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Abstract—A thin rectangular dielectric strip is located along the
horizontal diameter of a penetrable rod, while the whole structure
is illuminated by a plane wave at an arbitrary angle. The unknown
field on the slab-sided scatterer is determined by dividing it into a
large number of square pixels and thus the problem is solved via
analytical integration. A quantity expressing the effect of the strip
in the far region is defined and graphically represented with respect
to the problem parameters. The attached diagrams are examined and
discussed.

1. INTRODUCTION

Infinite dielectric rod of circular shape is a common structure
extensively used in modeling electromagnetic devices because it
permits simple and analytical treatments. In [1], the imaging of an
imperfectly conducting cylinder buried in a three-layer structure by
the genetic algorithm is investigated. In [2], a rigorous analysis of
scattering by an infinite cylinder coated with metamaterials for a TM
or TE normal incident plane wave has been presented in order to
achieve low observability. Also in [3], the variation in ionospheric
height observed during the dawn or dusk hours is used to develop
an electromagnetic imaging system for a cylindrical subterranean
formation at extremely low frequencies (ELF).

Finitely or infinitely conducting inclusions inside penetrable cylin-
ders are usually regarded to imitate inhomogeneities of electromagnetic
structures. In [4], a metamaterial cylinder which is coated eccentrically
by another cylinder with similar characteristic frequencies, scatters an
incident wave. In addition, multiple inclusions scattering has been
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analyzed through a direct method by making use of the T-matrix ap-
proach [5]. In [6], a microwave network method has been proposed to
derive the solution of a single semicircular channel with several cylin-
drical inclusions by taking account of multiple scattering effects among
parallel channels.

The scattering by rectangular obstacles can be solved approxi-
mately (because they do not possess canonical shape, as the cylindri-
cal ones, to be solved rigorously) with insignificant error. This re-
sult is achieved via a novel and simple technique presented by Rich-
mond in [7]; the scatterer is divided into a large number of portions
whose field is determined by solving a system of linear equations. This
method is utilized in [8] where the authors analyze a numerical solu-
tion to the 2D scattering problem for a transversely inhomogeneous
scatterer located in a stratified medium. Furthermore, in [9] a model
describing the antenna radiation over the sea in the presence of two
islands is treated through the same technique.

In this work, we study a rectangular dielectric inclusion inside a
penetrable circular cylinder posed along its diameter. The structure is
investigated under plane wave excitation. The unknown field on this
thin dielectric strip is found with Richmond’s method by separating it
horizontally into numerous square pixels. In this way, the scattering
integral is discretized and the response of the structure is readily
determined. The proposed methodology have the same characteristics
with the one presented in [7]. However, in our approach the scatterer is
not surrounded by vacuum; it is embedded into a penetrable cylinder.
Various numerical examples are examined where the measured quantity
is a function expressing the reaction of the strip into the cylinder called
abusively as “transfer function”. Some comments on the diagrams
justified by physical intuition have been made. It should be stressed
that the described technique is applicable to configurations other than
the rectangular strip inside the circular cylinder. In particular, it
can be easily expanded to treat inhomogeneous inclusions of arbitrary
shape, while the host cylinder can have any other canonical shape (e.g.,
elliptic [10]).

2. DEFINITION OF THE PROBLEM

We consider an infinite dielectric rod of radius A whose center coincides
with the origin of the utilized cylindrical coordinate system (ρ, φ, z).
A rectangular dielectric strip of different material with length 2A and
height ξ � A is posed across the horizontal diameter of the cylindrical
formation dividing it into two (upper and lower) semicircular regions as
shown in Fig. 1. All the participating materials are magnetically inert
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with relative dielectric constants ε1 (cylinder, region 1) and ε2 (strip,
region 2), while the whole construction exists into vacuum region 0
(ε0, µ0). The device is excited by a z-polarized plane wave, incident
at angle Θ with respect to the horizontal axis, possessing the well-
known expansion Eprim

0,inc (ρ, φ) =
∑+∞

n=−∞(−j)nJn(k0ρ)e−jn(φ−Θ) [11]
where k0 = ω

√
ε0µ0 is the free-space wavenumber with a harmonic

time dependence e+jωt. The symbol Jx(y) is used for the cylindrical
Bessel function of order x and argument y.

( 1 0, 0)

( 0, 0)

O x ( =0)

y ( = /2)

( 2 0, 0)

Figure 1. The configuration of the analyzed structure.

The purpose of this study is to investigate the effect of the thin
rectangular dielectric strip on the radiation features of a cylindrical rod
under the excitation of the plane wave. With a slight loss of generality,
we suppose that the length of the strip (2A) is an odd integral multiple
of the height ξ, i.e., A = 2U+1

2 ξ where U is a (relatively large) integer
number. In the adopted approach, the rectangular strip will be treated
as a “material discontinuity” inside the dielectric cylinder which is
considered as the “background configuration”. Both the shape and the
excitation of the device are invariant across the z axis. Accordingly,
the only nonzero electric component is the axial one E = Ez and the
problem is reduced to a scalar and two-dimensional one.

The analyzed problem cannot be solved through other semi-
analytic techniques; only by purely numerical methods (e.g., FEM).
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Consequently, the obtained results can be compared with the
corresponding ones produced by measurements or simulations to verify
the correctness of the procedures proper implementation. Furthermore,
the scattering by incomplete geometries becomes possible through the
described methodology. In particular, if one chooses ε2 = 1, one can
reliably study the behavior of an aperture formulated between two
lunette “D”-shaped dielectric elements.

3. ANALYSIS OF THE STRIP-FREE PROBLEM

3.1. Green’s Function

It is well-known that the electric-type Green’s function of a two-
dimensional problem is defined as the single electric component in each
area developed due to the radiation of an elemental dipole of electric
current with amplitude j

ωµ0
(in Amperes) [12]. The source is placed

across the axis (ρ = P, φ = Φ) inside the dielectric cylinder as the
(conditionally removed) strip exists inside its volume. Therefore, the
primary component of the Green’s function into region 1 is given (for
ρ > P ) by [13]:

Gprim
1 (ρ, φ, P,Φ) = − j

4

+∞∑
n=−∞

Jn(k1P )Hn(k1ρ)e−jn(φ−Φ) (1)

where Hx(y) is the cylindrical Hankel function of second type.
By utilizing suitable eigenfunction expansions [14] for the Green’s

functions inside and outside the rod and by applying the necessary
boundary conditions [15], one obtains the secondary term of the related
quantity into the cylinder:

Gsec
1 (ρ, φ, P,Φ) =

+∞∑
n=−∞

FG1(n)Jn(k1ρ)Jn(k1P )e−jn(φ−Φ) (2)

In case the observation point (ρ, φ) belongs into vacuum region 0, the
Green’s function takes the form:

G0(ρ, φ, P,Φ) =
+∞∑

n=−∞
FG0(n)Hn(k0ρ)Jn(k1P )e−jn(φ−Φ) (3)

The series coefficients FG1(n), FG0(n) are defined below:

FG1(n) =
j

4
· k0H

′
n(k0A)Hn(k1A) − k1H

′
n(k1A)Hn(k0A)

k0H ′
n(k0A)Jn(k1A) − k1J ′

n(k1A)Hn(k0A)
(4)

FG0(n) = − 1
2Aπ

· 1
k0H ′

n(k0A)Jn(k1A) − k1J ′
n(k1A)Hn(k0A)

(5)
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3.2. Incident Field

The incident field for the regions 0 and 1 under the excitation of the
plane wave, is computed by demanding continuity for the tangential
field components across the circular boundary ρ = A. Throughout this
procedure, the primary quantity is referred to vacuum area contrary
to the Green’s function determination where the source was contained
into the dielectric rod. The related explicit formulas for the axial
electric field are readily found.

E1,inc(ρ, φ) =
+∞∑

n=−∞
FI1(n)Jn(k1ρ)e−jn(φ−Θ) (6)

Esec
0,inc(ρ, φ) =

+∞∑
n=−∞

FI0(n)Hn(k0ρ)e−jn(φ−Θ) (7)

The complex coefficients FI1(n), FI0(n) are given by:

FI1(n) = − 2j
Aπ

· (−j)n

k0H ′
n(k0A)Jn(k1A) − k1J ′

n(k1A)Hn(k0A)
(8)

FI0(n) = −(−j)n · k0J
′
n(k0A)Jn(k1A) − k1J

′
n(k1A)Jn(k0A)

k0H ′
n(k0A)Jn(k1A) − k1J ′

n(k1A)Hn(k0A)
(9)

4. ESTIMATION OF THE STRIP EFFECT

4.1. Strip Partitioning

The rectangular region 2 is divided into (2U + 1) square pixels of area
ξ2 as 2A = (2U+1)ξ, each one of which corresponds to a serial number
u = −U, . . . , U . In addition, the left side of the leftmost pixel and the
right side of the rightmost pixel coincide with the external boundary
of the penetrable cylinder because ξ � A. The center of the u-th
part exists on the horizontal axis at distance χu from the origin, where
χu = u

U

(
A− ξ

2

)
. With respect to the used cylindrical coordinate

system, the radial distance of the center of the u-th pixel equals |χu|,
while its azimuthal angle equals arg(χu). If the size of the square pixels
is electrically small, the electric field across each one’s area can be
considered as constant denoted by e2(u) = E2(ρ = |χu|, φ = arg(χu)).
The symbol p(u) defines the area of the u-th part.

4.2. Scattering Theorem

By exploiting the reciprocity of the Green’s function, the magnetic
inertia of the participating materials and the second Green’s integral
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formula, one can prove the validity of the scattering theorem which in
our case is particularized to give:

E(ρ, φ)=Einc(ρ, φ)+Escat(ρ, φ)

=Einc(ρ, φ)+(k2
2−k2

1)
U∑

u=−U

e2(u)
∫∫

p(u)
G(ρ, φ, P,Φ)PdPdΦ (10)

If one applies the aforementioned relations with (ρ, φ) ∈ p(w) for
w = −U, . . . , U , one obtains the following set of equations:

e2(w) − E1,inc(|χw|, arg(χw)) = (k2
2 − k2

1)
U∑

u=−U

e2(u)Mwu

= (k2
2 − k2

1)
U∑

u=−U

e2(u)
∫∫

p(u)
G1(|χw|, arg(χw), P,Φ)PdPdΦ (11)

where G1 = Gprim
1 +Gsec

1 is the Green’s function of the problem when
both the observation (ρ, φ) and the source (P,Φ) points belong to
region 1.

-U U

w u

x

y

O

2A-

Figure 2. The approximate integration procedure on each pixel.
Every square portion comprising the strip is replaced by a circle of
equal area.

The primary component of G1 can be analytically integrated over
the representative pixel if the small square region is replaced by a
circular one of the same area (having radius ξ√

π
) as shown in Fig. 2.

The induced error is very small when ξ is electrically tiny and that is
our case. If the expansion (1) is substituted to the integral of (11) and
common integrals of Bessel functions [16] are taken into account, we
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find the expression below:∫
p(u)

Gprim
1 (|χw|, arg(χw), P,Φ)PdPdΦ

∼= − j

2k2
1

·




k1ξ
√
πH0 (k1|χw − χu|)J1

(
k1

ξ√
π

)
, u �= w

k1ξ
√
πH1

(
k1

ξ√
π

)
− 2j, u = w

(12)

The formula for u = w is derived through a special treatment presented
in [7]. As far as the secondary component of the Green’s function is
concerned, it is slowly varying within the u-th square pixel and thus the
related integral is approximated by the function’s value on the point
(P = |χu|,Φ = arg(χu)) multiplied with ξ2.

In this sense, the following (2U + 1) × (2U + 1) linear system is
obtained: [

I − (k2
2 − k2

1)M
]
• e2 = e1,inc (13)

where I is the (2U + 1) × (2U + 1) identity matrix, M is the matrix
with elements Mwu =

∫∫
p(u) G

prim
1 (|χw|, arg(χw), P,Φ)PdPdΦ +

ξ2Gsec
1 (|χw|, arg(χw), |χu|, arg(χu)), e2 is the vector of the unknown

values e2(w) and e1,inc is the vector of the incident field on the dielectric
strip E1,inc(|χw|, arg(χw)) for each w = −U, . . . , U . Mind that when
k2 = k1, the solution of the system is trivial: e2 = e1,inc as there is no
“material discontinuity” and the scattering from the homogeneous rod
is solely described by the quantity E1,inc(ρ, φ).

4.3. Transfer Function

The basic function expressing the effect of the dielectric strip on the
radiation features of the cylinder is the so-called “transfer function”
defined by:

T (φ,Θ) = lim
ρ→+∞

E0,scat(ρ, φ)
Esec

0,inc(ρ, φ)
(14)

The primary component of the incident field does not participate in the
aforementioned formula as it simply excites the structure, not revealing
its characteristics. For this reason, the denominator equals to the
scattering far field of the rod in the absence of the rectangular strip and
the numerator to the strip’s reaction under the prescribed excitation.
The scattered field into vacuum is computed from (10) by considering
G0 as invariant on the area of each small square.
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To estimate the field far from the structure, one can exploit the
asymptotic expansion of the Hankel function for large arguments:
Hn(ζ) ∼

√
2
πζ e

−j(ζ−nπ
2
−π

4 ), ζ → +∞. Accordingly, the explicit form of
T (φ,Θ) is readily derived:

T (φ,Θ) ∼= (k2
2 − k2

1)ξ
2

·

U∑
u=−U

e2(u,Θ)
+∞∑

n=−∞
FG0(n)Jn(k1|χu|)e−jn(φ−arg(χu)−π

2 )

+∞∑
n=−∞

FI0(n)e−jn(φ−Θ−π
2 )

(15)

An extra argument Θ has been added to the function e2 as the electric
field along the strip varies with the incidence angle of the plane wave.
One can observe that T (φ,Θ) = 0 for k2 = k1, due to the absence of
the inhomogeneity.

5. INDICATIVE RESULTS

5.1. Parameters Selection

The value intervals into which the variables of the problem belong
should be determined in the first place. The dielectric constants
ε1, ε2 possess relatively low values suitable for optical applications
(e.g., silicon), while the corresponding materials remain always denser
than vacuum: 1 < ε1, ε2 < 5. The radius of the cylinder is chosen
moderate, close to the operating wavelength λ0 = 2π

k0
, otherwise the

eigenfunction series should have been accelerated with use of Watson
transformation [17]. Moreover, the height of the strip ξ is taken
many times smaller than the rod’s size 2A, so that the approximate
integrations will not induce substantial error. The infinite sums with
respect to n in (15) are rapidly converging; as rule of thumb, N = 15
terms per wavelength of A are adequate. Due to the symmetry of the
structure, the incidence angle varies between the limits: Θ ∈ (0, π/2).

5.2. Graphs Discussion

In Fig. 3, we present the fluctuation of the transfer function across
the forward direction φ = π + Θ with respect to angle Θ for various
permittivities of the strip. The permittivity of the surrounding cylinder
is kept fixed ε1 = 3. Mind that the curve corresponding to ε2 = 3.1
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Figure 3. The forward response of the device log |T (π + Θ,Θ)| as
function of the incidence angle Θ for various strip permittivities ε2.
Plot parameters: A = λ0, ε1 = 3, ξ = 2A/51.

possesses low values as the two dielectrics are similar, while the larger
the difference |ε1 − ε2| gets, the more substantial is the response of the
strip. One can also notice that the shape of the three curves is similar
which means that the effect of the angle Θ on the waveforms is almost
independent from ε2. For example, a rapid oscillation is remarked
close to Θ = 45◦ and a relatively invariant behavior within the interval
60◦ < Θ < 80◦.

In Fig. 4, we show the variation of the average value of the
transfer function around the cylinder 1

2π

∫ 2π
0 |T (φ,Θ)|dφ with respect

to the permittivity ε2 for several thicknesses ξ of the strip (ε1 = 3).
An oblique incidence of the excitation wave Θ = π/4 is supposed.
Naturally, the response of the rectangular scatterer is proportional to
its electrical size, while all the curves take negligible values for ε2 = 3.
In addition, the change in the measured quantity is larger for ε2 > 3
(upward sloping) than for ε2 < 3 (downward sloping).

In Fig. 5, a contour plot of the transfer function |T (φ,Θ)| along the
backward direction φ = Θ with respect to the permittivities (ε1, ε2) is
depicted. The plane wave is normally incident on the strip (Θ = 90◦).
The magnitude vanishes for ε1 = ε2 along the diagonal of the diagram.
It is noteworthy that the recorded values are larger on the upper
triangle of the graph (where a large maximum is appeared) than the
ones of the lower triangle. That means that the response is stronger
when ε2 < ε1 (denser strip’s material) than in case ε2 > ε1.
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Figure 4. The average response of the device log < |T (φ,Θ)| > as
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ξ. Plot parameters: Θ = π/4, A = λ0, ε1 = 3.
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