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Abstract—A tomography method is proposed to image magnetic
anomaly sources buried below a non-flat ground surface, using the
expression of the total power associated with a measured magnetic
field. It is shown that the total power can be written as a sum
of crosscorrelation products between the magnetic field data set and
the theoretical expression of the magnetic field generated by a source
element of unitary strength. Then, applying Schwarz’s inequality, an
occurrence probability function is derived for imaging any distribution
of magnetic anomaly sources in the subsurface. The tomographic
procedure consists in scanning the half-space below the survey area
by the unitary source and in computing the occurrence probability
function at the nodes of a regular grid within the half-space. The
grid values are finally contoured in order to single out the zones with
high probability of occurrence of buried magnetic anomaly sources.
Synthetic and field examples are discussed to test the resolution power
of the proposed tomography.

1. INTRODUCTION

Probability tomography is an interpretation method, introduced in
geophysical anomaly source imaging to face with the intrinsic uncertain
nature of the field data inversion problem. Any measured field can, in



28 Mauriello and Patella

fact, be thought of as being due to a set of elementary sources, which
can be grouped in different plausible configurations, all generating
effects on the survey area compatible with the collected dataset, within
the measurement accuracy and station density.

Probability tomography was originally developed for the self-
potential method [17, 18] and then extended to the geoelectrical [9, 14],
natural-field electromagnetic induction [10] and gravity [11, 12]
methods. The aim of this paper is to extend the new approach also
to the magnetic method for imaging the most probable location of the
sources of anomalies of the steady geomagnetic field. A preliminary
analysis of the physical properties of the static magnetic field is made
in order to find a suitable gauge for the definition of a source occurrence
probability function.

2. STRUCTURE OF THE MAGNETIC FIELD

We assume a coordinate system with the (x, y)-plane at sea level and
the z-axis positive upwards. Let B(r) be a static magnetic induction
field, evaluated at a grid of points r ∈ S , where S is a portion of the
earth’s surface characterized by a topography function z(x, y). Since
B(r) is a divergence-free field, a vector potential A(r) exists such that

B(r) = ∇× A(r). (1)

With Eq. (1) into Maxwell equation ∇×B(r) = µ0J(r), we obtain

∇[∇ · A(r)] −∇2A(r) = µ0J(r), (2)

where J(r) is the total current density including electric charge
transport by conduction and convection and also non-dissipative
Ampère currents due to magnetization. The freedom of field gauge
transformation allows the condition ∇ · A(r) = 0 to be postulated, in
order to allow A(r) to satisfy Poisson’s equation

∇2A(r) = −µ0J(r). (3)

The general solution of Eq. (3) is [8]

A(r) =
µ0

4π

∫
V

J (r′)
|r − r′|dV , (4)

where V is a volume containing inside all the magnetic sources and
r′ ∈ V .
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Using Eq. (1), the magnetic induction field can at last be written
as

B(r) =
µ0

4π

∫
V

J(r′) × r − r′

|r − r′|3
dV. (5)

Equation (5) will be used later to introduce a J-occurrence
probability (JOP) function, i.e., the probability which a current element
obtains at r′ as source of the B(r) field.

An equivalent approach for the description of B(r) can be
developed using the total magnetization vector M(r). In fact, in a
multipole expansion of A(r), the lowest order contribution due to a
volume dV about r′ is the dipolar term [8]

dA(r) =
µ0

4π
M(r′) × (r − r′)

|r − r′|3
dV , (6)

where M(r′) = 1/2r′ × J(r′). Accordingly, A(r) can also be written
as [21]

A(r) =
µ0

4π

∫
V

M
(
r′

)
× (r − r′)

|r − r′|3
dV, (7)

and, using again Eq. (1), the magnetic induction field can at last be
given also as

B (r) =
µ0

4π

∫
V

3n [n · M (r′)] − M (r′)
|r − r′|3

dV , (8)

where n is the unit vector in the direction of r − r′.
Equation (8) will be used later to introduce an M-occurrence

probability (MOP) function, i.e., the probability which an elementary
magnetic dipole gets at r′ as responsible of the B(r) field.

In geophysical exploration either the z-component or the modulus
of the earth’s magnetic field is usually measured and a scalar secondary
field (the anomalous field) is evaluated in order to identify sources of
local magnetic anomalies. More explicitly, in the case of the so called
vertical field survey, a scalar anomalous field is obtained by subtracting
from the measured vertical component of the earth’s magnetic field
the vertical component of the primary magnetic field (the earth’s
main magnetic field). Similarly, in the case of the so-called total field
survey, the scalar anomalous field is obtained by subtracting from the
measured modulus of the earth’s magnetic field the modulus of the
known primary magnetic field. Since the secondary field is always a
very small fraction of the primary field, it can be readily shown that
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in the case of a total field survey the scalar secondary field is the
projection of the vector secondary field onto the direction of the vector
primary field [1]. This direction can generally be assumed uniform
within the areas normally considered in geophysical exploration [16].
Thus, from now on we will consider B(r) as the secondary vector field,
and the scalar component of B(r) along any fixed direction as the
object of study in the new tomographic approach.

3. 3D J-OCCURRENCE PROBABILITY

Referring to Eq. (6), B(r) can be discretised as follows

B(r) =
Q∑

q=1

Pq ×
(r − rq)
|r − rq|3

, (9)

where Q is the total number of sources generating the secondary field.
The q-th source is a small volume ∆Vq centered at rq, crossed by an
electric current with local density J(rq). Its strength Pq is given as

Pq =
µ0

4π
J(rq)dVq. (10)

Indicating with Bu(r) the component of B(r) along a generic
direction, identified by the unit vector u, we define the corresponding
signal power Λu over S as

Λu =
∫

(S)

B2
u(r)dS, (11)

which, taking into account Eq. (9), can be expanded as

Λu =
Q∑

q=1

∫
(S)

Bu(r)

[
Pq ×

(r − rq)
|r − rq|3

]
· udS, (12)

and then put in the form

Λu =
Q∑

q=1


 ∑

v=x,y,z

Pqv

∫
(S)

Bu(r)�uv(r − rq)dS


. (13)

The explicit expressions of the �uv(r−rq) functions (ν = x, y, z)
appearing in Eq. (13) are

�ux (r − rq) =
1

|r − rq|3
[(y − yq)k · u − (z − zq) j · u] , (14a)



Progress In Electromagnetics Research M, Vol. 3, 2008 31

�uy (r − rq) =
1

|r − rq|3
[(z − zq) i · u − (x− xq)k · u] , (14b)

�uz (r − rq) =
1

|r − rq|3
[(x− xq) j · u − (y − yq) i · u] , (14c)

where i, j and k are the unit vectors of the reference x-, y- and z-axis,
respectively.

We consider a generic integral in Eq. (13) and apply Schwarz’s
inequality, obtaining

∫
(S)

Bu(r)�uv (r − rq) dS




2

≤
∫

(S)

B2
u(r)dS

∫
(S)

�2
uv (r − rq) dS. (15)

Assuming that the projection of S onto the (x, y)-plane is
a rectangle with sides 2X and 2Y along the x- and y-axis,
respectively, the normalization rule for integrals extended over
irregular domains [20] allows Eq. (15) to be written as


X∫

−X

Y∫
−Y

Bu(r)�uv (r − rq) g(z)dxdy




2

≤
X∫

−X

Y∫
−Y

B2
u(r)g(z)dxdy

X∫
−X

Y∫
−Y

�2
uv (r − rq) g(z)dxdy, (16)

where g(z), which has the role of a topographic surface regularization
factor, is

g(z) =
√

1 + (∂z/∂x)2 + (∂z/∂y)2. (17)

Using the inequality 16, we can now define a three-component
JOP function for 3D magnetic tomography in the most general case of
non-flat topography, as

η(J)
uv (rq)=C(J)

uv

X∫
−X

Y∫
−Y

Bu(r)�uv (r − rq) g(z)dxdy, (ν = x, y, z), (18)

with

C(J)
uv =




X∫
−X

Y∫
−Y

B2
u(r)g(z)dxdy

X∫
−X

Y∫
−Y

�2
uv(r − rq)g(z)dxdy



−1/2

, (ν=x, y, z).

(19)
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Each η
(J)
uv function satisfies the bounding condition −1 ≤

η
(J)
uv (rq) ≤ +1. At rq , three values of η(J)

uv (ν = x, y, z) can be thus
computed. Each value is interpreted as the probability, with which
the homologous component Jν (ν = x, y, z) of a J-field can at rq be
retained responsible of the measured component of the magnetic field.

To clarify the meaning of probability attributed to η(J)
uv , we recall

that, in general, a probability measure p is defined as a function
assigning to every subset E of a space of states U a real number p(E)
which satisfies the conditions [6]

p(E) ≥ 0, for every E, (20)
if E ∩ F ≡ 0, with E, F ⊂ U, p(E ∪ F ) = p(E) + p(F ), (21)
p(U) = 1. (22)

Considering that the presence of a source element at rq is
independent from the presence of another source element at another
point, the function

ρ(rq) =
|η(rq)|∫

(V )

|η(rq)| dV
(23)

can be defined as a probability density, as it allows a probability
function to be deduced according to axioms 20, 21 and 22. Actually,
η(rq) differs from ρ(rq) only for a constant multiplier and the explicit
algebraic sign, which defines the direction of the corresponding vector
component. This demonstration will tacitly apply also to all the other
occurrence probability functions, which will be introduced later.

4. 3D M-OCCURRENCE PROBABILITY

Referring to Eq. (8), B(r) can also be discretised as

B(r) =
Q∑

q=1

3nq (nq · dq) − dq

|r − rq|3
. (24)

In Eq. (24), nq is the unit vector in the direction r − rq and
the generic element is a small volume ∆Vq centered at rq with
magnetization M(rq) and magnetic moment dq given by

dq =
µ0

4π
M(rq)dVq. (25)
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The total power Λu, associated with Bu(r), can now be expanded
as

Λu =
Q∑

q=1


 ∑

v=x, y, z

dqv

∫
(S)

Bu(r)�uv (r − rq) dS


. (26)

The explicit expressions of the �uv(r− rq) functions (ν = x, y, z)
are given by

�ux(r−rq)=
1

|r − rq|3
[3nqx (nqxi · u+nqyj · u+nqzk · u)−i ·u], (27a)

�uy(r−rq)=
1

|r − rq|3
[3nqy (nqxi · u+nqyj · u+nqzk · u)−j ·u], (27b)

�uz(r−rq)=
1

|r − rq|3
[3nqz (nqxi · u+nqyj · u+nqzk · u)−k ·u], (27c)

where nqv, with v = x, y, z, are the components of the unit vector nq .
Proceeding as before, we can now define a three-component MOP

function as

η(M)
uv (rq) = C(M)

uv

X∫
−X

Y∫
−Y

Bu(r)�uv (r − rq) g(z)dxdy, (ν = x, y, z), (28)

where

C(M)
uv =




X∫
−X

Y∫
−Y

B2
u(r)g(z)dxdy

X∫
−X

Y∫
−Y

�2
uv(r−rq)g(z)dxdy



−1/2

, (ν=x, y, z).

(29)
At every rq , three η

(M)
uv values (ν = x, y, z) can again be

computed, each satisfying the bounding condition −1 ≤ η
(M)
uv (rq) ≤

+1. Each η
(M)
uv value is interpreted as the probability by which

the homologous component Mν (ν = x, y, z) of an M-field can be
considered responsible of the measured component of the magnetic
field.

5. 3D PROBABILITY TOMOGRAPHY PROCEDURE

The 3D tomography procedure for imaging the sources of a magnetic
field, measured on a generally uneven topography, consists in a
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reiterated computation code, involving the scanner functions �uν and
�uν and the Bu(r) field data set.

In practice, since we do not know the position of the real sources
generating the anomalous magnetic field, we use a synthetic source of
unitary strength to scan the x, y, z half-space below the surveyed area
(tomospace), in order to search where the real sources can be located
in a probabilistic sense. The scanning operation is made by computing
the crosscorrelation integrals in Eq. (18) and Eq. (28) for each point
(xq, yq, zq) of a regular grid within the tomospace. At each point, the
value of each integral is interpreted as the occurrence probability of
the relative magnetic source component, whose positive or negative
orientation depends on whether it is η > 0 or η < 0. By scanning
the tomospace using, e.g., a sequence of horizontal slices spaced from
each other by a constant depth interval, we can finally obtain a 3D
image of the equivalent magnetic source distribution underground in a
probabilistic sense.

In order to improve the filtering capability of the scanning
procedure, for each rq of the tomospace it is advisable to use varying
sizes of the integration surface in Eq. (18) and Eq. (28). The smallest
surface is the domain [−X, X]× [−Y, Y ] wholly containing the surface
trace of the magnetic response of the scanning element placed at rq .
The greatest surface is, of course, the largest rectangle fitting to the
whole survey area. The highest |η(rq)| is then taken with its sign as
the most appropriate source occurrence probability at rq .

6. 3D SYNTHETIC EXAMPLES

In order to test the resolution power of the probability tomography, we
present the results of the application to a synthetic case of magnetic
dipole with three different dips [13]. The dipole is centered at (0,
0, −1.5) m below a flat ground surface, with moment components (0,
0, −1) Am2 (vertical dipole), (1, 0, 0) Am2 (horizontal dipole) and
(1/

√
2, 0, −1/

√
2) Am2 (45◦ downdipping dipole).

We have always considered, as initial dataset, the z-component of
B(r), say Bz(r) (u ≡ z). Using Eqs. (14a), (14b), (14c) and Eqs. (27a),
(27b), (27c), the three components of the �zν and �zν functions are
given respectively by

�zx(r − rq) =
y − yq
|r − rq|3

, (30a)

�zy(r − rq) =
xq − x
|r − rq|3

, (30b)

�zz(r − rq) = 0, (30c)
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and

�zx (r − rq) =
3nqxnqz

|r − rq|3
, (31a)

�zy (r − rq) =
3nqynqz

|r − rq|3
, (31b)

�zz (r − rq) =
3nqznqz − 1
|r − rq|3

. (31c)

Furthermore, in calculating the previous functions, we have always
used the constant sampling step of 0.5 m along the three spatial
directions. Finally, in plotting the tomographies, we have contoured
only the values of the η(J)

zv and η(M)
zv functions (ν = x, y, z) exceeding

in modulus 0.4, in order to not visualize secondary effects due both
to equivalent sources of no practical relevance and to numerical
background noise.

6.1. The Vertical Magnetic Dipole Source

The MOP and JOP tomographies are drawn in Fig. 1 and Fig. 2,
respectively, where the topmost slice (a) is the simulated Bz survey
map due to the vertical dipole. In Fig. 1, the sequences of slices versus
depth, reported in the columns (b), (c) and (d), show the behavior of
the MOP functions η(M)

zx , η(M)
zy and η(M)

zz , respectively. In Fig. 2, the
two sequences in columns (b) and (c) show, instead, the behavior of
only the JOP functions η(J)

zx and η(J)
zy ; η(J)

zz cannot, in fact, be computed
since �zz vanishes everywhere (see Eq. (30)), as a vertical current
element gives no contribution to the measured vertical component of
the magnetic field.

Referring to the slice at −1.5 m of depth, we observe in Fig. 1(d)
that η(M)

zz shows a minimum, which exactly outlines the position of the
original downward pointing vertical dipole. Furthermore, Figs. 1(b)
and 1(c) show two pairs of nuclei with opposite sign along the x- and y-
axis, respectively. The highest absolute values of η(M)

zx and η(M)
zy appear

at −1.5 m of depth, and are less than the modulus of the minimum
of η(M)

zz ascribed to the original vertical dipole. These two pairs are
interpreted as the signatures of an equivalent source consisting of a
radial set of horizontal, outward oriented magnetization vectors. The
Bz map of Fig. 3(a) related to the original vertical dipole can, in fact,
be accurately reproduced using, e.g., a regular set of radial dipoles
every 15◦, as illustrated in Fig. 3(b).
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Figure 1. Probability tomography for a vertical magnetic dipole in
the case of measurement of the z-component of the corresponding
magnetic field. Synthetic surface map of Bz (a), and 3D imaging of
the magnetization occurrence probability function along the x-axis (b),
y-axis (c) and z-axis (d).

The η(J)
zx and η(J)

zy tomographies of Figs. 2(b) and 2(c) show two
pairs of nuclei with opposite sign along the y- and x-axis, respectively.
The highest absolute values of η(J)

zx and η(J)
zy appear at −1 m of depth.

The two pairs are interpreted as traces of the topmost portions of
the vertical current loops corresponding to the horizontal dipoles,
appearing at −1.5 m in Figs. 1(b) and 1(c). These traces completely
mask the effect of the horizontal current loop equivalent to the original
vertical dipole, which can ideally be imaged, joining together the less
intense nuclei of η(J)

zx and η(J)
zy at −1.5 m of depth.

6.2. The Horizontal Magnetic Dipole Source

The MOP and JOP tomographies are drawn in Fig. 4 and Fig. 5,
respectively, where the topmost slice (a) is the simulated Bz map due
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Figure 2. Probability tomography for a vertical magnetic dipole in
the case of measurement of the z-component of the magnetic field.
Synthetic surface map of Bz (a), and 3D imaging of the electric current
occurrence probability function along the x-axis (b) and y-axis (c).

to the horizontal dipole. The sequences of slices in Fig. 4 and Fig. 5
have the same meaning as in Fig. 1 and Fig. 2, respectively.

In Fig. 4(b), η(M)
zx gets the highest values at −1.5 m of depth

within a nucleus, which correctly indicates the horizontal position of
the original magnetization vector along the x-axis. The signature of
the upper part of the equivalent vertical current loop is highlighted by
the negative nucleus at −1 m of depth in Fig. 5(c), where η(J)

zy shows
the smallest values.

Figure 4(d) displays also a pair of nuclei with opposite sign. A
pair of vertical dipoles with opposite polarity can be imaged at −1.5 m
of depth, where η(M)

zz reaches the highest values. This additional pair,
characterized by an occurrence probability lower than that observed
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Figure 3. Response of a distribution of dipoles equivalent to the
vertical magnetic dipole in the case of measurement of the z-component
of the geomagnetic field. The Bz map due to the original vertical
magnetic dipole (a), and to a radial sequence of horizontal dipoles (b).

in Fig. 4(b), can again be interpreted as the signature of an equivalent
source, whose conformity with the reference Bz map, redrawn in
Fig. 6(a), is sketched in Fig. 6(b). Of course, a pair of horizontal
reverse current loops will correspond to such a pair of vertical dipoles.
However, no traces of these loops appear along the x- and y-axis in
Figs. 5(b) and 5(c), since the relative JOP values are in modulus less
than 0.4.

6.3. The Inclined Magnetic Dipole Source

The MOP and JOP tomographies are given in Fig. 7 and Fig. 8,
respectively, where the topmost slice (a) shows, as usual, the simulated
Bz field map due to the inclined dipole. The sequences of slices in Fig. 7
and Fig. 8 have the same meaning as in Fig. 1 and Fig. 2, respectively.

Figure 7 and Fig. 8 show clear transitional effects from the vertical
(Fig. 1 and Fig. 2) to the horizontal dipole (Fig. 6 and Fig. 7). In
fact, the effects due to the upper negative pole of the dipping dipole
markedly dominate over the vanishing effects referred to the lower
positive pole. In both the MOP and JOP plots, the distortion of
the contour lines appears as the consequence of a shift of the whole
set of nuclei towards the negative part of the x-axis. Equivalently, the
distortion can be thought of as the reaction of the magnetic field to an
ideal rotation of the dipole from the vertical to the horizontal position,
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Figure 4. Probability tomography for a horizontal magnetic dipole
in the case of measurement of the z-component of the magnetic field.
Synthetic surface map of Bz (a), and 3D imaging of the magnetization
occurrence probability function along the x-axis (b), y-axis (c) and
z-axis (d).

counterclockwise around a horizontal axis through its center, parallel
to the y-axis.

The center of the original dipping dipole is exactly highlighted
by the maximum of η(M)

zx in Fig. 7(b) and the minimum of η(M)
zz in

Fig. 7(d), both appearing at −1.5 m of depth. The original inclined
magnetization vector can, in fact, be decomposed into a horizontal and
a vertical magnetization vectors, contributing to the total effect as in
Fig. 4(b) and Fig. 1(b), respectively. There is, however, no direct
indication about the dip angle, whose estimate can be done using
standard rules on a profile obtained from the surface map through
the dipole axis, knowing the depth of the dipole [16].
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Figure 5. Probability tomography for a horizontal magnetic dipole
in the case of measurement of the z-component of the magnetic field.
Synthetic surface map of Bz (a), and 3D imaging of the electric current
occurrence probability function along the x-axis (b) and y-axis (c).

7. 3D FIELD EXAMPLES

To illustrate the applicability of the new 3D probability tomography
imaging method to field cases, we discuss the results of two surveys
performed in test sites where a reliable control of the solutions could
be made. The first example relates to archaeology and the second one
to volcanology [13].

7.1. Application to Archaeology

A magnetic survey was done in the archaeological site of a Sabine
Necropolis at Colle del Forno, 30 km north of Rome [2], in order to
detect hypogeal dromos-chamber tombs, the typical geometry of which
is shown in Fig. 9 [19]. A Geoscan FM36 fluxgate gradiometer was
utilized to measure the gradient of the vertical magnetic component
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Figure 6. Response of dipole distributions equivalent to the horizontal
magnetic dipole in the case of measurement of the z-component of the
magnetic field. The Bz map due to the original horizontal magnetic
dipole (a), and to a pair of vertical dipoles with reverse polarity (b).

Figure 7. Probability tomography for a 45◦ downward dipping
magnetic dipole in the case of measurement of the z-component of
the magnetic field. Synthetic surface map of Bz (a), and 3D imaging
of the magnetization occurrence probability function along the x-axis
(b), y-axis (c) and z-axis (d).
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Figure 8. Probability tomography for a 45◦ downward dipping
magnetic dipole in the case of measurement of the z-component of
the magnetic field. Synthetic surface map of Bz (a), and 3D imaging
of the electric current occurrence probability function along the x-axis
(b) and y-axis (c).

by a fixed vertical spacing of 50 cm between the two sensors. We
consider here the results within an area of 10 × 10 m2, where the
presence of a tomb was already hypothesized by previous geoelectrical
surveys [9, 14]. It must be stressed that, in archaeological prospecting,
magnetic and geoelectrical surveys are powerful reconnaissance tools,
which are normally used prior to more focussing geophysical surveys
for a detailed modelling of the buried target features. Nowadays,
the ground penetrating radar (GPR) method is the most utilized
focussing method, thanks also to its rapidly increasing technological
developments [3, 15, 22–24].

Figure 10(a) and Fig. 11(a) show the experimental map of the
difference between the vertical component of the earth’s magnetic field
at the height of 30 cm above the ground and the vertical component at
80 cm above the ground which is assumed to approximate the primary
earth’s magnetic field. A composite magnetic minimum appears in the
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Figure 9. Plan view and cross-section of the standard model of
dromos-chamber tomb in the Sabine Necropolis at Colle del Forno,
Rome, Italy.

map exactly where a pair of resistive and conductive anomalies was
previously detected by the geoelectrical survey, ascribed, respectively,
to a well preserved chamber and to a corridor (dromos) entirely filled
with sediments [9].

The sequences of slices in Figs. 10(b), 10(c), 10(d) show the
behavior of the MOP functions η(M)

zx , η(M)
zy , η(M)

zz , respectively, whereas
those in Figs. 11(b), 11(c) show the behavior of the JOP functions
η

(J)
zx , η(J)

zy , respectively. We observe in both the MOP and the JOP
tomographies three separated features: the first one is very shallow
at around −0.5 m of depth, the second one ranges between −1.5 m
and −2.0 m of depth, and the last one lies at not less than −4 m of
depth. Leaving out the first feature, which can easily be ascribed
to the corridor before the tomb, the sequences of nuclei belonging
to the other two features show in both tomographies of Fig. 10 and
Fig. 11 a close similarity with those of Fig. 7 and Fig. 8, respectively,
due to an inclined dipole. These sources would act in such a way as
to locally lower the primary earth’s magnetic field. Inclined dipoles
with a positive vertical component and horizontal component along
the positive x-axis, located at −2 m and not less than −4 m of depth,
respectively, lead to admit the existence of a vertical system of tombs.
The topmost tomb is very likely limited in the depth range from −1 m
to −2.5 m, where the second feature is fully included.
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Figure 10. Magnetic probability tomography of a Sabine tomb at
Colle del Forno, Rome, Italy. Experimental surface map of the z-
component of a residual magnetic field (a) and 3D imaging of the
magnetization occurrence probability function along the x-axis (b), y-
axis (c) and z-axis (d).

The dipole is in this case an equivalent source, very useful to
image the centre of the lacking magnetized masses. However, from the
physical point of view, the hypothesized tombs can be better described
by the JOP tomography of Fig. 11. In fact, continuous sequences
of non-dissipative microscopic Ampère current elements must appear
around the walls of the tombs, describing macroscopic concentric
current loops lying in planes perpendicular to the axis of the equivalent
dipoles. The tomography in Figs. 11(a) and 11(b) clearly show the
traces of the dominant central loops, which can ideally be drawn with
a line through the highest absolute values of the η(J)

zx and η(J)
zy functions.
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Figure 11. Magnetic probability tomography of a Sabine tomb at
Colle del Forno, Rome, Italy. Experimental surface map of the z-
component of the residual magnetic field (a) and. 3D imaging of the
electric current occurrence probability function along the x-axis (b)
and y-axis (c).

7.2. Application to Volcanology

An aeromagnetic total field survey was done in 1978 by the Italian Oil
Company AGIP to study the volcano-geothermal structure of Mount
Vesuvius (see Fig. 12 for site location) [4]. A cesium optical pumping
magnetometer was used at a constant height of 1460 m above sea level.
Vesuvius is considered as one of the most risky active volcanoes in
the world because of its closeness to the city of Naples, Italy. Results
achieved so far ([5, 7], and references therein) indicate that the shallow
part of the volcanic material is made of a unique central plumbing
system, entirely filled of altered volcanics in the summit portion. This
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Figure 12. The volcanic area of Vesuvius, Naples, Italy, with
indication of the aeromagnetic survey area.

peculiarity makes the volcano extremely hazardous, since explosion
becomes a highly probable event in case of renewal of extruding
activity. A magnetic study can notably help to ascertain whether such
condition really occurs. To this purpose, we show the results from
the application of the 3D probability tomography to the aeromagnetic
total field map above Vesuvius (after [4]), depicted in the top slice of
Fig. 13(a) and Fig. 14(a). Subtracting the constant regional field in
the whole survey area, with intensity 30, 100 nT, inclination 56.30◦
and declination −1◦, the residual effect is a large and intense positive
anomaly with a peak value of approximately 1800 nT, located in the
central part of the volcanic system.

The slices in Figs. 13(b), 13(c), 13(d) show the behavior of the
MOP functions η(M)

ux , η(M)
uy and η

(M)
uz , respectively. The slices in

Figs. 14(b), 14(c), 14(d) show, instead, the behavior of the JOP
functions η(J)

ux , η(J)
uy and η

(J)
uz , respectively. We observe again a

close similarity with the tomographies relative to the inclined dipole,
depicted in Fig. 7 and Fig. 8. Hence, a magnetic dipole placed at about
2 km of depth below sea level, having a negative vertical component
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Figure 13. Magnetic probability tomography of Vesuvius volcano,
Naples, Italy. Experimental surface map of the residual total magnetic
field (a), and 3D imaging of the magnetization occurrence probability
function along the x-axis (b), y-axis (c) and z-axis (d).

and a horizontal component placed along the positive y-axis, must be
invoked to interpret the magnetic map above Vesuvius. This leads to
hypothesize the existence of a magnetized material completely filling
the bowl-shaped top terminal part of the volcanic central conduit,
thus confirming the model deducted from the interpretation of other
geophysical datasets.

8. 2D SOURCE ANALYSIS

We now develop the probability tomography theory in the case of a 2D
structure. We assume that the strike direction coincides with the y-
axis and the magnetic field has been measured on a generally irregular
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Figure 14. Magnetic probability tomography of Vesuvius volcano,
Naples, Italy. Experimental surface map of the residual total magnetic
field (a), and 3D imaging of the electric current occurrence probability
function along the x-axis (b), y-axis (c) and z-axis (d).

profile #, entirely lying in a vertical plane perpendicular to strike, i.e.,
parallel to the x-axis.

8.1. 2D J-occurrence Probability

Referring to Eq. (9) and considering a mesh with Q nodes in the (x, z)-
plane, the B(r) field due to Q elementary infinite cylinders placed
parallel to strike and with their axes through the nodes is written as

B(r) =
Q∑

q=1

Πq ×
+∞∫

−∞

(r − rq)
|r − rq|3

dyq, (32)
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where Πq is the source strength Pq , given by Eq. (9), per unit of length
of the q-th cylinder.

As in the 3D case, we consider the case in which a component
of B(r) along a generic direction, identified by the unit vector u, has
been measured at different stations along #. We start again from the
definition of signal power associated with Bu(r) along #, given as

λu =
∫
(�)

B2
u(r)d#, (33)

which, using Eq. (32), can be explicitly written as

λu =
Q∑

q=1


 ∑

v=x,y,z

Πqv

∫
(�)

Bu(r)�uv(x− xq, z − zq)d#


. (34)

The scanner �uν(x− xq, z − zq) has components given by

�ux (x− xq, z − zq) =
2 (zq − z) j · u

(x− xq)
2 + (z − zq)2

, (35a)

�uy (x− xq, z − zq) =
2 [(z − zq) i · u − (x− xq)k · u]

(x− xq)
2 + (z − zq)2

, (35b)

�uz(x− xq, z − zq) =
2(x− xq)j · u

(x− xq)2 + (z − zq)2
. (35c)

Assuming that the projection of # onto the x-axis is a line segment
of length 2X, and applying Schwarz’s bounding inequality to a generic
integral in Eq. (34), we can at last define the 2D JOP function as

η(J)
uv (xq, zq)=C(J)

uv

X∫
−X

Bu(x, z)�uv (x−xq, z−zq) gx(z)dx, (ν = x, y, z),

(36)
where gx(z) is defined as the x-ward topographic profile regularization
factor, given by

gx(z) =
√

1 + (∂z/∂x)2, (37)

and

C(J)
uv =




X∫
−X

B2
u(x, z)g(z)dx

X∫
−X

�2
uv (x−xq, z−zq) gx(z)dx



−1/2

, (ν=x, y, z).

(38)
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8.2. 2D M-occurrence Probability

Referring to Eq. (24), B(r) can be discretised as follows

B(r) =
Q∑

q=1

∞∫
−∞

3nq (nq · δq) − δq
|r − rq|3

dyq, (39)

where δq is the magnetic moment dq per unit of length of the q-th
cylinder.

Following the same procedure as before, we define the 2D MOP
function as

η(M)
uv (xq, zq)=C(M)

uv

X∫
−X

Bu(x, z)�uv (x−xq, z−zq) gx(z)dx, (ν = x, y, z),

(40)
where the explicit expressions of the three functions �uv(x−xq, z−zq),
(ν = x, y, z), are given by

�ux (x− xq, z − zq)

=
2

{[
(x− xq)

2 + (z − zq)2
]
i · u + 2 (x− xq) (z − zq)k · u

}
[
(x− xq)

2 + (z − zq)2
]2 , (41a)

�uy (x− xq, z − zq) = 0, (41b)

�uz (x− xq, z − zq)

=
2

{[
(z − zq)2 − (x− xq)

2
]
k · u + 2 (x− xq) (z − zq) i · u

}
[
(x− xq)

2 + (z − zq)2
]2 , (41c)

and

C(M)
uv =




X∫
−X

B2
u (x, z)gx(z)dx

X∫
−X

�2
uv(x−xq, z−zq)gx(z)dx



−1/2

, (ν = x, y, z).

(42)

9. A 2D SYNTHETIC EXAMPLE

In order to test the resolution power of the probability tomography also
in the 2D case, we show the results of a synthetic case. Consider an
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Figure 15. Probability tomography for a horizontal current wire in
the case of measurement of the z-component of the magnetic field.
Synthetic surface map of Bz, and 3D imaging of the electric current
occurrence probability function along the y-axis.

infinitely long horizontal wire, parallel to the y-axis of a given reference
system, at −1.5 m of depth below a flat ground surface, carrying a
steady current of 1 A in the positive direction of the y-axis. We analyze
the case in which the z-component of B(r), say Bz(r), is supposed to
have been measured.

By Eqs. (35a), (35b), (35c) and Eqs. (41a), (41b), (41c), the three
components of the �zν and �zν functions are given respectively as

�zx (x− xq, z − zq) = 0, (43a)

�zy (x− xq, z − zq) =
2 (xq − x)

(x− xq)
2 + (z − zq)2

, (43b)

�uz (x− xq, z − zq) = 0, (43c)

and

�zx (x− xq, z − zq) =
4 (x− xq) (z − zq)[

(x− xq)
2 + (z − zq)2

]2 , (44a)

�zy (x− xq, z − zq) = 0, (44b)
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�zz (x− xq, z − zq) =
2

[
(z − zq)2 − (x− xq)

2
]

[
(x− xq)

2 + (z − zq)2
]2 . (44c)

The top horizontal slice in Fig. 15 and Figs. 16(a), 16(b) shows the
simulated Bz field map. The vertical sections in Fig. 15 depict the
behavior of the only computable JOP function η(J)

zy (see Eqs. (43a),
(43b), (43c)). Fig. 16(a) and Fig. 16(b) show, instead, the 2D behavior
of the MOP functions η(M)

zx and η(M)
zz , respectively (see Eqs. (44a),

(44b), (44c)).

Figure 16. Probability tomography for a horizontal current wire in
the case of measurement of the z-component of the magnetic field.
Synthetic surface map of Bz, and 3D imaging of the magnetization
occurrence probability function along the x-axis (a) and z-axis (b).

The JOP tomographic vertical section of Fig. 15 is very neat: it
shows a positive nucleus, whose maximum value is located at −1.5 m
of depth, in correspondence of the original current line source.

The MOP tomography of Fig. 16 requires, instead, a deeper
analysis due to its greater complexity. At first, a negative nucleus
appears in Fig. 16(a) at −4 m of depth, where the lowest η(M)

zx value
occurs. It represents the trace of a strip of magnetization vectors
oriented along the negative x-axis, providing an equivalent model
with equally high occurrence probability. The Bz map, due to the
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original current wire, redrawn in Fig. 17(a), can in fact be accurately
reproduced using a transverse magnetized strip, as shown in Fig. 17(b).
Moreover, two nuclei with opposite sign appear in Fig. 16(b) with
maximum absolute values of η(M)

zz around −5 m of depth. This new
pair of nuclei, though showing a notably lower occurrence probability,
represents the trace of two strips of vertical magnetization vectors with
opposite orientation, which can still explain the Bz map of Fig. 17(a),
as illustrated in Fig. 17(c).

Figure 17. Response of dipole distributions equivalent to the
horizontal current wire model. The Bz map due to the original
horizontal wire (a), to a set of parallel horizontal magnetization vectors
(b) and to two sets of parallel vertical magnetization vectors with
opposite orientation (c).
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10. CONCLUSION

Currently used magnetic source localization procedures can be grouped
within a rigid deterministic framework, despite the incomplete nature
of the whole observation process. In order to avoid this current
attitude, we have presented in this paper the principles of a new source
localization method, based on a probabilistic approach. The new
method, which of course does not require any change in data acquisition
strategy, is quite different from all the previous source localization
methods also because it does not require any a priori information to
prime the inversion process. The new method strictly deals with the
pure physical aspects of the secondary magnetic field created within
earth’s structures, without imposing any geological or other exotic
constraints. In this frame, occurrence probability functions of electric
currents and magnetic dipoles have been derived as the propermost
entities to image a localization pattern of the sources of the magnetic
anomalies observed above the ground, directly related to the intrinsic
resolution power of the magnetic geophysical exploration method.
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