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Abstract—In this paper an efficient technique for the determination
of the resonances of elliptic Substrate Integrated Waveguide (SIW)
resonators is presented. The method is based on the implementation of
Support Vector Regression Machines trained using a fast algorithm for
the computation of the resonant frequencies of SIW structures. Results
for resonators with a wide range of parameters will be presented.
A comparison with results obtained with Multi Layer Perceptron
Artificial Neural Network and with full wave simulations will show
the effectiveness of the proposed approach.

1. INTRODUCTION

Substrate Integrated Waveguide (SIW) circuits [1] are a major subject
of interest because they are an effective alternative to metallic
waveguide structures. The simplicity of the realization process and its
reduced costs make SIW suitable for mass scale production maintaining
the advantages of metallic waveguides. SIWs are normally built in a
board of laminate by realizing arrays of metallic via holes to create a
waveguiding channel or a cavity. One of the major advantage of SIW
technology is to combine waveguide and microstrip circuits keeping the
possibility of integration typical of microstrip structures. Recently,
a large number of SIW-based devices have been realized [2, 3]. In
particular many waveguide based filter designs have been proposed.
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In these cases one of the major advantege of SIW technology is the
reduction of the structures size obtained without recurring to more
complex configurations [4]. Very often the design of SIW filters is
based on resonating structures [5, 6]. In all these cases, the accurate
determination of the resonant frequencies is fundamental for a correct
design process. In conventional metallic cavities resonances can be
determined in closed form for canonical shapes or by falling back on
numerical methods for more general configurations. Conversely, for
SIW resonators the accurate determination of the resonant frequencies
can be cumbersome even for canonically shaped structures. Indeed,
a SIW resonator is bounded by the top and bottom metallic plates
and by the walls of metallic vias and even when the vias fence forms
a canonical geometry, resonances still depend on the cylinders radii
and on their separation. As a consequence, any attempt to consider
equivalent metallic cavities is doomed to fail if these two parameters
are not properly considered. In this paper the characterization of
the most important case of elliptic resonators is presented considering
the mutual scattering by metallic via holes. To account for full wave
effects, the scattered field is expanded in terms of vector eigenfunctions
which represent fields TE and TM to ẑ. Once proper boundary
conditions are enforced on the cylinders surfaces one obtains a system
of equations where the coefficients of the expansions are unknowns.
Resonant solutions can be found searching for frequencies for which the
determinant of the system matrix is zero. However, this condition is
valid only in theory. In fact, it is well known [7] that the computation
of the matrix determinant is numerically unstable. For this reason,
another approach has been recently proposed in [8] and has been
applied in [9] where the basic case of SIW circular resonators has been
studied. Specifically, the minimum singular value of the matrix is seen
as a function of the frequency and resonances are defined as those
frequencies where this newly defined function has a minimum. This
approach allows for an efficient identification of the matrix singularities
without recurring to the computation of the determinant. In this paper
we use the method based on Singular Value Decomposition (SVD) to
develop a Support Vector Regression Machine SVRM model of SIW
resonators in order to provide an efficient tool for the analysis of SIW
resonators. In the last years SVRMs have been extensively employed
to develop fast CAD models of microwave active and passive devices,
antennas and to SAR image classification [10–15]. It has been shown
that SVRMs have better performance than Artificial Neural Networks.
In the following, a brief description of the method used to compute
the scattering from the ensemble of posts within the parallel plates
waveguide will be presented and the theory behind the determination
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Figure 1. An elliptic SIW resonator, where in particular the angular
pitch p, the via hole radius a0, the semi major axis a, the semi minor
axis b and the dielectric substrate height h are shown.

of the resonant frequencies will be also outlined. Notice that lossless
resonator will be considered. The effects of copper and dielectric losses
have been studied in [16, 17] and they will be included in the model
in a forthcoming paper. The basic theory of SVRM will be briefly
reported and its application to the structures analyzed in this paper
will be described. Results relevant to elliptic resonators will be given
for a range of parameters of engineering interests. A comparison with
results obtained with Multilayer Perceptron Artificial Neural Network
(MLPANN) and with full wave simulations will be also presented. It
will be shown that SVRM performances are superior to MLPANN.

2. SCATTERING FROM METALLIC POSTS

The analysis of a parallel plates waveguide with metallic posts has
been presented in [18] and a similar formulation has been applied to
SIW structures in [19]. In those papers the magnetic dyadic Green’s
function is expressed in terms of circular vector eigenfunctions. Here
a similar procedure is adopted and the electric field scattered by the
metallic posts is expanded as follows

Es(r)=
∑

l

∑
n,m

[
MH

n (kρm, kzm, ρ−ρl, z)+NH
n (kρm, kzm, ρ−ρl, z)ATM

m,n,l

]

(1)
with

MH
n (kρm, kzm, ρ−ρl, z) = ∇×(H(2)

n (kρm|ρ−ρl|)e−jnφ sin(kzmz)ẑ) (2)
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NH
n (kρm, kzm, ρ−ρl, z) =

1
k
∇×∇×(H(2)

n (kρm|ρ−ρl|)e−jnφ cos(kzmz)ẑ)

(3)
where r = ρρ̂ + zẑ, kzm = mπ

h , kρm =
√
k2 − k2

zm, k = ω
√
εrε0µ0,

φ is the angle of ρ− ρl, l is an index spanning over the cylinders, m
and n are integers relevant to vertical and azimuthal dependencies
and ρl is the position of the center of the cylinder l. Coefficients
ATE

m,n,l, A
TM
m,n,l are determined making the total tangential electric field

vanish on the surface of the cylinders. In particular, the incident
field is considered for any cylinder, given by the field scattered by
the remaining cylinders, and the field scattered by the cylinder under
consideration. The application of the boundary condition leads to two
systems of equations, one for the TM scattering and the other for TE
scattering, from which the coefficients are calculated. For a given m
one has

ΓTM,TE
q,r,m =

N∑
l=1l �=q

∑
n

LTE,TM
q,r,m,l,nA

TE,TM
m,n,l +ATE,TM

m,r,q ∀q, r (4)

where

LTE
q,r,m,l,n = − J

′
r(kρma)

H
(2)′
r (kρma)

H
(2)
n−r(kρmρlq)e−j(n−r)φlq

LTM
q,r,m,l,n = − Jr(kρma)

H
(2)
r (kρma)

H
(2)
n−r(kρmρlq)e−j(n−r)φlq (5)

and ΓTM,TE
q,r,m represents the excitation, a is the radius of the metallic

posts and ρlq is the distance between cylinders q and l (Fig. 1). As is
well known, resonances are the frequencies at which system (4) admits
non-trivial solutions for ΓTM,TE

q,r,m = 0.

3. LOCALIZATION OF RESONANCES

System (4) can be more conveniently expressed in a matrix form:

[L]TE, TM[A]TE, TM = [Γ]TE, TM (6)

Theoretically SIW resonances are the complex frequencies fr for which

det([L]TE, TM(ωr)) = 0 (7)

with ωr = 2πfr. However, from a practical point of view,
[L]TE, TM can be efficiently tested to be singular only by the Singular
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Value Decomposition (SVD). In numerical algebra, SVD permits an
arbitrarily n× n complex matrix [L]TE, TM to be factorized in the form
UΣW∗, where U and W are n-by-n unitary matrices, ∗ denotes the
conjugated transposition and Σ = diag(σ1, σ2, . . . , σn) is an n-by-n
diagonal matrix, whose entries σ1, σ2, . . . , σn are non negative real
numbers (namely, singular values), rearranged in such a way that
σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0 [20]. Then, in order to prove whether
[L]TE, TM is singular or not, first of all we recall that the smallest singular
value σn represents the actual distance between [L]TE, TM and the set
of all matrices whose rank is ≤ n − 1. Hence, provided a threshold
ε > 0, we state [L]TE, TM is ε-singular, whenever σn ≤ ε. Starting
from this condition, the set Ω of the complex resonant frequencies
ωr = ωre + jωim (for which the matrix [L]TE, TM is ε-singular) can
be determined seeking for the minima of the two variable function
σn = σn(ωre, ωim) in a given frequency band [ωmin, ωmax]. In [8]
an effective search strategy is discussed, basically consisting of an
approximate computation of σn rather than a direct complete SVD
factorization. The search strategy first considers the estimated set of
N as a function of real frequency only. Once the minima on the real
axis are located they are used as starting points of a Muller search
routine in the complex plane [21]. The results of this procedure are
the complex resonant frequencies of the structure over the prescribed
band.

4. SUPPORT VECTOR REGRESSION MACHINES

Support Vector Machines (SVMs) are learning machines performing
pattern recognition tasks. Originally introduced by Vapnik and co-
workers [22], they are getting more and more popular for overcoming
the limitations typical to ANNs (see [23] and references within). This
is because the Structural Risk Minimization principle embodied by
SVMs has been proved to be more effective than the traditional
Empirical Risk Minimization principle employed by ANNs (see [22] and
references within), hence equipping the former with a greater ability
to generalize, when compared with the latter. By means of non linear
transformations they map the n-dimensional input space into a higher
dimensional space where the data can actually be linearly separated
[24]. SVMs can also be employed to solve regression problems
specializing in Support Vector Regression Machines (SVRMs). In
this case also, as for standard SVMs. non linear transformations
are adopted to map incoming data into a higher dimensional space,
where a linear regression can be carried out. In order to explain
the mathematical framework in which SVRMs are defined, let us
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consider the problem of the approximation of the set of data D =
{(x1, y1), ..., (xl, yl)},x ∈ X , y ∈ � by a linear function f(x) =
〈w,x〉+ b, where 〈, 〉 denotes the inner product in X , i.e., the space of
the input patterns. This problem can be solved selecting the optimal
regression function as the minima of the functional [25]

Φ(w, ξ) =
1
2
‖w‖2 + C

∑
i

(ξ−i + ξ+
i ) (8)

where C is a user defined value, and ξ−i , ξ
+
i are slack variables

representing upper and lower constraints on the output of the system.
However, the set D often is not linearly separable: the separation can
be obtained by means of a suitable non-linear mapping witch project D
into a high dimensional space where the linear regression can be carry
out. This non-linear mapping is accomplished by a kernel function
K(xi,xj) [25]. Loosely speaking, like in canonical regression problems,
the relationship between dependent and independent variables is
supposed to be the sum of an unknown smooth function f(x) plus some
additive noise. The main task is to find an analytical closed form for
f(x) granting for the possibility to predict the behavior of brand new
cases the SVM has never been presented with. This can be achieved
by training the SVM by a suitable training set. The overall process
involves sequential optimization of an error (or loss) function [24].
According to the specific application, the proposed heuristic approach
can “learn” the relation between measurable physical (inputs) and
modelling (outputs) quantities from the experience; so, experimental
datasets are necessary to train our heuristic estimative system for
each considered application. In order to implement a SVRM-based
estimator, a loss function must be used; in this case, the approach has
been carried out by means of the following Vapnik ε-insensitive loss
function:

Lε(y) =
{

0 for |f(x) − y| < ε
|f(x) − y| otherwise

(9)

performing a tuning, carried out according to [25], in order to obtain
an acceptable setting for C and ε parameters.

5. NUMERICAL RESULTS

In Figure 1 is shown the layout of the structures under consideration.
The algorithm described in Section 3 to search the resonances
frequencies was firstly tested. In Figure 2 the estimated σN as a
function of the real frequency for two SIW elliptical resonators are



Progress In Electromagnetics Research, PIER 83, 2008 113

Figure 2. The estimated σN as a function of the real frequency for
two SIW elliptical resonators. (left: a = 3.125 mm, b = 2.500 mm;
right: a = 3.800 mm, b = 3.040 mm; εr = 2.2).

Figure 3. Real part of the resonant frequencies of TM101 even and
odd modes as a function of ellipse major axes of an elliptical resonator
with eccentricity e = 0.8.

reported. As it can be observed, the curve has evident minima
corresponding to two resonances, which can be located with a reduced
number of computer runs. In a preceding paper [9] the estimated values
have been used as initial guess for a Muller search in the complex plane
aimed to obtain an accurate determination of resonant frequencies.
However it has been observed that, for the lossless case, the imaginary
part, accounting for the power leaking out from the vias’ fence, is
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Table 1. Ranges of considered input for SVRM models (a and c are
in millimeters).

a e c εr

2.000 ÷ 9.500 0.141 ÷ 0.714 1.300 ÷ 6.800 2.000 ÷ 10.000

negligible and that the real part is very close to the estimated value.
In Figure 3 is shown the real part of the resonant frequencies of TM101

even and odd modes as a function of ellipse major axes of an elliptical
resonator with eccentricity e = 0.8. The structure is realized on a
substrate with with εr = 2.2, h = 0.5 millimeter. As it can be seen the
difference between full wave HFSS simulations and results obtained
with the method presented in this paper is very small and always
below 1%. Two SVR machines, one for the even mode TMe101 and
the other one for the odd mode TMo101, were implemented using the
set of estimated values. The via hole radius a0, the angular pitch p,
the eccentricity e, the focal distance c and the dielectric constant εr
were used as input parameters while the resonant frequency fr was the
output. Ranges of variation of engineering interest for the inputs were
chosen and are shown in Table 1. After some numerical experiments
carried out by using the Spider Toolbox, a two degree polynomial
kernel setting with C = 10 and ε = 0.01, has been selected. Figures 4
and 5 reports the scattering plots of the fundamental resonant modes
obtained with SVRMs compared with HFSS simulations. These graphs
confirm a very good agreement between computed and estimated
values of fr over the whole range of the geometrical and electrical
parameters considered giving an excellent indication of the ability
of SVRMs to capture the input-output relationship present in the
data. Furthermore, two MLPANN having the same input and output
of SVRMs and two hidden layers (nine hidden nodes in the first
layer, three hidden nodes in the second one), have been implemented.
They have been trained in the supervised mode using the Levenberg-
Marquadt backpropagation learning rule. The size of the hidden layer
was determined carried out extensive numerical simulations by means
of the Matlab Neural Network Toolbox by selecting the number of
hidden nodes resulting from the lowest training error while maintaining
adequate generalization. In Table 2 is reported the comparison
of performances between SVRM and MLPANN model in term of
RMSPE. It can be observed that SVRMs have better performances
than MLPANN. Notice that the training time for MLPANNs was thirty
times larger than the time needed for training SVRMs.



Progress In Electromagnetics Research, PIER 83, 2008 115

Figure 4. Scatter plot: Full wave computed vs SVRM predicted
Tme,101 resonances.

Figure 5. Scatter plot: Full wave computed vs SVRM predicted
TMo,101 resonances.
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Table 2. Performances comparison in terms of RMSEP between
MLPANN and SVRM model.

SVRM MLPANN

Tme,101 0.02% 0.21%

Tmo,101 0.01% 0.27%

6. CONCLUSIONS

In this work an efficient algorithm for the estimation of the resonant
frequencies of elliptic SIW resonators has been presented. The
estimated values have been used to implement a SVRM model. The
results obtained have been compared with the ones found with a
MLPANN model and with full -wave simulations. It has been observed
that SVRM shows better RMSEP and shorter training time than
MLPANN. In particular, experimental results suggest that SVRMs
can be profitably employed to model SIW devices in accurate way.
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