF vectors
respectively, and K is the m1 ×m2 block-pulse coefficient matrix with
kij , i = 0, 1, . . . ,m1 − 1, j = 0, 1, . . . ,m2 − 1 as follows:

kij = m1m2

∫ 1

0

∫ 1

0
k(t, s) φi(t) ψj(s)dtds. (16)

For convenience, we put m1 = m2.

2.4. Operational Matrix

Computing
∫ t
0 φi(τ)dτ follows:

∫ t

0
φi(τ)dτ =




0, t < ih,

t− ih, ih � t < (i+ 1)h,
h, (i+ 1)h � t < 1.

(17)

Note that t − ih, equals to h/2, at mid-point of [ih, (i + 1)h]. So, we
can approximate t− ih, for ih � t < (i+ 1)h, by h/2.

Now, expressing
∫ t
0 φi(τ)dτ , in terms of the BPFs follows:∫ t

0
φi(τ)dτ �

[
0, . . . , 0,

h

2
, h, . . . , h

]
Φ(t), (18)

in which h/2, is ith component. Therefore,∫ t

0
Φ(τ)dτ � PΦ(t), (19)

where, Pm×m is called operational matrix of integration and can be
represented as

P =
h

2




1 2 2 . . . 2
0 1 2 . . . 2
0 0 1 . . . 2
...

...
...

. . .
...

0 0 0 . . . 1


 . (20)

So, the integral of every function f can be approximated as follows:∫ t

0
f(τ)dτ �

∫ t

0
F T Φ(τ)dτ � F TPΦ(t). (21)
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3. DIRECT METHOD

In this section, by using results obtained in previous section
about BPFs, an effective and accurate direct method for solving
nonlinear Volterra-Fredholm integral and integro-differential equations
is presented.

First, we require to prove the following lemma.

Lemma 1. Let m-vectors X and Xn be BPFs coefficients of x(s) and
[x(s)]n respectively. If

X = (x0, x1, . . . , xm−1)T , (22)

then

Xn = (xn
0 , x

n
1 , . . . , x

n
m−1)

T , (23)

where, n � 1 is a positive integer.

Proof. When n = 1, (23) follows at once from [x(s)]n = x(s).
Suppose that (23) holds for n, we shall deduce it for n + 1. Since
[x(s)]n+1 = x(s)[x(s)]n, from assumption, Eqs. (14) and (12) follows:

[x(s)]n+1 � (XT Φ(s)).(XT
n Φ(s))

= XT Φ(s)ΦT (s)Xn

� XT X̃nΦ(s).

(24)

Now, using (23) we obtain

XT X̃n = (xn+1
0 , xn+1

1 , . . . , xn+1
m−1)

T . (25)

Therefore, (23) holds for n+ 1, and the lemma is established.

So, the components of Xn can be computed in terms of
components of vector X.

3.1. Volterra-Fredholm Integral Equation

Consider the following nonlinear Volterra-Fredholm integral equation
of the second kind:

x(s)+λ1

∫ s

0
k1(s, t)[x(t)]n1 dt+λ2

∫ 1

0
k2(s, t) [x(t)]n2 dt = y(s),

0 � s < 1,
(26)
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where the parameters λ1 and λ2, and the functions y(s), k1(s, t)
and k2(s, t) are known but x(s) is not. Moreover, k1(s, t), k2(s, t) ∈
L2([0, 1) × [0, 1)) and y(s) ∈ L2([0, 1)).

Approximating functions x(s), [x(s)]n1 , [x(s)]n2 , y(s), k1(s, t) and
k2(s, t) with respect to BPFs, using (14) and (15) gives

x(s) � XT Φ(s) = ΦT (s)X

[x(s)]n1 � XT
n1

Φ(s) = ΦT (s)Xn1

[x(s)]n2 � XT
n2

Φ(s) = ΦT (s)Xn2

y(s) � Y T Φ(s) = ΦT (s)Y

k1(s, t) � ΦT (s)K1Φ(t)

k2(s, t) � ΦT (s)K2Φ(t),

(27)

where m-vectors X, Xn1 , Xn2 , Y , and m×m matrices K1 and K2 are
BPFs coefficients of x(s), [x(s)]n1 , [x(s)]n2 , y(s), and k1(s, t), k2(s, t),
respectively.

For solving Eq. (26), we substitute (27) into (26), therefore,

Y T Φ(s) � XT Φ(s)

+ λ1ΦT (s)K1

∫ s

0
Φ(t)ΦT (t)Xn1dt

+ λ2ΦT (s)K2

∫ 1

0
Φ(t)ΦT (t)Xn2dt.

(28)

Using Eq. (10) and Eq. (12) follows:

Y T Φ(s) � XT Φ(s)

+ λ1ΦT (s)K1X̃n1

∫ s

0
Φ(t)dt

+ λ2ΦT (s)K2DXn2 .

(29)

Using operational matrix P , in Eq. (20), gives

Y T Φ(s) � XT Φ(s)

+ λ1ΦT (s)K1X̃n1PΦ(s)

+ λ2(K2DXn2)
T Φ(s),

(30)

in which, λ1K1X̃n1P is an m×m matrix. Eq. (13) follows:

ΦT (s)λ1K1X̃n1PΦ(s) � X̂T
n1

Φ(s), (31)
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where, X̂n1 is an m-vector with components equal to the diagonal
entries of the matrix λ1K1X̃n1P .

Now, Combining (30) and (31), and replacing � with = gives

Y T Φ(s) = XT Φ(s) + X̂T
n1

Φ(s) + λ2(K2DXn2)
T Φ(s), (32)

or

X + X̂n1 + λ2K2DXn2 = Y. (33)

Equation (33) is a nonlinear system of m algebraic equations for
them unknowns x0, x1, . . . , xm−1, components ofX can be obtained by
an iterative method. Hence, an approximate solution x(s) � XT Φ(s)
can be computed for Eq. (26) without using any projection method.

3.2. Volterra-Fredholm Integro-Differential Equation

Consider the following Volterra-Fredholm nonlinear integro-differential
equation:



x′(s) + q(s)x(s) + λ1

∫ s

0
k1(s, t)[x(t)]n1 dt

+ λ2

∫ 1

0
k2(s, t) [x(t)]n2 dt = y(s),

x(0) = x0, 0 � s < 1, n1, n2 � 1,

(34)

where the parameters λ1 and λ2 and L2 functions q(s), y(s), k1(s, t)
and k2(s, t) are known but x(s) is not. Note the appearance of initial
condition equation in Eq. (34). This is necessary to ensure existence
of a solution.

Approximating functions x′(s) and q(s) with respect to BPFs,
from (14) and (15) gives

x′(s) � X ′T Φ(s) = ΦT (s)X ′

q(s) � QT Φ(s) = ΦT (s)Q,
(35)

where m-vectors X ′ and Q are BPFs coefficients of x′(s) and q(s)
respectively.

For solving Eq. (34), we substitute (27) and (35) into (34),
therefore,

Y T Φ(s) � X ′T Φ(s) +QT Φ(s)ΦT (s)X

+λ1ΦT (s)K1

∫ s

0
Φ(t)ΦT (t)Xn1dt

+λ2ΦT (s)K2

∫ 1

0
Φ(t)ΦT (t)Xn2dt.

(36)
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Using Eq. (10) and Eq. (12) follows:

Y T Φ(s) � X ′T Φ(s) + (Q̃Φ(s))TX

+λ1ΦT (s)K1X̃n1

∫ s

0
Φ(t)dt

+λ2ΦT (s)K2DXn2 .

(37)

Using operational matrix P , in Eq. (20), gives

Y T Φ(s) � X ′T Φ(s) +XT Q̃Φ(s)
+λ1ΦT (s)K1X̃n1PΦ(s)
+λ2(K2DXn2)

T Φ(s),

(38)

in which, λ1K1X̃n1P is an m×m matrix. Eq. (13) follows:

ΦT (s)λ1K1X̃n1PΦ(s) � X̂T
n1

Φ(s), (39)

where, X̂n1 is an m-vector with components equal to the diagonal
entries of the matrix λ1K1X̃n1P . Combining (38) and (39) gives

Y T Φ(s) � X ′T Φ(s) +XT Q̃Φ(s) + X̂T
n1

Φ(s) + λ2(K2DXn2)
T Φ(s),

(40)

or

X ′ + Q̃X + X̂n1 + λ2K2DXn2 � Y. (41)

Note that Q̃ is a diagonal matrix, so Q̃T = Q̃.
Now, X ′ must be computed in terms of X. Note that

x(s) − x(0) =
∫ s

0
x′(τ)dτ

�
∫ s

0
X ′ T Φ(τ)dτ

� X ′ TP Φ(s).

(42)

Therefore,

x(s) � X ′ TPΦ(s) +XT
0 Φ(s), (43)

where, X0 is the m-vector of the form X0 = [x0, x0, . . . , x0]T ,
consequently, using (27)

X � P TX ′ +X0. (44)
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Now, combining (41) and (44), and replacing � with = follows:(
I + P T Q̃

)
X + P T X̂n1 + λ2P

TK2DXn2 = P TY +X0. (45)

Equation (45) is a nonlinear system of m algebraic equations for
them unknowns x0, x1, . . . , xm−1, components ofX can be obtained by
an iterative method. Hence, an approximate solution x(s) � XT Φ(s)
can be computed for Eq. (34) without using any projection method.

4. NUMERICAL EXAMPLES

The direct method, presented in this article, is applied to four
examples. These examples are selected from different references, so
the numerical results obtained here can be compared with both the
exact solution and other numerical results.

The computations associated with the examples were performed
using Matlab 7 on a Personal Computer.

Example 1. Consider the following nonlinear Volterra integral
equation [23]:

x(s) − 1
2

∫ s

0
x2(t)dt = sin s+

1
8

sin 2s− 1
4
s, (46)

with the exact solution x(s) = sin s. The numerical results are shown
in Table 1.

Table 1. Numerical results for example 1.

s Exact solution
Approximate solution,

m=32
Approximate solution,

m=64

0 0 0.015624 0.007812
0.1 0.099833 0.109157 0.101388
0.2 0.198669 0.201731 0.194073
0.3 0.295520 0.292533 0.299995
0.4 0.389418 0.380765 0.387978
0.5 0.479426 0.493076 0.486266
0.6 0.564642 0.572351 0.565930
0.7 0.644218 0.646598 0.640624
0.8 0.717356 0.715165 0.720611
0.9 0.783327 0.777451 0.782351



Progress In Electromagnetics Research B, Vol. 8, 2008 69

Example 2. For the following nonlinear Fredholm integral equa-
tion [23]:

x(s) − 1
2

∫ 1

0
t x2(t)dt = s2 − 1

12
, (47)

with the exact solution x(s) = s2, Table 2 shows the numerical results.

Example 3. For the following nonlinear integro-differential equa-
tion [29]:

x′(s) + 2sx(s) −
∫ s

0
(s+ t)x3(t)dt−

∫ 1

0
(s− t)x(t)dt = y(s), (48)

where, y(s) =
(
−2

3s+ 1
9

)
e3s+(2s+1)es+

(
4
3 − e

)
s+ 8

9 , with the initial
condition x(0) = 1, and the exact solution x(s) = es, Table 3 gives the
numerical results.

Example 4. For the following nonlinear integro-differential equa-
tion [22]:

x′(s) +
∫ s

0
3 cos(s− t) x2(t)dt = y(s), (49)

where, y(s) = 2 sin s cos s, with the initial condition x(0) = 1, and the
exact solution x(s) = cos s, Table 4 shows the numerical results.

Example 5. As the final example, we solve an electromagnetic
scattering problem via presented method. The scattering problems
have been surveyed by many authors [32–42]. Here, we consider a thin
wire scatterer and obtain the current induced on it. We have modeled
this problem in detail in [13, 15]. However, for a wire of length L
and radius a coincided with z-axis, the final form of current integral
equation is [13, 15]

∫ L/2

−L/2
Iz(z′)G(z, z′)dz′ = A cos kz + j

4πωε0
k2 sinα

ejkz cos α, (50)

in which,

G(z, z′) =
∫ 2π

0

e−jkR

R
dφ′,

R =

√
(z − z′)2 +

(
2a sin

φ′

2

)2

,
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α, is the incident angle,
k, is free space wave number.

Also, A is an unknown coefficient that should be determined.
However, this is a Fredholm integral equation of the first kind and

applying the presented method to this equation gives the approximate
solution of Iz(z). Figure 1 shows the current magnitude for α = π

2 ,
a = 0.001L, and L = λ, 1.5λ, 2λ.

8 6 4 2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

Distance along wire (in terms of wave length)

C
ur

re
nt

 (
m

A
)

L=Lambda

L=2Lambda

L=1.5Lambda

Figure 1. Current magnitude along the thin wire of length λ, 1.5λ
and 2λ, for α = π

2 and a = 0.001L.

5. ERROR EVALUATION, COMMENT ON THE
RESULTS, CONCLUSION

A new direct method based on BPFs and its operational matrix
was proposed. This approach, without applying any projection
method, transforms a nonlinear Volterra-Fredholm integral or integro-
differential equation to a set of algebraic equations. applicability
and accuracy was checked on some examples. In these examples the
approximate solution was briefly compared with exact solution only at
specific points. But, it should be noted that at mid-point of every
subinterval [ih, (i + 1)h], for i = 0, 1, . . . ,m − 1, the approximate
solution is more accurate and this accuracy will increase asm increases.
On the other hand, error at some points different from mid-points may
get worse as m increases. Of course these oscillations are negligible
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Table 2. Numerical results for example 2.

s Exact solution
Approximate solution,

m = 32
Approximate solution,

m = 64

0 0 0.000217 0.000054
0.1 0.010000 0.011936 0.010308
0.2 0.040000 0.041233 0.038140
0.3 0.090000 0.088108 0.092828
0.4 0.160000 0.152561 0.158746
0.5 0.250000 0.265842 0.257867
0.6 0.360000 0.371311 0.361871
0.7 0.490000 0.494358 0.483453
0.8 0.640000 0.634983 0.647515
0.9 0.810000 0.793186 0.807183

Table 3. Numerical results for example 3.

s Exact solution
Approximate solution,

m = 64
Approximate solution,

m = 128

0.1 1.105171 1.106931 1.102592
0.2 1.221403 1.215726 1.220458
0.3 1.349859 1.356245 1.350925
0.4 1.491825 1.489553 1.495340
0.5 1.648721 1.661734 1.655194
0.6 1.822119 1.825082 1.817881
0.7 2.013753 2.004501 2.012222
0.8 2.225541 2.236265 2.227346
0.9 2.459603 2.456184 2.465482

and thus the mean-absolute error generally reduces as m increases.
This can be clearly caused by definition of operational matrix P .
As illustrated in Eqs. (17) and Eq. (18), the diagonal elements h

2 of
operational matrix P are approximate values of t − ih. Note that, at
mid-point of every subinterval [ih, (i + 1)h] the diagonal elements of
operational matrix are exactly h

2 . In general, the results illustrate
efficiency and accuracy of the method. For showing this matter
and comparing the results obtained from current method with other
methods, the mean-absolute errors of the numerical examples at mid-
points and the points s in Tables 1–4 for different values of m are
computed.
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Table 4. Numerical results for example 4.

s Exact solution
Approximate solution,

m = 32
Approximate solution,

m = 64

0.1 0.995004 0.993909 0.994818
0.2 0.980067 0.979341 0.980962
0.3 0.955336 0.956179 0.953922
0.4 0.921061 0.924624 0.921657
0.5 0.877583 0.869984 0.873809
0.6 0.825336 0.820041 0.824460
0.7 0.764842 0.762895 0.767870
0.8 0.696707 0.699047 0.693363
0.9 0.621610 0.629055 0.622866

Firstly, consider the mean-absolute error as follows:

Em =
1
m

m∑
i=1

|x(si) − xm(si)|, (51)

where, x(s) is the exact solution and xm(s) is the approximate solution.
For example 1, the mean-absolute errors at mid-points from

Eq. (51) are 4.9E-6 and 1.2E-6, for m = 32 and m = 64, respectively.
But for ten points s in Table 1, these errors are 7.1E-3, for m = 32 and
3.6E-3, for m = 64. These errors for example 2 at mid-points are 2.7E-
5, for m = 32 and 6.8E-6, for m = 64, and at ten points s in Table 2 are
6.6E-3 and 3.3E-3, for m = 32 and m = 64, respectively. [23] proposes
the decomposition method to solve these problems. It seems that the
direct method is more accurate and practical than the decomposition
method. The current method can be run with increasing m until the
computed results have appropriate accuracy.

The mean-absolute errors of example 3 at mid-points are 1.6E-4,
for m = 64 and 3.9E-5, for m = 128. These errors at nine points
s in Table 3 are 6.2E-3 and 3.1E-3, for m = 64 and m = 128,
respectively. [29] has solved this problem by Taylor polynomial method.
Comparing the direct method with the method proposed in [29] shows
that the accuracy of Taylor polynomial method is slightly better. But,
it seems that the number of calculations of the direct method is lower.

In example 4, the mean-absolute errors at mid-points are 8.1E-5
and 2E-5, for m = 32 and m = 64, respectively, but for nine points s
in Table 4, these errors are 3.4E-3, for m = 32 and 1.7E-3, for m = 64.
For this problem, the direct method achieves a high accuracy, higher
than that obtained by the decomposition algorithm presented in [22].
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The benefits of this method are low cost of setting up the equations
without applying any projection method such as Galerkin, collocation,
. . . . Also, the nonlinear system of algebraic equations is sparse.

Finally, this method can be easily extended and applied to
systems of nonlinear Volterra-Fredholm integral equations and integro-
differential equations of the forms Eqs. (1) and (2). Also, this method
can be applied to nonlinear Volterra-Fredholm integro-differential
equations of any order with suitable initial conditions.

REFERENCES

1. Arnold, M. D., “An efficient solution for scattering by a perfectly
conducting strip grating,” Journal of Electromagnetic Waves and
Applications, Vol. 20, No. 7, 891–900, 2006.

2. Zhao, J. X., “Numerical and analytical formulations of the
extended MIE theory for solving the sphere scattering problem,”
Journal of Electromagnetic Waves and Applications, Vol. 20,
No. 7, 967–983, 2006.

3. Rui, P.-L. and R. Chen, “Implicity restarted gmres fast Fourier
transform method for electromagnetic scattering,” Journal of
Electromagnetic Waves and Applications, Vol. 21, No. 7, 973–976,
2007.

4. Wang, M. Y., J. Xu, J. Wu, Y. Yan, and H.-L. Li, “FDTD
study on scattering of metallic column covered by double-
negative metamaterial,” Journal of Electromagnetic Waves and
Applications, Vol. 21, No. 14, 1905–1914, 2007.

5. Liu, X.-F., B. Z. Wang, and S.-J. Lai, “Element-free Galerkin
method in electromagnetic scattering field computation,” Journal
of Electromagnetic Waves and Applications, Vol. 21, No. 14, 1915–
1923, 2007.

6. Kumar, P., T. Chakravarty, S. Bhooshan, S. K. Khah, and A. De,
“Numerical computation of resonant frequency of gap coupled
circular microstrip antennas,” Journal of Electromagnetic Waves
and Applications, Vol. 21, No. 10, 1303–1311, 2007.

7. Ding, W., L. Chen, and C. H. Liang, “Numerical study of Goos-
Hänchen shift on the surface of anisotropic left-handed materials,”
Progress In Electromagnetics Research B , Vol. 2, 151–164, 2008.

8. Popov, A. V. and V. V. Kopeikin, “Electromagnetic pulse prop-
agation over nonuniform earth surface: Numerical simulation,”
Progress In Electromagnetics Research B , Vol. 6, 37–64, 2008.

9. Suyama, T., Y. Okuno, A. Matsushima, and M. Ohtsu, “A numer-
ical analysis of stop band characteristics by multilayered dielectric



74 Babolian, Masouri, and Hatamzadeh-Varmazyar

gratings with sinusoidal profile,” Progress In Electromagnetics Re-
search B , Vol. 2, 83–102, 2008.

10. Mokari, H. and P. Derakhshan-Barjoei, “Numerical analysis of
homojunction Gallium arsenide avalanche photodiodes (GAAs-
APDs),” Progress In Electromagnetics Research B , Vol. 7, 159–
172, 2008.

11. Steinbauer, M., R. Kubasek, and K. Bartusek, “Numerical method
of simulation of material influences in MR tomography,” Progress
In Electromagnetics Research Letters, Vol. 1, 205–210, 2008.

12. Hatamzadeh-Varmazyar, S., M. Naser-Moghadasi, E. Babo-
lian, and Z. Masouri, “Numerical approach to survey the problem
of electromagnetic scattering from resistive strips based on using
a set of orthogonal basis functions,” Progress In Electromagnetics
Research, PIER 81, 393–412, 2008.

13. Hatamzadeh-Varmazyar, S., M. Naser-Moghadasi, and Z. Ma-
souri, “A moment method simulation of electromagnetic scatter-
ing from conducting bodies,” Progress In Electromagnetics Re-
search, PIER 81, 99–119, 2008.

14. Hatamzadeh-Varmazyar, S., M. Naser-Moghadasi, E. Babo-
lian, and Z. Masouri, “Calculating the radar cross section of the
resistive targets using the Haar wavelets,” Progress In Electromag-
netics Research, PIER 83, 55–80, 2008.

15. Hatamzadeh-Varmazyar, S. and M. Naser-Moghadasi, “New
numerical method for determining the scattered electromagnetic
fields from thin wires,” Progress In Electromagnetics Research B ,
Vol. 3, 207–218, 2008.

16. Hatamzadeh-Varmazyar, S. and M. Naser-Moghadasi, “An
integral equation modeling of electromagnetic scattering from
the surfaces of arbitrary resistance distribution,” Progress In
Electromagnetics Research B , Vol. 3, 157–172, 2008.

17. Jiang, G.-X., H.-B. Zhu, and W. Cao, “Implicit solution of
modified form of time-domain electric field integral equation,”
Journal of Electromagnetic Waves and Applications, Vol. 21,
No. 5, 697–707, 2007.

18. Franceschini, G., A. Abubakar, T. M. Habashy, and A. Massa,
“A comparative assessment among iterative linear solvers dealing
with electromagnetic integral equations in 3D inhomogeneous
anisotropic media,” Journal of Electromagnetic Waves and
Applications, Vol. 21, No. 7, 899–914, 2007.

19. Wu, C. and G.-X. Jiang, “Stabilization procedure for the time-
domain integral equation,” Journal of Electromagnetic Waves and
Applications, Vol. 21, No. 11, 1507–1512, 2007.



Progress In Electromagnetics Research B, Vol. 8, 2008 75

20. Tong, M. S., “A stable integral equation solver for electromagnetic
scattering by large scatterers with concave surface,” Progress In
Electromagnetics Research, PIER 74, 113–130, 2007.

21. Hussein, K. F. A., “Fast computational algorithm for EFIE
applied to arbitrarily-shaped conducting surfaces,” Progress In
Electromagnetics Research, PIER 68, 339–357, 2007.

22. Maleknejad, K. and M. Hadizadeh, “The numerical analysis
of Adomian’s decomposition method for nonlinear Volterra
integral and integro-differential equations,” International Journal
of Engineering Science, Iran University of Science & Technology ,
Vol. 8, No. 2a, 33–48, 1997.

23. Wazwaz, A. M., A First Course in Integral Equations, World
Scientific, Singapor, 1997.
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