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Abstract—Based on the deterministic Maxwellian framework, we
investigate the ability of each of the dual fields (electric and magnetic)
in carrying independent information in a multi-polarization MIMO
system. We quantify the performance by using a well-defined power
independent dimensionality (PID) metric. We present numerical
results for 3 deterministic scenarios: a canonical free-space (near and
far field exact solution), a canonical PEC corridor (using rigorous
modal analysis) and a lossy-wall corridor (using image ray tracing).
The deterministic results show that in a multi-path rich environment,
the hexapole system (collocated polarized electric and magnetic point
radiators) is almost guaranteed to provide more than 3 DOF. However,
in the simulated scenarios, the maximum 6 DOF are never attained due
to the inevitable coupling between the electric and magnetic fields.
On the other hand, for a tripole system, the upper-limit of 3 DOF is
achievable.

1. INTRODUCTION

In this paper, we deterministically investigate the degree of
freedom (DOF) gain (i.e., creation of new parallel channels) which
can be provided through a collocated multi-polarization MIMO
system. “Multi-polarization” designates transmit/receive collocated
configurations, namely, tripoles (3 mutually-orthogonal collocated
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point sources forming 3 independent ports), hexapoles (2 collocated
dual tripoles i.e., electric and magnetic as described in [1, 2]), or other
combined dual polarization cases.

The problem addressed in this work is eventually a single-
point sampling (through infinitesimal electric/magnetic dipoles) of a
vector-field which happens to experience 2 types of collocated spatial
orthogonality: vectorial and (scalar) functional [2]. The former is the
essence of the polarization diversity whereas one form of the latter is
the pattern diversity in the far-field modeling.

Various deterministic simulations in this work show that the
vectorial and functional orthogonality are not necessarily independent
due to the inevitable coupling between the electric and magnetic
field components. Consequently, the claim of hexapole six-fold
dimensionality gain [1, 2] under statistical channel assumption is not
practically guaranteed. Certainly, the results of the deterministic
simulations performed in this work cannot be strictly generalized to
every environment or even to a class of environments as is the case
with the stochastic case. Nevertheless, such deterministic simulations
accurately account (in the Maxwellian sense [5, 6]) for the coupling
between the electric and magnetic fields, a feature which is overlooked
in the statistical approach. We thus claim that the novelty of this work
is the application of accurate deterministic techniques to draw some
conclusions regarding the dimensionality of multi-polarized MIMO
systems in the given environments.

We attempt to provide a clear answer to the following controversial
question raised in the literature [1–4]: can each of the electric and
magnetic fields carry an independent piece of information between
2 radiating structures and thus double the one-field communication
dimensions? The challenge in this question lies in the fact that
the 2 fields are not simultaneously arbitrary since they are related
by Maxwell’s equations. Through a universal model sustained by
numerical results, we show that the answer depends on the 2 inter-
twined orthogonality types, which are environment-specific.

We begin by setting a generic framework for multi-polarization
scenarios by using a 6 × 6 polarization matrix based on Maxwell’s
equations. A canonical free-space (near and far field) scenario is
then thoroughly investigated showing a particular transmit/receive
separation at which full-rank dimensionality is achievable using
tripoles. Next, we show multi-polarization results in a corridor
having perfect electric conductor (PEC) walls by using rigorous
modal analysis. Afterward, we repeat the corridor simulation,
through approximate image ray tracing (IRT), in another scenario
when the walls are “transparent” i.e., having a small loss-tangent
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(LT). We conclude by showing a histogram of the multi-polarization
dimensionality results of the simulated scenarios.

2. UNIVERSAL MULTI-POLARIZATION MODELING

In order to isolate the multi-polarization effect, we deliberately exclude
the space diversity by employing collocated infinitesimal (Hertzian)
dipoles as a perfect multi-polarization “field-probe”, having a zero-
length and detecting the vectorial nature of the electromagnetic
fields. Nevertheless, we must admit that the polarization diversity
is inseparable of the pattern diversity, which ultimately makes the
multi-polarization zero-length MIMO system founded on the combined
pattern/polarization diversity. In fact, this double-diversity is the
base of the 2 aforementioned types of collocated spatial orthogonality
(vectorial and functional).

Similarly to [2], we employ the polarization matrix H6 ∈ C6×6,
which models the 6 × 6 MIMO channel between the transmit/receive
hexapoles. For m orn = {1, 2, 3}, the element hmn represents an
electrical receive/transmit, where (1, 2, 3) denote indices for the 3
mutually orthogonal coordinates. Similarly, form orn = {4, 5, 6}, hmn

represents a magnetic receive/transmit, where (4, 5, 6) denote indices
for the same 3 mutually orthogonal coordinates, respectively. We
assume narrow-band operation of the system. Moreover, the following
source normalization assumptions are made:

1. The electric (IEl) and magnetic (IM l) dipole moments are
normalized such that (IM l) = η0(IEl), where η0 = 120π is the
free-space impedance.

2. The received signal, either by an electric or magnetic infinitesimal
dipole, is detected as a proportional voltage. Therefore, any
receive magnetic field component is multiplied by η0 in the
following analysis.

From the duality between the electric and magnetic fields [7], the
hexapole channel matrix H6 is expressed as

H6 =
(

C −D
D C

)
, (1)

where, for n = {1, 2, 3}, the column vectors c·n and d·n of the 3 × 3
sub-matrices C and D represent the receive electric and magnetic
fields response, respectively, to the nth polarized transmit electrical
excitation. Furthermore, at the receive point, the source-free Maxwell’s
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curl equations must be satisfied

∇× E = −jωµ0H (2a)
∇×H = jωε0E. (2b)

Therefore, from the aforementioned source-normalization assumptions
and (2a), the sub-matrices C and D are related by

D = η0
∇̄ × C
−jωµ0

=
j

k0
∇̄ × C, (3)

where ∇̄ × C is a dyadic curl (operating on the column vectors of C)
and k0 is the free space wave number. Accordingly, H6 is expressed as

H6 =


 C − j

k0
∇̄ × C

j

k0
∇̄ × C C


 . (4)

Equation (4) is universal at any source-free point in any environment
as long as we are operating the system in narrow-band and the
environment electrical/magnetic properties are deterministic at any
one time. At any point in space where there is an impressed source or
medium inhomogeneity (e.g., at the boundaries), (4) is not true.

Now, we return back to the question regarding the usage of E
and H as independent information carriers. From (4), given the fact
that the elements of H6 are not all independent, can we really achieve
6 DOF? The answer was positive in [1, 2] and negative in [3, 4]. The
deterministic results of this work provide evidence that by employing
a hexapole system, we can have more than 3 DOF if the environment
permits. However, in all these deterministic simulations, the maximum
6 DOF have not been attained.

Hence, the core of the answer is how to exploit the 2 orthogonality
types in the deterministic environment as modeled by H6. The
matrix rank becomes deficient when there exists a linear algebraic
dependence between the matrix rows or columns. In (4), there is a
linear dependence, however, it is differential rather than algebraic and
has therefore no clear impact on the matrix rank. The environment
properties, manifested through the boundary conditions, set the
explicit algebraic dependence between C and D in (1). We will see in
the upcoming case studies that whenever this differential dependence
approximates a linear algebraic one (single plane-wave or spherical
ray), only then, the rank becomes deficient.

The vectorial orthogonality is exhibited through the 3 components
of one vector field (either electric E or magnetic H but not both)
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along the 3 mutually orthogonal coordinates. Hence, the vectorial
orthogonality is also known as the polarization diversity. If the dual
fields (E and H) were independent (uncoupled), a pair of infinitesimal
dual tripoles (electric and magnetic) would be sufficient to allow up to 6
DOF through independent vectorial orthogonality. However, the dual
fields are indeed coupled; otherwise, the electromagnetic propagation
would not exist. Therefore, in order to employ the DOF of the
dual field, it is mandatory to have another sort of diversity, which is
accomplished through the so-called Field Expansion Diversity (FED).
The FED is also known as the functional orthogonality or, in the far-
field analysis, pattern diversity. The terms functional orthogonality
and FED are used interchangeably hereafter.

The FED is best understood when the received field is expressed
as an integration (or summation in discrete analysis) of some field
expansion components such as:

• The spherical propagating multipath rays in the case of high-
frequency approximation (ray tracing). We emphasize that in
this case, each ray should be considered inseparably of the
transmit/receive pattern-weighting [2].

• In general, the plane-wave expansion components of the received
field [8].

• The modes in a PEC waveguide, which can straightforwardly be
further decomposed into a summation of plane waves.

At a given angular direction, an expansion component is individually
rank-deficient of rank 2 [4]. Nevertheless, the integration (summation)
of all the expansion components can produce a resultant higher rank
matrix of better DOF [1, 2]. Consequently, a rank-deficient expansion
component is not automatically a bottle-neck for the DOF of the
multi-polarization MIMO system as was argued in [4]. In case of ray
modeling, such FED is traditionally known as the antenna far-field
pattern diversity [2] since the weighted-integration (summation) of the
multipath rays is done through the antenna patterns over the visible
angular domain.

Within each plane-wave or spherical ray component, there is
a linear algebraic dependence between the transverse electric and
magnetic field components meaning that only one field can carry
independent information. By only considering the independent electric
field in each plane wave component, we have the following double-
impact when all the plane-wave components impinge on a hexapole
receive from different directions:

• Even though each plane wave individually allows 2 DOF based
on partial vectorial orthogonality (the 2 transverse components of
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the electric field), the plane-wave integration/summation creates
a third vectorial electric DOF because the resultant electric field
now has 3 components [1].

• Each field component (say Ez) of an impinging plane wave has
the potential to interact with 3 receive elements (electric z-
polarized and transverse magnetic x- and y-polarized elements).
However, these 3 receive elements interpret differently the same
field component according to the plane-wave direction of arrival.
Ultimately, when all the plane waves are angularly weighted
(integration/summation), such functional orthogonality gives
room to more DOF [2].

Therefore, in the hexapole system, we are exploiting the vectorial
nature of one field along with the angular sensitivity of the
dual-field detector (rather than the dual-field itself, which is not
independent) to convey independent information. Accordingly, the
aforementioned question becomes whether the same mechanism (plane-
wave expansion) can provide 2 independent orthogonality effects. The
numerical results obtained in this work show that there is an inevitable
coupling between these 2 orthogonality effects.

3. A CANONICAL FREE-SPACE
MULTI-POLARIZATION SCENARIO

In this section, we investigate the dependence of the multi-polarized
MIMO system DOF on the transmit/receive separation in free-
space (near and far field). We employ a recently developed power-
independent dimensionality (PID) metric [11] for the purpose of DOF
evaluation throughout this paper. The PID definition and relevant
properties are briefly stated in Appendix A. The justification of such
a power-independent perspective in MIMO dimensionality evaluation
is also discussed in Appendix A.

For a z-polarized infinitesimal electrical dipole in free space, the
exact closed-form expressions of the field components in spherical
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coordinates are given by [9]

Er = (IEl) η0
cos θ
2πr2

(
1 +

1
jk0r

)
e−jk0r

Eθ = j (IEl) η0
k0 sin θ

4πr

(
1 +

1
jk0r

− 1
(k0r)

2

)
e−jk0r

Hϕ = j (IEl)
k0 sin θ

4πr

(
1 +

1
jk0r

)
e−jk0r

Eϕ = Hr = Hθ = 0

. (5)

By duality, for a z-polarized infinitesimal magnetic dipole in free space,
the field components are given by [9]

Hr =
(IM l)
η0

cos θ
2πr2

(
1 +

1
jk0r

)
e−jk0r

Hθ = j
(IM l)
η0

k0 sin θ
4πr

(
1 +

1
jk0r

− 1
(k0r)

2

)
e−jk0r

Eϕ = −j (IM l)
k0 sin θ

4πr

(
1 +

1
jk0r

)
e−jk0r

Er = Eθ = Hϕ = 0

. (6)

We begin by constructing the hexapole matrix and we follow the
normalization assumptions of Section 2. We also assume an orientation
as depicted in Fig. 1 for the transmit/receive hexapoles (2 broadside/1
endfire setup) and the hexapoles are separated by a distance r. Any
arbitrary transmit/receive rotation is modeled by a unitary matrix
with has no effect on the singular values of the channel matrix. This
is true as well for other general scenarios.

x

y

z
x

y

z
r

hexapole setup

Figure 1. Each end (transmit/receive) accommodates 2 collocated
dual tripoles each consisting of 2 broadside and 1 endfire elements.

We choose the Cartesian coordinates to construct H6 such
that the indices (1, 2, 3) of the elements hmn denote the (x, y, z)
coordinates for electrical receive/transmit whereas the indices (4, 5, 6)
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of the elements hmn denote the (x, y, z) coordinates for magnetic
receive/transmit. According to Fig. 1, using (5) and (6) along
with coordinate transformation and the aforementioned normalization
assumptions, H6 is constructed yielding

H6 =




a1 0 0 0 0 0
0 a2 0 0 0 a3

0 0 a2 0 −a3 0
0 0 0 a1 0 0
0 0 −a3 0 a2 0
0 a3 0 0 0 a2


 , (7a)

where, after multiplying the field components by 4πr2 and omitting
the common factors,

a1 = 2
(
1 + ξ−1

)
a2 = ξ + 1 + ξ−1

a3 = ξ + 1
ξ = jk0r

. (7b)

Consequently, the singular values of H6 are obtained from (7) yielding

σ{H6} = {|a1|, |a1|, |a2 + a3|, |a2 + a3|, |a2 − a3|, |a2 − a3|} , (8)

where each singular value has a multiplicity of 2 [2].
In a similar fashion, we can extract from the generic H6 other

multi-polarization systems:
• the 3 × 3 tripole matrix H3.
• the 4× 4 tetrapole matrices H3e and H3b consisting of (1 tripole,

1 dual endfire) and (1 tripole, 1 dual broadside) polarizations,
respectively.

• the 5×5 pentapole matrices H3eb and H3bb consisting of (1 tripole,
1 dual endfire, 1 dual broadside) and (1 tripole, 2 dual broadside)
polarizations, respectively.

Table 1 includes the closed-form singular values as well as the near-field
(a1/a2 → 2 and a3/a2 → 0) and far-field (a1/a2 → 0 and a3/a2 → 1)
PID values. Fig. 2 depicts the distance-dependence of the PID for the
multi-polarization scenarios.

The PID of case 1 and 2 in Table 1 reaches its maximum, rank (H),
at one specific separation when |a1| = |a2|, which occurs at

r

λ
=

1
2π

√
5 +

√
37

2
≈ 0.3747, (9)
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Table 1. Summary of multi-polarization results.

 
Pol. Case Singular Values 

Near-Field 
PID 

0 1k r �  

Far-Field 
PID 

0 1k r �  

1 Tripole 3 2 2{ | |, | |, | |a aσ =H 8/3 2.67≈  2 

2 
Tripole 

1 endfire 
{ }3e 1 2{ } | |,| |, | |,| |a a aσ =H 3.6

3 
Tripole 

1 broadside 
{ }3 2 2 3 2 3{ } | |,| |, | |,| |b a a a a aσ = -H 25/7 3.57≈  1.8 

4 
Tripole 

1 endfire 
1 broadside 

{ }3 1 2 2 3 2 3{ } | |,| |,| |,| |,| |eb a a a a a aσ = -H 49/11 4.45≈  1.8 

5 
Tripole 

2 broadside {                                                       }
3

1 2 3

{      }

| |,| |,| |,| |, | |
bb

a a a

σ

= +

H
4.5

6 Hexapole {                                                                  }
6

1 1 2 3 2 3 2 3 2 3

{     }

| |,| |,| |,| |,| |,| |a a a a a a a a

σ

= + -

H  
16/3 5.33≈  2 

-

<< <<

2 

2 2

}} { 1 a

1 a

1

3a 2a + 3a 2a - 3a 2a

1 a +

+a

a+ -a

where λ is the free space wavelength. For all the other cases, the
inevitable coupling between the electric and magnetic field prevents
the PID from reaching rank (H) and the maximum PID occurs in the
near-field region (k0r � 1).

In the far-field analysis, the spherical wave approaches a single
traveling plane-wave (within a vicinity of some transmit/receive
separation r to disregard the 1/r decay of the field). Therefore, the
far-field scenario lacks any FED orthogonality since there is only one
“plane-wave” component. Moreover, the absence of any field radial
component reduces the vectorial orthogonality to 2. Consequently, we
get the well-known horizontal and vertical polarization diversity for
the hexapole system in the far-field region. From a matrix-modeling
perspective, the far-field scenario approaches a matrix of rank 2,
given the fact that there is a linear algebraic dependence between the
transverse component of E and H. For case 3 and 4 in Table 1, the
2 channels have non-equal contributions {2|a2|, |a2|}. Therefore, from
a dimensionality perspective, case 3 and 4 dimensionality performance
is less than 2.

On the other hand, the near-field analysis of this canonical
free-space scenario is more enlightening. The rigorously derived
results shed light on possible near-field applications such as short-
distance/low-frequency indoor MIMO systems based on collocated
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Figure 2. PID vs r/λ (log-scale) for free-space multi-polarization
scenarios.

multi-polarization. We use the plane-wave expansion of the spherical
wave [8] to show that this near-field scenario, which seemingly has no
multipath richness, is indeed super-rich. We assume a propagation
hemisphere cross-section at z = 0 (the chosen decay direction of the
evanescent components is along the positive z-axis). Comparing the
field vector potential analysis to the plane-wave expansion of the field
of an electrical point source, we get [8]

e−jk0r

r
=

1
j2π

∞∫
−∞

∞∫
−∞

e−jk0k̂·r

kz
dkxdky, (10)

where r = (x, y, z) is the position vector of the observation point with
respect to the point source and k̂ = 1

k0
(kx, ky, kz) is a complex unit

vector (k̂ · k̂ = 1). According to our choice of the hemisphere cross-
section at z = 0, kx and ky are always real (spanning the extended
visible and evanescent angular domain). Accordingly, kz is either real
or pure imaginary as follows:

• For k2
x + k2

y < k2
0, kz = +

√
k2

0 − k2
x − k2

y (positive real) and k̂ is
the propagation direction of the traveling plane wave component.

• For k2
x + k2

y > k2
0, kz = −j

√
k2

x + k2
y − k2

0 (negative pure
imaginary) and the evanescent plane wave component is decaying
in the positive z-direction at a rate of e−|kz |z.
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Because of the closed-form in the left-hand side of (10), we were able
to exactly derive the field solution (5) and (6) in closed-form through
Maxwell’s equations, and the solution includes all the evanescent
waves components, which is not computationally available in the
bounded electromagnetic problems. In the extended angular domain,
the spectrum of (5) and (6) exhibits an ultra-wide spatial bandwidth
(traveling and evanescent). In other words, the near-field analysis of
a free-space scenario resembles a super-rich multipath environment
(including traveling and evanescent waves). Although each plane-
wave (traveling or evanescent) has individually 2 DOF, the integration
of all plane-wave components yields a higher DOF, which is against
the argument of [4] concerning the strict upper limit of 2 DOF for
the multi-polarization systems. Both the FED orthogonality and the
existence of a radial field component (full vectorial orthogonality)
contribute to this higher DOF. However, the coupling between the
electric and magnetic fields does not allow the PID to reach the full-
rank value of 6.

The multi-polarization near-field DOF results in this example
gives an idea about the expected DOF in a realistic multipath scenario:
if a super-rich near-field environment does not achieve 6 DOF as
already shown by rigorous analysis, it seems likely that most other
environments may not achieve 6 DOF either. The results of the next
section agree with this expectation.

4. MULTI-POLARIZATION IN A PEC CORRIDOR
SCENARIO: MODAL ANALYSIS

We move now to investigate the multi-polarization DOF in a canonical
indoor scenario. The environment is a rectangular open-ended corridor
(waveguide) having PEC walls. Such a canonical structure is highly
multipath-rich. We employ the modal field solution for this multi-
polarization excitation under the PEC boundary conditions. The
corridor width and height are 4 m and 3 m, respectively. The operating
frequency is 2.4123 GHz, so chosen to avoid numerical complexity in
the modal solution. Under these operating conditions (frequency and
corridor dimensions), we have 2495 propagating modes.

As shown in Fig. 3, we denote the axis along the corridor length,
width and height by (L, W , H), respectively. The multi-polarized
transmit is located at (2, 2.8) along (W , H), respectively. The multi-
polarized receive is moving over a grid of equidistant 100× 100 points
on the whole cross-section of the corridor. The simulation is repeated
over 3 grids situated at 25, 30 and 40 m from the transmit point along
the L-axis. Such distances are sufficient to guarantee the suppression
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L

WH

Tx

Figure 3. Multi-polarization scenarios in a corridor.

of all the evanescent modes.
In the 3 simulated scenarios, we obtained very similar PID results.

The average value for the PID for the tripoles and hexapoles systems
over the grid locations is 2.35 and 4.3, respectively. An example of the
PID over the grid points at 30 m L-separation is shown in Fig. 4. Very
close average values were obtained as well when the transmit and grid
points were re-located to other positions.

We can make several interesting observations from Fig. 4. In the
hexapole case, 3 DOF or more are almost guaranteed. However, as
expected earlier from the near-field free-space scenario, the full-rank 6
DOF have never been achieved in this rigorously-modeled multipath-
rich environment. The reason for having less than full 6 DOF is
attributed to the coupling between the electric and magnetic fields,
which impacts the independence between the vectorial and functional
orthogonality.

For the tripole scenario, the full-rank 3 DOF can be closely
approached. Nevertheless, there are few occurrences of PID< 2. In
spite of the 2 DOF of each plane-wave component, their summation
may accidentally yield lower dimensionality. This observation can be
explained by a destructive interference that suppresses one out of the
available 3 components of the electric field while there is a discrepancy
in the values of the other 2 components (similar to case 3 and 4 in
Table 1). In the hexapole case, such a suppression of 3 or more out of
the 6 components of the electric and magnetic fields is very unlikely.

5. MULTI-POLARIZATION IN A TRANSPARENT-WALL
CORRIDOR SCENARIO: IRT SIMULATION

The multi-polarization DOF gain is now investigated in a more
practical indoor scenario. The environment is a rectangular corridor
of dimensions 100 × 4 × 3 m along (L, W , H), respectively. The walls



Progress In Electromagnetics Research B, Vol. 14, 2009 57

(a) (b)

Figure 4. PID of multi-polarization MIMO system in a PEC corridor.
The receive grid is located at 30 m from the transmit along L. (a)
Tripole. (b) Hexapole.

thickness is 15 cm with a dielectric constant of 4 and a LT of 0.02.
The ceiling and floor thicknesses are 30 cm with a dielectric constant
of 6 and a LT of 0.05. We set up comparable scenarios to the PEC
corridor in Section 4. The multi-polarized transmit is located at (50,
2, 2.8) along (L, W , H), respectively. The operating frequency is
also 2.4123 GHz. The multi-polarized receive is moving over a grid of
equidistant 20 × 20 points on the whole cross-section of the corridor.
The simulation is repeated over 3 receive grids situated at 75, 80, 90 m
along the L-axis as sketched in Fig. 3.

Such a transparent-wall corridor is a LOS environment and does
not enjoy the same multipath richness as the PEC counterpart. We
employ a 3D-IRT algorithm to evaluate the channel matrix at each
receive grid point. The entries of H6 are constructed by applying the
spherical ray expansion such that

hmn =
∑∞

l=1
e(r)

ml
T · D̄(rt)

l · e(t)
nl

exp (−jk0Rl)
Rl

, (11)

where the index l represents the ray order; e(t)
nl and e(r)

ml are the
transmit/receive far electric field pattern/polarization vector (effective
length) at the proper ray departure/arrival direction, respectively, each
having 2 components in θ and ϕ directions; and D̄(rt)

l is the far-
field environment ray-dyad (2 × 2), which models the reflection loss
and the polarization rotation along the lth ray path and excludes the
free space spherical propagation factor exp(−jk0Rl)/Rl. Since the 6
multipole elements are located at the same physical location, we omit
the subscriptsm, n from the dyad D̄(rt)

l , which depends only on the ray
departure/arrival angles, and the environment geometrical/electrical



58 Elnaggar, Chaudhuri, and Safavi-Naeini

properties.
In order to readily obtain the far-field pattern/polarization

(electric effective length) of a point electric current source, polarized
in the âξ direction, we use the following decomposition

e = − (âξ · âθ) âθ − (âξ · âϕ) âϕ. (12)

Then, to get the electric effective length of a point magnetic current
source, we apply the duality principle.

Since there is a linear algebraic dependence between the transverse
components of the magnetic and electric field along each ray, the
multipole PID per ray can never exceed 2 (the vectorial orthogonality
of one-field) and thus the IRT simulator needs to trace the electric
field only. However, the summation (11) introduces a third vectorial
DOF [1] as well as the functional orthogonality due to the pattern
orthogonal weighting (pattern diversity or FED), which is modeled by
e(t)

nl and e(r)
ml .

In [10], we found out that few hundred rays are sufficient to yield
a convergent solution in the case of transparent walls (small LT). We
employ in the simulations herein the most significant 1000 rays, which
are traced from the fixed multi-polarization transmit to the moving
multi-polarization receive at each grid point. Fig. 5 show the PID over
the grid locations at a separation 30 m along L by using tripoles and
hexapoles. The PID results are very similar in the other scenarios and
the average PID is 1.9 and 2.4 for the tripole and hexapole systems,
respectively. The lack of multipath-richness due to the transparent
(lossy) walls has significantly reduced the DOF in comparison with
the PEC corridor.

(a) (b)

Figure 5. PID of multi-polarization MIMO system in a lossy-wall
corridor. The receive grid is located at 30 m from the transmit along
L. (a) Tripole. (b) Hexapole.
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6. DISCUSSION AND CONCLUSION

In this paper we investigated the DOF of a collocated multi-
polarization antenna system in 3 case studies. The first 2 canonical
cases, the near-field free-space and PEC corridor, represent rigorously
derived multipath scenarios which are very rich. Unlike the stochastic-
based simulations, the full-rank 6 DOF was never achieved through a
hexapole system in the deterministic simulations herein.

Also, by applying the plane-wave (or spherical ray) expansion on
the field in all the 3 studied cases, we showed that the individual 2
DOF per plane-wave component is not automatically a bottle-neck
to the system DOF. The incoming plane waves at different directions
result in a higher DOF of the system, which is attributed to the FED
(also known as far-field pattern diversity or functional orthogonality)
in addition to the obvious vectorial (polarization) orthogonality by
creating one more component in the resultant field. However, it can
happen that the total plane wave contribution yields less than 2 DOF
as observed in the case of the tripole system in the PEC waveguide.

A rich multipath environment is needed in order to achieve
an acceptable DOF performance through a multipole system. We
repeated the PEC corridor simulations with the transmit multipole
situated at various locations and we obtained very close average PID
values for the tripole and hexapole systems as those of Fig. 4. One can
argue that the open-ended PEC waveguide has only a hemi-spherical
angular spread of the rays and thus it is not as multipath-rich as the
optimum PEC enclosure. In order to examine this argument, we made
other simulations in a PEC corridor with only one open end. We placed
the transmit multipole and the receive grid at L = 50 and L = 75 m,
respectively and a PEC wall is located at L = 100 m. Therefore,
we have full angular spread over the receive spherical solid angle
and the modal solution is still fast convergent (evanescent modes are
suppressed). We repeated the modal analysis including the multipole
source image and we obtained very similar results to Fig. 4, including
the average PID values. Again, the maximum PID value of 6 has never
been attained.

We show a comparison between the PID normalized histogram
of the PEC and lossy-wall (LT∼ 0.01) corridor multipole scenarios
in Fig. 6. At each cross-section grid, we have 104 and 400 points
for the PEC and lossy-wall corridor, respectively. The bin size for
the normalized histogram, spanning the PID values from 1 to 6,
is 0.1. In the multipath rich PEC case, the histogram in Fig. 6
indicates that by using a tripole system, there is some probability of
achieving a PID close to the full-rank 3 DOF and also the PID can
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happen to be less than 2. On the other hand, the hexapole system
almost guarantees more than 3 DOF, however, it never attains the
full 6 DOF. The transparent-wall corridor, lacking multipath richness,
yielded significant PID reduction and the gap between the tripole and
hexapole PID average value decreases.

We conclude by summarizing the concepts and findings of this
paper in the deterministic simulated scenarios:

• There are 2 types of collocated orthogonality (vectorial and
functional) responsible for the diversity when using electric and
magnetic multipole systems. These 2 types are inter-twined due
to the inevitable coupling between the electric and magnetic field
components.

• In a sufficiently multipath-rich environment, a tripole system
may provide very close PID to the maximum full-rank 3 DOF.
A hexapole system does not automatically double the tripole
dimensionality (6 DOF were never achieved), however, the
hexapole system produces, in general, higher DOF (more than
3 DOF are almost guaranteed).

• The average PID is environment-dependent (electrical proper-
ties of boundaries) and seems to be independent of the deploy-
ment configuration (location of the transmit/receive multipole el-
ements). The gap between the hexapole and tripole PID values
decreases as the multipath richness decreases.
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APPENDIX A. POWER INDEPENDENT
DIMENSIONALITY METRIC (PID)

We treat the dimensionality as a power-independent indicator of the
available parallel sub-channels of the system. Accordingly, we did not
use the MIMO capacity, which is a global power-dependent metric,
to evaluate the DOF. Rather, we developed a power independent
dimensionality (PID) metric [11], which depends only on the singular
values of the channel matrix.

A MIMO channel matrix H ∈ C
NR×NT , where (NR, NT ) are the

number of receive and transmit elements, respectively, can have up to
K = min{NR, NT } parallel sub-channels. Consider another fictitious
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Figure 6. Normalized histogram of the tripole and hexapole systems
PID in the PEC and lossy corridor. The receive grid is located at
different separations along L, (a) 25 m, (b) 30 m, (c) 40 m.
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channel H(eq), which has k equally contributing (out of K available)
eigen channels whereas the remaining (K − k) sub-channels have zero
contribution. Obviously, H(eq) has k communication dimensions and
its singular values are given by

σ
(eq)
i =

{
σ0 i = 1, 2, . . . , k
0 i = k + 1, . . . ,K . (A1)

Our target is to estimate an effective value for k according to some
equivalence criteria between H and H(eq). Having 2 unknowns in (A1),
σ0 and k, we need 2 equivalence conditions. We choose to impose p-
and q-Schatten-norm equivalence such that ‖H‖r ≡

∥∥H(eq)
∥∥

r
, where

r = {p, q}. Accordingly,

k
∆= PIDpq =

[(
K∑

i=1

σq
i

)p/(
K∑

i=1

σp
i

)q] 1
p−q

p �= q ∈ [1,∞). (A2)

The values for p and q are arbitrary. For large values of p and
q, the Schatten norm tends to the spectral norm (the largest singular
value). Therefore, a choice of small p and q makes the PID more
sensitive to the small singular values. In this work, we chose the values
p = 1 and q = 2. Thus, the PID used throughout the paper is given
by

PID12 =

(
K∑

i=1

σi

)2 /
K∑

i=1

σ2
i . (A3)

It can be shown that 1 ≤ PIDpq(H) ≤ rank(H). Therefore, PIDpq(H)
can be viewed as a well-defined effective rank of the matrix H.
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