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Abstract—A method of moment based analysis of the co-channel
interference at waveguide joints has been presented using Multi
Cavity Modeling Technique (MCMT). The proposed analysis has good
agreement with the theoretical; CST microwave studio and HFSS
simulated data.

1. INTRODUCTION

Low cost, low profile two dimensional scanning phased array
antennas have wide application in Low Earth Orbit (LEO), Middle
Earth Orbit (MEO) and Geostationary Earth Orbit (GEO) satellite
communication. Multi-port Power divider has already found wide
applications in phased array techniques. At the input of the two
dimensional array mainly longitudinal power dividers are in use. Due
to faulty workman-ship there may be a gap at the flange joints which
causes the power coupling to the neighbor ports. However the problems
of theoretical analysis of this power coupling remains unsolved. Effort
has been made to model this interference using a regular structure with
adding a uniform gap at the joints.

Present work was performed for theoretical analysis of the co-
channel interference at waveguide joints using Multi Cavity Modeling
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Technique (MCMT) [1]. The technique involves in replacing all
the apertures and discontinuities of the waveguide structures, with
equivalent magnetic current densities so that the given structure can be
analyzed using only Magnetic Field Integral Equation (MFIE). Since
only the magnetic currents present in the apertures are considered the
methodology involves only solving simple magnetic integral equation
rather than the complex integral equation involving both the electric
and magnetic current densities.

2. FORMULATION OF THEORY

The diagram of a basic flange with two waveguide sections connected
with another one with finite gap is shown in Fig. 1 and its cavity
modeling and details of region is shown in Fig. 2 which shows that
the structures have 4 waveguide regions and 1 cavity region. For
the cavity modeling purposes a uniform gap is assumed and also
the boundaries are covered with electric conductors. The interfacing
apertures between different regions are replaced by equivalent magnetic
current densities. The electric field at the aperture is assumed to be

�E = ûx

M∑
p=1

Epxepx + ûy

M∑
p=1

Epyepy (1)

Figure 1. Three dimensional view of air passage of two channel
waveguide joint.
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Figure 2. Cavity modeling and details of regions of a two channel
waveguide joint.

where the basis function ep (p = 1, 2, 3 . . .M) are defined by
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sin
{pπ
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}
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}
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0 elsewhere

(2b)

In the above expressions:

• L = a, W = b, xw = 0 and yw = 0 for aperture 1, aperture 2,
aperture 3 and aperture 4 with respect to waveguide co-ordinate.

• L = a, W = b, xw = a+ s and yw = 0 for aperture 1 with respect
to cavity axis.

• L = a, W = b, xw = a+ s and yw = 0 for aperture 2 with respect
to cavity axis.

• L = a, W = b, xw = −s − a and yw = 0 for aperture 3 with
respect to cavity axis.

• L = a, W = b, xw = −s − a and yw = 0 for aperture 4 with
respect to cavity axis.
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where a = 22.86 mm, b = 10.16 mm, S = 1.27 mm and 2S is the
distance between waveguide-2 and waveguide-3.

The X-component of incident magnetic field at the aperture for
the transmitting mode is a dominant TE10 mode and is given by

H inc
x = −Y0 cos

(πx
2a

)
e−jβz

3. EVALUATION OF THE INTERNALLY SCATTERED
FIELD

The internally scattered field is obtained by using the modal expansion
approach presented in [6]. The internally scattered electric field is given
in [3]. Once the electric field is obtained, the corresponding magnetic
fields can be derived. The modal voltages are given by (considering
only ei,tn

pq part of the aperture electric field):

V e
mn =

√
2ab [Epx − Epy] (3)

V m
mn = 0 (4)

The x-component of internally scattered magnetic field can be
obtained as,
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4. EVALUATION OF THE CAVITY SCATTERED FIELD

The tangential components of the cavity scattered fields are derived
in [1]. The final form of the tangential components of the cavity
scattered field will be same as given in [3], where Lcj is the length
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and Wcj is the height of jth the cavity. Li and Wi are the half length
and half width of ith aperture.
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At the region of the window, the tangential component of the
magnetic field in the aperture should be identical and applying the
proper boundary conditions at the aperture the electric fields can be
evaluated [5].

5. SOLVING FOR THE ELECTRIC FIELD

To determine the electric field distribution at the window aperture,
it is necessary to determine the basis function coefficients Ei,x/y

p at
both the apertures. Since the each component of the field is described
by M basis functions, 8M unknowns are to be determined from the
boundary conditions. The Galerkin’s specialization of the method of
moments is used to obtain 8M-different equations from the boundary
condition to enable determination of Ei,x/y

p [6]. The weighting function
w

i,x/y
q (x, y, z) is selected to be of the same form as the basis function

e
i,x/y
p . The weighting function are defined as follows:

wi,y
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{
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}

for xw − L ≤ x ≤ xw + L
yw −W ≤ y ≤ yw +W

0 elsewhere
(13a)
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}
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(13b)

6. REFLECTION COEFFICIENT AND TRANSMISSION
COEFFICIENT

The procedure for derivation of reflection and transmission coefficients
is given in [7]. Following the same procedure the expressions for Γ and
T is given by:

Γ =
E1

y + E2
y

Einc
y

= −1 − E1,y
1 (14)

T21/31 =
Etransmitted

y

Einc
y

= −E2/3,y
1 (15)

7. NUMERICAL RESULTS AND DISCUSSION

Theoretical data for the magnitude of scattering parameters for an
H-plane WR-90 waveguide joints with two channels at X-band has
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been compared with CST Microwave Studio simulated data and HFSS
simulation data in Fig. 3.
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Figure 3. Comparison of theoretical, CST Microwave Studio And
HFSS simulated data for an H-plane WR-90 waveguide two channel
joints with a gap of 0.3 mm.

MATLAB codes have been written for analyzing the structure
and numerical data have been obtained after running the codes. The
structure was also simulated using CST microwave studio and HFSS.
The theory has been validated by the excellent agreement between the
theoretical, CST Microwave Studio simulated data and HFSS data.
The scattering parameters for the circuit, when excited through port-
2, port-3 and port-4 have not been presented in this section because
these are also provide same pattern of data as for port-1.
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