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Abstract—Electromagnetic coupling to cables has been a major
source of EMC and EMI problems. In this paper, the methods
of predicting the EM coupling and propagation in multiconductor
transmission lines are presented. Crosstalk is an important aspect
of the design of an electromagnetically compatible product. This
essentially refers to the unintended electromagnetic coupling between
wires and PCB lands that are in close proximity. Crosstalk is
distinguished from antenna coupling in that it is a near field coupling
problem. Crosstalk between wires in cables or between lands on
PCBs concerns the intra-system interference performance of the
product, that is, the source of the electromagnetic emission and
the receptor of this emission are within the same system. With
clock speeds and data transfer rates in digital computers steadily
increasing, crosstalk between lands on PCBs is becoming a significant
mechanism for interference in modern digital systems. To predict
the crosstalk we designed a simple model of three conducting wires
and took measurements for both nearend and farend crosstalk. Also
the same model is being simulated by CST Microwave Studio (3D
Electromagnetic Solver).

1. INTRODUCTION

In a practical electrical/electronic system, there are many cables,
many of which are multiconductor transmission lines. External
Electromagnetic fields can couple to these lines, causing compatibility
and interference problems. Also crosstalk between the individual
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conductors within a cable are also sources of noises. Voltages and
currents on a multiconductor cable can be obtained by solving the
matrix set of transmission line equations.

There are also cases where crosstalk can affect the radiated and/or
conducted emissions of the product. Crosstalk between the two cables
can induce signals on the peripheral cable that may radiate externally
to the product, causing the product to be out of compliance with the
radiated emission regulatory limits. If this internal coupling occurs
to the power cord of the product, these coupled signals may cause it
to fail the conducted emission regulatory requirements. Crosstalk can
also affect the susceptibility of a product to emissions from another
product. For example, emissions from some other product that are
coupled to a peripheral cable of this product may couple, internal to
the product, to some other cable internal to it where the susceptibility
to this signal may be enhanced. For a two-conductor transmission line
there is no crosstalk. In order to have crosstalk, we must have three
or more conductors [1, 2].

2. THREE CONDUCTOR TRANSMISSION LINE
MODEL

Adding a third conductor to the two-conductor system provides
the possibility of generating interference [3–6] between the circuits
attached to the ends of the line conductors resulting from crosstalk.
In order to illustrate this important phenomenon, consider the three-
conductor line shown in Fig. 1.

Figure 1. The general three conductor transmission line, illustrating
crosstalk.
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2.1. The Transmission Line Equations for Lossless Lines

In order to predict the crosstalk and understand the basic mechanism
as well as the parameters affecting it, we will ignore these losses in
formulating the multiconductor transmission-line equations in order
to simplify their solution. Ignoring losses gives first-order and
reasonably accurate predictions of the crosstalk. To obtain the MTL
equations that we must solve in order to ∆z section as shown in
Fig. 2. The generator and receptor circuits have per-unit-length
mutual inductance lm between the two circuits. The line current
produce magnetic fluxes penetrating each loop formed by the conductor
and the reference conductor, and these inductances represent the
effect of those fluxes via Faraday’s law. The line voltages (between
each conductor and the reference conductor) produced charges on
the conductors that generate electric fields between each pair of
conductors. This effect is represented by capacitances. The per-
unit-length self-capacitances between the generator conductor and
the reference conductor and between the receptor conductor and the
reference conductor are represented by cG and cR, respectively. The
per-unit-length mutual capacitance between the generator and receptor
conductors is represented by cm. In a ∆z section of the line the total
inductance or capacitance is the per-unit-length value multiplied by
∆z.

Figure 2. The per unit length equivalent circuit of a three conductor
transmission line.
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The MTL equations can again be determined from this per-unit-
length equivalent circuit using circuit analysis principles and letting
∆ → 0, giving

∂VG(z, t)
∂z

= −lG
∂IG(z, t)

∂t
− lm

∂IR(z, t)
∂t

(1a)

∂VR(z, t)
∂z

= −lm
∂IG(z, t)

∂t
− lR

∂IR(z, t)
∂t

(1b)

and

∂IG(z, t)
∂z

= −(lG + cm)
∂VG(z, t)

∂t
− cm

∂VR(z, t)
∂t

(1c)

∂IG(z, t)
∂z

= −cm
∂VG(z, t)

∂t
− (CR + cm)

∂VR(z, t)
∂t

(1d)

An important observation can be made that aids greatly in the
solution of these equations. Writing these equations in matrix form
yields

∂

∂z
V (z, t) = −L

∂

∂t
I(z, t) (2a)

∂

∂z
I(z, t) = −C

∂

∂t
V (z, t) (2b)

where

V (z, t) =
[
VG(z, t)
VR(z, t)

]
(3a)

I(z, t) =
[
IG(z, t)
IR(z, t)

]
(3b)

And the per-unit-length parameter matrices are

L =
[
lG lm
lm lR

]
(4a)

C =
[
(cG + cm) −cm

−cm (cR + cm)

]
(4b)

Observe that the MTL equations in matrix form in (2) have an
appearance identical to that of the transmission-line equations for a
two-conductor line. Hence their solution should give similar forms of
results but in matrix form [7]. This is a very powerful result that
provides great insight into their solution and can be easily extended to
lines consisting of more than three conductors.
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The MTL equations in (1) are in the time domain. For single-
frequency, sinusoidal steady-state excitation (phasor form) we simply
replace time derivatives with jω, where ω = 2πf is the radian
frequency of the source and f is its cyclic frequency. This method
is

d

dz
V̂ (z) = −jωLÎ(z) (5a)

d

dz
Î(z) = −jωCV̂ (z) (5b)

3. THE PER-UNIT-LENGTH PARAMETERS

The configurations in Fig. 3 are considered to be lines immersed in
a homogeneous medium [8]. The surrounding medium for the cases
of three wires in Fig. 3 is logically considered to be free space with
parameters ε0 and µ; that is, the wires are considered to be bare.
Dielectric insulations severely complicate the determination of the per-
unit-length capacitances for wires, but do not affect the per-unit-length
inductances since dielectrics have µ = µ0. For the lines in Fig. 3 we
will ignore the presence of dielectric insulations and consider the wires
to be bare.

Figure 3. Wire type line cross sections whose reference conductors is
a another wire.

If the surrounding medium is homogeneous, as for the lines in
Fig. 3, the per-unit-length parameter matrices given in (4) have
important, special relationships that parallel those found for two-
conductor lines. In particular these relationships are

LC = CL = µε12 (6)
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where the surrounding homogeneous medium is characterized by µ,
and ε, and 12 is the 2 × 2 identity matrix:

12 =
[
1 0
0 1

]
(7)

Therefore we only need to determine one of the parameter matrices,
since the other can be found form (6) as

C = µεL−1

=
1
v2

L−1 (8)

where v = 1/
√

µε is the usual phase velocity for uniform plane waves,
and is also the velocity of waves on the line for example, for the three-
conductor line in a homogeneous medium we obtain from (8)[

cG + cm −cm

−cm cR + cm

]
=

1
v2(lGlR − l2m)

[
lR −lm
−lm lG

]
(9)

Comparing the two sides, we obtain the per-unit-length capacitance
parameters in terms of the per-unit-length inductance parameters as

cm =
lm

v2(lGlR − l2m)
(10a)

cG + cm =
lR

v2(lGlR − l2m)
(10b)

cR + cm =
lG

v2(lGlR − l2m)
(10c)

4. THE INDUCTIVE-CAPACITIVE COUPLING
APPROXIMATE MODEL

Solution of the coupled MTL equations in (3) is, in general, a difficult
task. The typical method of solution is to decouple them with a
matrix transformation. The exact solution in literal form (symbols
instead of numbers) can be obtained for three-conductor, lossless
lines in homogenous media. However this does not apply for PCB
configurations [9] rarely can be obtained in literal form. However, it
is possible to obtain a literal solution if we make the assumption that
the lines are weakly coupled. The condition of weak coupling [10] is
described as follows. The current and voltage of the generator circuit
will induce voltages and currents in the receptor circuit through the
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mutual inductance lm and mutual capacitance cm. In turn, these
induced currents and voltages in the receptor circuit will, as a second-
order effect, induce currents and voltages back into the generator
circuit. By assuming weak coupling, we mean that these voltages
and currents induced in the generator circuit due to the currents and
voltages that were induced in the receptor circuit may be ignored, that
is, the induction of currents and voltages from one circuit to another
is a one-way effect from the generator circuit to the receptor circuit.
From the standpoint of the MTL equations in (1), the condition of
weak coupling means that the equation for the generator circuit are
approximated, by neglecting the mutual term as

∂VG(z, t)
∂z

+ lG
∂IG(z, t)

∂t
= 0 (11a)

∂lG(z, t)
∂z

+ (cG + cm)
∂VG(z, t)

∂t
= 0 (11b)

and the equations for the receptor circuit are unchanged

∂Vg(z,t)

∂z
+ lg

∂lg(z, t)
∂t

= −lm
∂lG(z,t)

∂t
(12a)

∂lG(z, t)
∂z

+ (cR + cm)
∂VR(z, t)

∂t
= Cm

∂lG(z,t)

∂t
(12b)

The equations have also been rewritten by moving the self terms
to the left-hand side in order to present them in the form of those
for isolated two-conductor lines. Observe in the equations governing
the current and voltage of the generator circuit (the circuit being
driven by the source) in (11) we have omitted the mutual coupling
terms lm

∂IR(z,t)
∂t and cm

∂VR(z,t)
∂t , which cause the back interaction of

inducing voltages and currents in the generator circuit due to currents
and voltages and currents in the generator circuit due to currents and
voltages in the receptor circuit. Thus we can solve for the voltage and
current in the generator circuit, VG(z, t) and IG(z, t), as though it were
an isolated, two-conductor transmission line [11].

Once the voltage and current of this (isolated) generator circuit
are obtained, we place induced sources due to these via the mutual
inductance and mutual capacitance into the receptor circuit. The
sources induced in the receptor circuit are represented by the terms
on the right-hand-sides of the equations in (12).

−lm
∂IG(z, t)

∂t
(13a)
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cm
∂VG(z, t)

∂t
(13b)

These sources induced in the receptor circuit are visualized as shown
in Fig. 4.

(b)

(a)

Figure 4. Explanation of the two components of crosstalk: (a)
magnetic field or inductive coupling, (b) electric field or capacitive
coupling.

Faraday’s law provides that a per-unit-length voltage will be
induced in the receptor circuit that is due to the time rate of change
of the magnetic flux penetrating the loop formed by the conductors of
the receptor circuit. Hence two per-unit-length sources will be induced
in the receptor circuit:

Vs1 = lR
∂IR

∂t
(14a)

and

Vs2 = lm
∂IG

∂t
(14b)

Source VS1 is produced by the self-inductance of the receptor circuit.
Source VS2 is produced by the mutual inductance between the two
circuits and the current of the generator circuit. As a first-order model
we will ignore the effect of VS1. Hence we may represent the receptor
circuit with one source, VS2, as illustrated in Fig. 4(a). because this
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source is due to magnetic field coupling, it is referred to as inductive
coupling. The total for a ∆z section length will be the per-unit-length
source multiplied by ∆z.

Current is the time rate-of-change of charge and hence per-unit-
length current sources will be induced between the two conductors of
the receptor circuit of

IS1 = (cR + cm)
∂VR

∂t
(15a)

IS2 = −cm
∂VG

∂t
(15b)

The first current source, IS1, in (16a) is simply the current source
induced by the receptor circuit self-capacitance. Source IS2 is produced
by the mutual capacitance between the two circuits. Again, as a first-
order model we will ignore the effect of IS1. Hence we will represent
the receptor circuit with one source, IS2, as illustrated in Fig. 4(b).
Because this source is due to electric field coupling, it is referred to
as capacitive coupling. Hence we will represent the receptor circuit
by combining the two sources in (14b) and (15b) and lumping them
together to represent the entire line with total mutual inductance and
total mutual capacitance of Lm = lml and Cm = cml, respectively,
where l is the total line length [12].

This is referred to as the inductive-capacitive coupling model. The
crosstalk takes place via two distinct coupling mechanisms [13, 14],
magnetic field coupling due to mutual inductance between the two
circuits and electric field coupling due to mutual capacitance between
the two circuits. There are two key assumptions in this model: (1) we
assume weak coupling between the generator ands receptor circuits,
that is, the coupling is a one-way effect from the generator circuit to
the receptor circuit; and (2) the line is assumed to be electrically short
at the frequency of the driving source in the generator circuit, Vs that
is, l � λ = v/f .

5. FREQUENCY DOMAIN INDUCTIVE CAPACITIVE
COUPLING MODEL

Our first main interest is for driving sources in the generator circuit,
Vs(t) in Fig. 1, that are single-frequency sinusoids; that is, we first
determine the frequency-domain response. To do this we form the
phasor circuit by replacing time derivatives with jω, where ω = 2πf
and f is the frequency of the driving source. The resulting equivalent
circuit for the receptor circuit is given in Fig. 5(b). In that circuit
we show the current and voltage of the generator circuit as being
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(a)

(b)

Figure 5. The simplified inductive-capacitive coupling crosstalk
model: (a) time domain model, (b) frequency-domain model.

effectively the same as being effectively the same as though the driving
source was dc:

ÎGdc
∼= 1

Rs + RL
V̂S (16a)

V̂Gdc
∼= RL

RS + RL
V̂S (16b)

This is because we assume that the line is electrically short at
the frequency of the driving source, i.e., l � λ, where λ = v/f is a
wavelength at the frequency f of the driving sinusoidal source, and
hence the voltage and current do not vary appreciably in magnitude
along the generator line. Hence they are virtually the same as
those produced by a dc source. From this equivalent circuit we may
determine the near-end and far-end phasor crosstalk voltages using
superposition as [1]

V̂NE =
RNE

RNE + RFE
jωLmÎGdc︸ ︷︷ ︸

inductive coupling

+
RNERFE

RNE + RFE
jωCmV̂Gdc︸ ︷︷ ︸

capacitive coupling

(17a)

V̂FE = − RFE

RNE + RFE
jωLmÎGdc︸ ︷︷ ︸

inductive coupling

+
RNERFE

RNE + RFE
jωCmV̂Gdc︸ ︷︷ ︸

inductive coupling

(17b)
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and Lm = lml and Cm = cml are the total mutual inductance and
mutual capacitance of the line, respectively.

V̂NE =
RNE

RNE+RFE
jωLm

1
Rs+RL︸ ︷︷ ︸

inductive coupling

V̂s+
RNERFE

RNE+RFE
jωCm

RL

Rs+RL
V̂s︸ ︷︷ ︸

capacitive coupling

(18a)

V̂FE =
RFE

RNE+RFE
jωLm

1
Rs+RL︸ ︷︷ ︸

inductive coupling

V̂s+
RNERFE

RNE+RFE
jωCm

RL

Rs+RL
V̂s︸ ︷︷ ︸

capacitive coupling

(18b)

The crosstalk can be viewed as a transfer function between the input
V̂s and the outputs V̂NE and V̂FE . These transfer functions can be
obtained by factoring out V̂s and jω to give

V̂NE

V̂s

= jω

(
RNE

RNE + RFE

Lm

Rs + RL

)
+

(
RNERFE

RNE + RFE

RLCm

Rs + RL

)

(19a)

V̂FE

V̂s

= jω

(
− RFE

RNE + RFE

Lm

Rs + RL

)
+

(
RNERFE

RNE + RFE

RLCm

Rs + RL

)

(19b)

6. EXPERIMENTAL SETUP

The three wire crosstalk model is shown in Fig. 6. The experiment
setup for the measurements are shown in Fig. 7 and Fig. 8 respectively.
In this setup the generator conductor and the reference conductor is
terminated by 50 ohms at the far end side. Here the power received
by the spectrum analyzer due to excitation voltage from the signal
generator is studied over a wide frequency range from 100 MHz to
2 GHz.

In the whole experimental setup, we are exciting the model
by a signal generator at the input side. Mainly we are interested
in estimation of the farend and the nearend crosstalk in an EM
environment. For this, we performed the experiment in two steps.
For measuring the nearend crosstalk we are exciting the model using
signal generator and measuring the nearend crosstalk voltage across the
receptor conductor and generator conductor due to the presence of the
third wire that is the reference conductor using a spectrum analyzer,
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Figure 6. Simple crosstalk model (Top view).

Figure 7. Experimental setup (Measuring near-end crosstalk).

at the input side or nearend side. Similarly for the measurement of the
farend crosstalk voltage across the receptor conductor and generator
conductor due to the presence of the third wire that is the reference
conductor, we are using the same spectrum analyzer at the output side
or farend side.

We are providing 10 dBm power from the signal generator to excite
the crosstalk model. At the receiving side we are using the spectrum
analyzer for practical measurement.

The specifications of the experimental setup are given below:
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Figure 8. Experimental setup (Measuring far-end crosstalk).

L = 20 cm (Length of the wire), S = 1.3 cm (Distance between
two adjacent wires) and Diameter of the wire = 3.5 mm

For simulating the whole model using CST (Computer Simulation
Technology), we excited the three wire crosstalk model using discrete
port [15]. For the measurement of the nearend and farend crosstalk
voltage using CST, we are using 50 ohms lumped element, across which
we are getting the nearend and farend voltage.

7. RESULTS AND ANALYSIS

Figure 9 and Fig. 10 shows the simulated and measured results of
nearend crosstalk voltage between the receptor wire and reference wire
respectively when placed in an EM environment. Similarly Fig. 11 and
Fig. 12 shows the simulated and measured results of farend crosstalk
voltage between the receptor wire and reference wire respectively.
The results show that both simulated and measured results are
following the same pattern. The only small difference that we are
getting is because of the whole experiment is performed in Microwave
measurement laboratory, IIT Kharagpur where the environment is very
much crowded. If the same experiment would have been performed in
an anechoic chamber or an OAT site the results would have been quite
better.

The measured and simulated results show the same pattern over
the frequency band of interest, though a difference is noticed (Fig. 9–
Fig. 12). The possible reasons for this deviation in measured and



56 Roy, Ghosh, and Chakrabarty

Near end Cross talk 

0

0.05

0.1

0.15

0.2

0.25

100 600 1100 1600

Freq(MHz)

A
m

pl
itu

de
(V

ol
ts

)

Figure 9. Near-end crosstalk (CST simulated result).
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Figure 10. Near-end crosstalk (Measured result).
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Figure 11. Far-end crosstalk (CST simulated result).



Progress In Electromagnetics Research B, Vol. 8, 2008 57

Far end cross talk

0

0.005

0.01

0.015

0.02

0.025

0 500 1000 1500 2000
Freq(MHz)

V
ol

ta
ge

(V
ol

ts
)

Figure 12. Far-end crosstalk (Measured result).

simulated results are summarized as follows:

• The mismatch produced by the cables on transmit and receive side
will contribute to the measurement error significantly.

• Though the scattering by other reflecting bodies in the vicinity
are tried to minimize, can not be removed totally.

8. CONCLUSIONS

This paper presents the initial investigation of a simple crosstalk
model by predicting the nearend and farend crosstalk voltage. in an
EMI/EMC environment. The results from EMI/EMC stand point of
view are very important for system design where implementation of
multiconductor is necessary in any electronic system. Also the study
can be extended for two wires with PEC as the reference conductor.
The measurement of the nearend and farend crosstalk is an important
part of the certification process needed before a device or system can
be marked. This process has to be undertaken for all levels of devices
from personal electronic devices up to large aircraft.
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