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Abstract—A series of N identical periods of pairs of isotropic and bi-
isotropic layers with defect in j-th basic element is investigated. The
universal method that simultaneously allows to taking into account
different types of defects in the structure is proposed. The problem
is solved using the circuit theory and the transfer matrix methods.
The analysis of the dynamic of electromagnetic properties of the
investigated structure was carried out for different types of defects.

1. INTRODUCTION

One-dimensional periodic structures have found particularly wide
application as filters and lasers. They are the basis of distributed
Bragg reflection lasers. Introducing a quarter-wavelength defect in the
middle of a periodic one-dimensional sample produces a photonic mode
in the center of the reflection band. Such a defect is used to produce
high-Q laser cavities in vertical cavity surface-emitting lasers and may
be the basis of large-area coherent laser emission in thin films [1–5].

In the last time a lot of investigations are pointed on the periodical
structures that include layers which are made from natural (cholesteric
liquid crystal) or artificial material with the spatial dispersion (bi-
anisotropic, reciprocal (chiral) and nonreciprocal bi-isotropic media)
[6–13]. Such structures realize the polarization transforming of the
waves in additional to their spatial and frequency selections.

A rich variety of defects introduced into the perfect chiral structure
has been proposed. A defect can be created by modifying the refractive
index, thickness, rotating helical axis of existing layers or inserting
additional layer into the sequence [14–20]. Defect modes in chiral
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structures have received much attention and may be used for realizing
low threshold lasers, narrow bandpass circular-polarization filters.

The other aspect is the possibility of the periodicity defect
appearing in the structure when it has been made. Therefore
investigations of the sequence with defect are important to provide
the quality assurance of the bandpass filters manufacturing and allow
determining both the disturbance type and the defect element position
in the structure.

In the present work is proposed the universal method that
simultaneously allows to taking into account different types of defects
in the structure. It is based on the circuit theory and the transfer
matrix method [21–26].

2. PROBLEM FORMULATION

As a perfect (without defects) structure, the periodic in the z-axis
direction, with period L, structure of N identical basic elements
(periods) is investigated (Fig. 1). Each of periods includes a
homogeneous magnetodielectric (with permittivities ε1, µ1) and bi-
isotropic (with ε2, µ2, ξ, ζ) layers with thicknesses d1 and d2 (L =
d1 + d2), respectively. Here the parameters ξ and ζ define the
degree of electric-magnetic coupling [6, 7]. In general, the parameters
ε1, µ1, ε2, µ2, ξ, ζ are frequency dependent and complex. The outer
half-spaces z ≤ 0 and z ≥ NL are homogeneous, isotropic and have
permittivities ε0, µ0 and ε3, µ3, respectively.

As the excitation fields, the plane (in the XOZ plane)

Figure 1. The bounded periodical sequence of isotropic and bi-
isotropic layers with defect element.
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monochromatic waves (exp(−iωt)) with perpendicular (Ee‖x0, He
x =

0) or parallel (Hh‖x0, Eh
x = 0) polarizations are selected (e- and h-

waves). They are obliquely incident under angle ϕ0 to the z-axis from
the region z ≤ 0.

The structure under study can be considered as a consecutive
connection of the eight-poles which are equivalent to the illuminated
boundary (T 01), repeated heterogeneity (T = T 1T 2) and the
last element which is loaded on the waveguide channel having
the admittance Y s

3 (T̃ ) (Fig. 1). The equations coupling the
field amplitudes at the structure input (As

0, B
s
0, B

s′
0 ) and output

(As
N+1, A

s′
N+1) for the incident fields of e-type (Ah

0 = 0) and h-type
(Ae

0 = 0) are obtained as [13, 23]
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In the block representation (2 × 2) the transfer matrices are:
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where T pv corresponds to the matrices T 01 and T 13, the upper sign
relates to s = h, and the lower sign relates to s = e in terms of the wave
types. The elements of the transfer matrices T 1 and T 2 are determined
from solving the boundary-value problem and are shown in [13].

In order to investigate the structure with a large number of periods
(N � 1), the direct product of matrices in (1) is computationally
demanding. Therefore we use the algorithm from the matrix
polynomial theory [24] for raising the matrix T to the power N

T N =
4∑

n=1

λN
n F n, F n = PInP−1. (3)
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Where λn are the eigenvalues of the transfer matrix T ,P is the matrix
which columns are the set of independent eigenvectors of T , In is the
matrix with a 1 in the (n, n) location and zeros elsewhere.

Let’s consider, that the defect of the periodicity is determined by
inserting into the sequence of the m-th element, which parameters (Xδ)
and the transfer matrix T ′ differ from the basic element parameters
(X0

δ ,T ). Instead of (1) we have

T (∆Xs) = T 01

(
4∑

n=1

λm−1
n F n

)
T ′

(
4∑

n=1

λN−m
n F n

)
T 13 (4)

Follow [25], evaluate the matrix T ′ and its coefficients for small
deviations |∆Xδ| = |Xδ −X0

δ | 	 |X0
δ |, via the linear function

T ′ = T +
M∑

δ=1

(∂T /∂Xδ) · ∆Xδ ≡ T +
M∑

δ=1

T (δ) · ∆Xδ; (5)

t′jk = tjk +
M∑

δ=1

(∂tjk/∂Xδ) · ∆Xδ = tjk +
M∑

δ=1

tδjk · ∆Xδ. (6)

Here the operator T (δ)·∆Xδ is named as the transfer matrix differential
of the defect element with Xδ parameter disturbing, M is the total
number of the disturbing parameters of the defect element. Taking
into account these relations, the transfer matrix of the structure with
both M and single defects are defined via next sums, respectively
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(7)

Since the last terms are presented via the non-commutative operator
(the matrix production), the amplitudes of the scattered fields are
dependent on both the disturbance value and the defect element
position in the structure.

We will consider the following values of disturbances in bi-isotropic
layer parameters: X0

1 = ε2, X0
2 = µ2, X0

3 = χ, X0
4 = ρ, i.e., M = 4.
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3. SCATTERING AND TRANSFORMATION FIELDS OF
STRUCTURE WITH DEFECT

On the Fig. 2 the solid line presents of the frequency dependences of
the reflection (Figs. 2a,c) and transformation (Figs. 2b,d) coefficient
magnitudes of the plane monochromatic wave from the perfect
structure [13]. They have interleaved areas with the high (the
quasi-stop bands) and low (the quasi-pass bands) average level of
the reflection. The interference of the reflected wave from outside
boundaries gives N − 1 small-scale oscillations in the pass bands.
The maximum of the reflection coefficient magnitude for the cross-

(a) (b)

(c) (d)

Figure 2. The frequency dependences of the reflection coefficient
magnitude of the sequence with bi-isotropic and isotropic layers and
with disturbing of the nonreciprocality χ (a, b) and chirality ρ (c, d)
parameters in the m = 3 period: εj = µj = 1, j �= 2, ε2 = 4, µ2 =
1, d1/L = d2/L = 0.5, ρ = 0.2, χ = 0.2, ϕ0 = 25◦.
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polar wave corresponds to the minimum of the reflection coefficient
magnitude for the co-polar wave.

The impedance parameters η± of a bi-isotropic layer do not
depend on the chirality parameter ρ at all and when χ �= 0 are complex
even for lossless media because they depend from complex value of ε±
and µ± (see the parameter definitions in [7, 13]). The propagation
constants γ± in a bi-isotropic medium depend on both chirality ρ
and nonreciprocal χ parameters [7]. These features of the bi-isotropic
medium determine the character of the frequency dependences of the
scattering and transformation coefficients of the periodical structure
with the defect element (Fig. 2).

As criterions of the defect influences we will consider the changing
of the quasi-pass band width, the magnitude and the average level
of the small-scale oscillations, the resonant frequency shifting in a
comparison with properties of the perfect periodical structure.

The medium nonreciprocality parameter influences on the wave
admittance of the bi-isotropic layer η±2 . Therefore the increasing
(decreasing) of the χ value slightly changes the average level of
the reflection coefficient in the quasi-pass band. It is not depend
from the type of the excitation field and the defect element position
in the structure (Figs. 2a,b). The dependence of γ± from the
medium nonreciprocality parameter χ influences on the structure phase
properties too, that yields the shifting of the high-frequency boundary
of the quasi-stop band. It is the most obvious for the reflection
coefficient of the cross-polar wave (Fig. 2b).

The chiral parameter ρ defines the phase properties of the
structure. Its changing gives the proportional shifting the resonant
frequency. Such disturbance essentially influences on the character of
the high-frequency (small-scale) oscillations in the quasi-pass bands.
This effect is determined by the composition of the eigen modes of the
identical transmission lines which are placed before and after the defect
element, and by the additional eigen modes appearing as a result of
the wave transformation. Their frequency and phase difference explain
both the magnitude modulation of the high-frequency oscillations in
quasi-pass band and dependence of the modulation period from the
position of the defect element in the structure (Figs. 2c,d). There
is an interesting peculiarity of the behavior of the reflection coefficient
magnitude for the cross-polar wave when ρ′ = 0.3. Here is observed the
reflection minimum for the defect structure in contrast to the maximum
for the perfect structure (as example, nearly kL ≈ 9.8).
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4. CONCLUSIONS

In this paper, we have applied the circuit theory and the transfer matrix
methods to solving the plane wave diffraction problem for the DBR-
like bounded sequence of pairs of bi-isotropic and magnetodielectric
layers with the periodicity defect. The analysis of its electromagnetic
properties was carried out. The nature, disturbance value, defect
element position, period composition influence on the properties of
the structure. The disturbance of nonreciprocal and chiral parameters
of a layer yields shift in the maximum transparency frequency and the
magnitude of the small-scale oscillations modulation. It is explained by
the composition of the eigen modes of the identical transmission lines
which are placed before and after the defect element. Furthermore the
nonreciprocal parameter disturbance slightly changes the average level
of the reflection coefficient in the quasi-pass band.
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