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Abstract—An interference saturated environment is one of the oper-
ating conditions that drastically degrades the detection performance of
the radar signal processor. Such an environment is frequently encoun-
tered in radar applications (multitarget situation). In this type of op-
erating environments, the presence of outlying target returns amongst
the elements of the reference set raises the detection threshold and this
causes the detection performance of the adaptive signal processor to be
degraded. In order to improve the processor performance in this situa-
tion, it is necessary to prevent these interfering target returns from the
contribution to the noise power estimation for this estimation to rep-
resent the actual background noise level. To achieve this requirement,
the double-threshold (DT) scheme has been introduced. The function
of the first threshold is to ensure that the reference channels are not
contaminated with outlying target returns and hence the calculation
of the detection (second) threshold is based on a set of samples which
is free of strong interferers and is therefore much more representative
of the noise level. To further improve the multitarget detection per-
formance of DT processor, it is of importance to supplement the radar
receiver with a video integrator to noncoherently integrate M of the
returned pulses from the target. Our goal in this research is to ana-
lyze the multipulse detection performance of such type of CFAR radar
target detection techniques when it operates in an interference satu-
rated environment. A χ2 family of fluctuating targets with an integer
fluctuation parameter is employed as a model for the received signal.
Our numerical results are focused on the important Swerling case II
model because of the prevalence of frequency diversity between nonco-
herent pulse bursts. It was found that the degradation in the processor
performance caused by outliers is quite small even if their number is
large given that the discarding threshold is properly selected. For fixed
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threshold values, the detectability loss decreases as M increases. Ad-
ditionally, lower detection threshold values and consequently better
detection performances are obtained as the number of noncoherently
integrated pulses increases.

1. INTRODUCTION

Radar is an electronic device for the detection and location of objects.
Its operation is based on transmitting an electromagnetic signal and
then processing the radar returns which include echoes from several and
diverse objects that constitute the surrounding environment. From the
detection point of view, it is required to detect the presence of a moving
target in the presence of unwanted signals in a reliable manner. The
unwanted signals include clutter (i.e., radar backscatter from objects
other than the target that lie in the path of the transmitted radar
signal), interference (i.e., electromagnetic signals produced by other
nearby transmitters that could be operating in the same band as the
radar transmitter itself), and local noise generated by electronic devices
at the front end of the receiver. The achievement of this requirement
is complicated due to the nonstationary character of the received radar
signal. The causes of this nonstationary include motion of the target
and variations in the environmental conditions. To deal with this
complication, it is of interest to use adaptive radar target detection
techniques to decide the presence or absence of the underlined target
against the nonstationary operating conditions.

In modern radar systems, equipped with automatic detection
circuits, the use of constant false alarm rate (CFAR) techniques is
required to keep false alarms at a suitably low rate in an a priori
unknown time varying and spatially nonhomogeneous environments.
Therefore, CFAR processors are useful for detecting radar targets in
a background for which the parameters of the statistical distribution
are not known and may be nonstationary. As a consequence, much
attention has been paid to the task of designing and assessing adaptive
detection systems capable of insuring a constant false alarm rate. The
threshold in these detectors is set adaptively based on the estimation
of the noise power level. This is because the noise power is not known
a priori and a fixed threshold value may increase the false alarm
probability to a much higher value than the required one or decrease
the detection probability intolerably [1, 3–5]. One of the main task of
CFAR detectors is to avoid the radar performance impairment when
it operates in an interference saturated environment.

While the cell-averaging (CA) technique of adaptive schemes
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is optimum in the sense of minimizing the detectability loss under
homogeneous operation [6, 10], it turns out to perform very poorly
when the operating environments include spurious targets and/or
clutter edges. If some resilience against interferers and/or clutter edges
is to be gained, alternative techniques, which trade some additional
detectability loss under homogeneity for enhanced robustness in
nonhomogeneous environments, must be adopted. The censoring based
algorithms rely on discarding out the highest and eventually the lowest
ranked values in the reference set prior to carrying on the estimate of
the noise power level [5–8]. However, in the presence of interference,
they are not satisfactory if the number of interfering samples exceeds
the number of samples which the censoring processor can handle. The
double-threshold detector alleviates this problem by discarding strong
samples, that exceed a predetermined threshold, from the sample set
prior to the cell averaging operation. The discarding operation ensures
that the calculation of the detection threshold is based on a set of
samples which is free of strong interferers and is therefore much more
representative of the noise level. Even if the censor fails to discard
all interferers, it censors the largest amongst them, leaving only those
below the discarding threshold. If the discarding threshold is properly
set, the impact of the remaining interferers should be tolerable. On
the other hand, if the discarding threshold is sufficiently high so as
not to censor many of the noise peaks, fluctuations in the noise power
properly influence the detection threshold [2, 7, 9].

Pulse integration improves SNR and correspondingly the detection
probability, but the amount of improvement depends upon the
method of integration, which may be accomplished in either the
IF(intermediate frequency) section prior the square-law device or in
the video section after the square-law device of the radar receiver.
There is a considerable difference between the two types of integration.
Integration before the device is defined as coherent or predetection
integration, while the second type is known as noncoherent or
postdetection integration. The integration efficiency of a postdetection
integrator is always less than that of a predetection integrator.
Furthermore, noncoherent integration can not preserve information,
such as Doppler data, that is already lost. However, the ease of
implementing a postdetection pulse integrator usually outweighs any
advantages achieved from the improvement in integration efficiency
that would be obtained by the use of a predetection pulse integrator.
Postdetection pulse integration, therefore, is usually implemented
although not ideally preferred [11].

In this paper, we are interested in analyzing the performance of
the double-threshold detector in multitarget situations when the radar
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receiver noncoherently integrates M of the returned pulses from the
target under test. Section 2 describes the model of the processor
under consideration and formulates the problem of detection under
noncoherent integration of M-pulses. Section 3 is concerned with
the processor performance analysis when the operating environment
is an interference saturated environment. Our numerical results that
illustrate the effects of various detector’s parameters on its performance
are displayed in Section 4. We end with a general discussion of the
obtained results along with our conclusions in Section 5.

2. MODEL DESCRIPTION AND PROBLEM
FORMULATION

A simplified block diagram of a radar receiver that employs a
noncoherent integrator followed by a threshold decision is shown in
Fig. 1. The input signal to the receiver is composed of the radar

 

 

 

Figure 1. Architecture of double-threshold detector with postdetec-
tion integration.
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echo signal s(t) and additive zero-mean white Gaussian noise n(t) with
variance σ2. The input noise is assumed to be spatially incoherent and
uncorrelated with the signal. The received IF signal is applied to a
matched filter which is specifically designed to maximize the output
signal-to-noise ratio (SNR). The output of the matched filter is the
signal V (t), which can be written as

V (t) = VI(t)cos (ω0t) + VQ(t)sin (ω0t) = r(t)cos (ω0t− θ(t)) (1)

where ω0 = 2πf0 is the radar operating frequency, r(t) and θ(t) denote
the envelope and phase, respectively, of V (t), and the subscripts I &
Q refer to the inphase and quadrature components.

A target is detected when r(t) exceeds the threshold value VT ,
where the decision hypotheses are

V (t)

Detection

〉
〈

False alarm

VT (2)

If the filter output is a complex random variable (RV) that is composed
of either noise alone or noise plus target return signal (sine wave of
amplitude A), the quadrature components take the forms:

VK(t) �
{
nK(t) +A in the presence of target
nK(t) in the absence of target K = I,Q (3)

The noise quadrature components nI(t) and nQ(t) are uncorrelated
zero-mean low pass Gaussian noise with equal variances σ2. The joint
probability density function (PDF) of them is given by

f (nI , nQ) =
1

2πσ2
exp

(
−
n2
I+n

2
Q

2σ2

)

=
1

2πσ2
exp

(
−(r cos(θ) −A)2 + (r sin(θ))2

2σ2

)
(4)

In terms of the joint probability density function of nI(t) and nQ(t),
we can evaluate the joint PDF of the new random variables r(t) and
θ(t) as

f(r, θ) =
r

2πσ2
exp

(
−r

2 +A2

2σ2

)
exp

(
rA cos(θ)

σ2

)
(5)
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The PDF of r is obtained by integrating Eq. (5) over θ. Thus,

f(r) =
r

σ2
exp

(
−r

2 +A2

2σ2

)
I0

(
rA

σ2

)
(6)

I0(.) denotes the modified Bessel function of order 0. In the literature,
the above PDF is known as Rice distribution. It is obvious that in
the absence of radar target return (A = 0), this distribution tends
to Rayleigh PDF. On the other hand, if (rA/σ2) becomes very large,
Eq. (6) tends to Gaussian PDF with mean A and variance σ2 [9].

2.1. Pulse Integration

When a target is illuminated by the radar beam, it normally reflects
numerous pulses. The radar detection probability is enhanced by
summing all (or most) of the returned pulses. The process of adding
radar echoes from many pulses is known as pulse integration. This
process can be performed on the quadrature components prior to
or after the envelope detector. The pulse integration in the first
case is called coherent or pre-detection while in the second case,
it is known as noncoherent or post-detection integration. Coherent
integration preserves the phase relationship between the received pulses
and consequently, a build up in the signal amplitude is achieved. In
post-detection integration, on the other hand, the phase relation is
destroyed. In coherent integration of M pulses, it is shown that the
signal power after the coherent integrator is unchanged, while the
noise power is reduced by the factor 1/M . Therefore, the signal-to-
noise ratio (SNR) in the process of coherent integration of M pulses is
improved by M . However, the requirement of reserving the phase
of each transmitted pulse as well as maintaining coherency during
propagation is very costly and challenging to achieve. For these
reasons, most radar systems utilize noncoherent integration owing to
its ease of implementation. A block diagram of radar receiver utilizing
a square-law detector and a noncoherent integrator is outlined in Fig. 1.

Let us now go to calculate the PDF of integrator output. The
output of the square-law detector for the �th pulse is proportional to
the square of its input. Thus, it is convenient to define new variables
as

y� � r2�
2σ2

and Λ1 � A2

2σ2
= SNR (7)

The PDF of the variable at the output of the square-law detector is
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given by

fy�(y) = exp (− (y + Λ1)) I0
(
2
√
yΛ1

)
(8)

Noncoherent integration of M pulses is implemented as

Y =
M∑
�=1

y� (9)

Since the RV’s ri’s are statistically independent, the PDF of Y is [8]

fY (Y/Λ) =
(
Y

Λ

)M−1
2

exp(−(Y + Λ))IM−1(2
√
Y Λ) (10)

IM−1(.) represents modified Bessel function of order M − 1. The
parameter Λ is the total, M pulse, SNR; Λ = MΛ1 in terms of the
per pulse SNR (Λ1).

2.2. Detection of Fluctuating Targets

So far we assumed a constant target cross section (nonfluctuating
target). However, when target scintillation is present, the detection
performance decreases due to decreasing the equivalent SNR.

To model the target fading, the total SNR (Λ) is taken to be
random with prior PDF of χ2-distribution with κ-degrees of freedom.
Thus,

f
(
Λ/Λ

)
=

(
κ

Λ

)κ Λκ−1

Γ(κ)
exp

(
−κΛ

Λ

)
U(Λ) (11)

In the above expression, Λ is the average M-pulse SNR, Γ(.) is the
gamma function, and U(.) denotes the unit step function.

In this model, any value of κ > 0 is acceptable. This model takes
into account the correlation between noncoherent pulse bursts. In any
event, the resulting primary target PDF for χ2 fluctuating target with
κ-degrees of freedom is given by [13]

fY
(
Y/Λ

)
=

∞∫
0

fY (Y/Λ)f
(
Λ/Λ

)
dΛ

=
(

κ

Λ + κ

)κ YM−1

Γ (M) 1F1

(
κ,M ;

Λ
Λ + κ

Y

)
exp (−Y ) (12)
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1F1(.) is the confluent hypergeometric function. The characteristic
function (CF) associated with Eq. (12) can be obtained by taking the
Laplace transformation of it which results

ΩY (S) =
(

1
S + 1

)M−κ (
1 − β

S + 1 − β

)κ

, β � Λ
κ+ Λ

(13)

In the case where κ = M , the above formula tends to the well-known
Swerling II (SWII) target fluctuation model. Therefore, when the
target fluctuates in accordance with SWII model, its associated CF
has a form given by

ΩY (S) =
(

a

S + a

)M

, a � 1
1 + Λ1

& Λ1 � Λ
M

(14)

The Laplace inverse of the previous equation gives the PDF of the
SWII target fluctuation model. Thus,

fY (y) =
(

1
1 + ψ

)M yM−1

Γ(M)
exp

(
− y

1 + ψ

)
U(y), ψ � Λ1 (15)

The integrator output is then sampled and the sampling rate is
assumed to be such that the successive samples are statistically
independent. A set of N samples, called the sample set, is used for
the noise level estimation. It is assumed that the sample tested for
detection is excluded from this set and thus ensure that the threshold
computed by the detector is independent of the tested sample. The
sample set is applied to a discarding operation which nullifies any
sample that exceeds a predetermined discarding threshold “τ”. The
set of surviving samples at the censor’s output is averaged with only
the nonzero samples considered. The average value “Z” of the samples
is multiplied by a predetermined detection coefficient “T”, which is
dependent on the size of the sample set and the required rate of false
alarm, and the result of this processing is used as a detection threshold
against which the content of the cell under test is compared to decide
whether the target under investigation is present or absent. A sample
that exceeds this threshold is declared to be detected.

The double-threshold (DT) processor is designed to simultane-
ously detect signals in an interference saturated environment and keep
the false alarm at a predetermined constant rate (CFAR). If the noise
at the receiver input is a narrowband Gaussian process, each noise
sample at the output of the noncoherent integrator is therefore a ran-
dom variable “X” with a PDF given by Eq. (15) after setting ψ (per
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pulse SNR) equals to zero. Thus,

fX(x) =
xM−1

Γ(M)
e−xU(x) (16)

Based on the hypothesis test, the processor detection performance can
be evaluated from the well known relation

Pd �
∞∫
0

fZ(z)

∞∫
ZT

fY (y)dydz (17)

Since Y and Z are statistically independent, letting ν = Y −TZ leads
to

Ων(S) = ΩY (S)ΩZ(−TS) (18)

The substitution of ν in the expression of Pd yields

Pd =

∞∫
0

fν(u)du (19)

The PDF of the random variable ν can be obtained by performing
the Laplace inversion of Eq. (18). Thus, performing this inversion and
integrating the resulting form with an allowable change in the order of
integration gives

Pd = −
∑
�

res

{
ΩY (S)

ΩZ(−TS)
S

, S�

}
(20)

where the contour of integration lies to the right of all singularities of
ΩY (S) in the left half plane and S�’s (� = 1, 2, . . . ) are the poles of
ΩY (S) and res[.] stands for the residue.

For the Swerling II target fluctuation model, the detection
probability can be calculated by substituting Eq. (14) in Eq. (20) which
yields [9]

Pd =
(

T

1 + ψ

)M (−1)M−1

Γ(M)
dM−1

dSM−1
{ΦZ(S)}

∣∣∣S= T
1+ψ

(21)

where ΦZ(.) stands for the Laplace transformation of the cumulative
distribution function (CDF) of the noise level estimate Z and ψ
represents the average per pulse SNR (ψ = Λ1 = Λ/M).
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It is evident from this derivation that the key step in the
processor performance evaluation is the determination of the Laplace
transformation of the CDF of its noise power level Z and therefore,
we focus our attention, in the following section, on deriving it for the
DT-CFAR detector when it is operated in an interference saturated
environment from which the homogeneous performance can be easily
obtained as a special case by setting the number of interferers equals
to zero.

3. PROCESSOR PERFORMANCE ANALYSIS

The corruption of signals with thermal noise represents the basic
problem in radar detection. This type of noise originates in both
the receiving system and the external environment as a result of
natural phenomena. In practical application of radar, the noise that
competes with signals may originate in other ways. For military radars,
deliberate radiation of jamming signals may introduce additional noise
into the receiving system. A CFAR processor is that one which
provides a constant false alarm rate against varying conditions in
an interference operating environment by adaptively adjusting the
detection threshold. The key assumptions in the DT-CFAR detector
is that the reference cell variates have the same distribution as that
of the cell under test variate in the no target present case. Therefore,
when the reference cell variates Xi’s, i = 1, 2, . . . , N , are taken to
be square-law detected and noncoherently integrated Gaussian noise
variates, they are statistically independent and identically distributed
(IID) random variables of gamma distribution, see Eq. (16). These
samples pass through a censor of threshold τ . A sample Q that was
not censored is a random variable with a PDF given by

fQ(q)�fX (q |x ≤ τ ) =
qM−1

Γ(M)
exp(−q)

1−
M−1∑
�=0

τ �

Γ(�+1)
exp(−τ)

{U(q)−U(q−τ)}

(22)

It is seen, from the above expression that the PDF of Q is the PDF
of X truncated at the discarding threshold τ and properly normalized.
The probability that a sample survives the censor is

Pt(x ≤ τ) =

τ∫
0

fX(x)dx = 1 −
M−1∑
�=0

τ �

Γ(�+ 1)
e−τ (23)
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On the other hand, the probability that n out of N nonzero samples
remain after the discarding operation has the following expression [5]

PS(n;N) =
(
N
n

)
Pn
t (1 − Pt)N−n (24)

In order to analyze the performance of the DT detector when the
reference window no longer contains radar returns from a homogeneous
background, the assumption of statistical independence of the reference
cells is retained. The multitarget environment, on the other hand, is
the more interesting situation that is frequently encountered in practice
in which the window contains nonuniform samples. This may occur in
a dense environment where two or more potential targets appear in
the reference window. The amplitudes of all the targets present in the
reference window are assumed to be fluctuating in accordance with
SWII model. Suppose that the sample set contains r returns from
spurious targets each of strength 1 + I and n cells contain thermal
noise only. The sample mean computed by the detector is

Z � 1
n+ r

{
n∑

k=1

Xtk +
r∑

�=0

Xf�

}
, 0 ≤ r ≤ R & 1 ≤ n ≤ N −R

(25)

In the above expression, Xt represents the sample that contains
thermal noise only, while Xf denotes reference cell that contains
interfering target return. n and r denote the number of surviving
thermal and interferer samples, respectively. We assume that n ≥ 1,
but allow r = 0 which means that all interferer samples are censored.
Since the cells of each one of the two random sets are IID, the sample
average Z has a CF given by

ΩZ(S) = {ΩXt(S)}n
{
ΩXf (S)

}r
∣∣∣S= S

n+r
(26)

where

ΩXt(S) =
{

1
S + 1

}M
1 −

M−1∑
�=0

τ �(S + 1)�

Γ (�+ 1)
exp (−τ(S + 1))

1 −
M−1∑
j=0

τ j

Γ (j + 1)
exp (−τ)

(27)
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and

ΩXf (S) =
{

b

S + b

}M
1 −

M−1∑
i=0

τ i(S + b)i

Γ (i+ 1)
exp (−τ(S + b))

1 −
M−1∑
k=0

(bτ)k

Γ(k + 1)
exp (−bτ)

, b � 1
1 + I

(28)

Let Pn(n) and Pr(r) denote the probabilities of n noise samples and r
outlying samples surviving the censor, respectively, then

Pn (n;N −R) =
(
N −R
n

)
Pn
t (1 − Pt)

N−R−n (29)

where Pt is as previously defined in Eq. (23), and

Pr(r;R) =
(
R
r

)
P r
f (1 − Pf )R−r (30)

and

Pf = 1 −
M−1∑
�=0

(bτ)�

Γ(�+ 1)
exp(−bτ) (31)

The parameter b is the same as that defined in Eq. (28). The
conditioning on n and r can be removed by averaging Eq. (26). Thus,

ΩZ(S)=
N−R∑
n=1

Pn(n;N−R)
R∑

r=0

Pr(r;R)
{

ΩXt

(
S

n+r

)}n{
ΩXf

(
S

n+r

)}r

(32)

The substitution of Eqs. (23), (27), (28) & (31) into Eq. (32) yields

ΩZ(S) =
N−R∑
n=1

(
N −R
n

) 


M−1∑
j=0

τ j

Γ (j + 1)
e−τ




N−R−n

R∑
r=0

(
R
r

) {
M−1∑
�=0

(bτ)�

Γ (�+ 1)
e−bτ

}R−r
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

1 −
M−1∑
i=0

τ i(S + 1)i

Γ(i+ 1)
exp (−τ(S + 1))

(S + 1)M




n




1 −
M−1∑
k=0

τk(S + b)k

Γ (k + 1)
exp (−τ(S + b))

(S + b)M/bM




r

(33)

Once the CF of the noise power level estimate Z is obtained, the
processor detection performance can be easily evaluated. Recall
that the processor detection performance is completely determined by
calculating the Laplace transformation of the CDF of its noise power
level estimate. In terms of the CF of Z, we can compute the Laplace
transformation of its associated CDF from the well known relation [12]

ΦZ(S) =
ΩZ(S)
S

(34)

In order to reduce the processing time taken by the CFAR circuit to
decide whether or not the radar target is present, it is recommended
that the size of the reference set is to be as small as possible. On the
other hand, the processor detection performance is enhanced as the
size of the processing set is increased. To solve this contradiction, it
is preferable to split the reference set into leading and trailing parts
symmetrically about the cell under test. The elements of each subset
are processed separately to estimate its noise power level and the two
resultant noise power levels are combined through the mean operation
to formulate the final noise power level estimate. For this type of CFAR
processors, we have

Z1 � 1
N1

N1∑
j=1

Xj & Z2 � 1
N2

N2∑
�=1

X� (35)

In the above expression, N1 and N2 represent the sizes of the leading
and trailing subsets, respectively, where N1 +N2 = N ; the size of the
global reference set.

To analyze the DT-CFAR detector performance when the
reference channels are contaminated by interfering target returns, the
assumption of statistical independence of the reference cells is retained.
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Suppose that the leading subset has r1 samples that contain outlying
target returns and has n1 cells that contain thermal noise only. Then
the estimated noise power level from the leading subset has a form
given by

Z1 � 1
n1 + r1




n1∑
i=1

Xti +
r1∑
j=0

Xfj


 (36)

Similarly, the noise power level estimated from the trailing subset has
the same formula as that given in Eq. (36) after replacing n1 & r1
by n2 & r2, respectively. In this case, r2 represents the number of
samples amongst the candidates of the trailing subset that may contain
interfering target returns, and n2 denotes those that contain thermal
noise only. Thus,

Z2 � 1
n2 + r2

{
n2∑
k=1

Xtk +
r2∑
�=0

Xf�

}
(37)

The application of the samples of each subset to the discarding
threshold will pass those samples of amplitudes less that or equal
to it to the averaging processing to construct the associated noise
power level to each subset. The final noise power level estimate is
obtained by combining these noise level estimates through the mean-
level operation. Thus,

Zf � mean (Z1, Z2) (38)

By following the same procedure as that of single-window performance
evaluation, we can calculate the CF of each one of these noise level
estimate. Therefore, Z1 and Z2 have CF’s given by Eq. (33) after
replacing its parameters with the corresponding ones of Z1 and Z2.
Thus,

ΩZ1 (S) =
N1−R1∑
n1=1

(
N1 −R1

n1

) 


M−1∑
j=0

τ j

Γ (j + 1)
e−τ




N1−R1−n1

R1∑
r1=0

(
R1

r1

) {
M−1∑
�=0

(bτ)�

Γ (�+ 1)
e−bτ

}R1−r1
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

1 −
M−1∑
i=0

τ i(S + 1)i

Γ(i+ 1)
exp (−τ(S + 1))

(S + 1)M




n1




1 −
M−1∑
k=0

τk (S + b)k

Γ(k + 1)
exp (−τ (S + b))

(S + b)M/bM




r1

(39)

and

ΩZ2 (S) =
N2−R2∑
n2=1

(
N2 −R2

n2

) 


M−1∑
j=0

τ j

Γ (j + 1)
e−τ




N2−R2−n2

R2∑
r2=0

(
R2

r2

) {
M−1∑
�=0

(bτ)�

Γ (�+ 1)
e−bτ

}R2−r2


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1 −
M−1∑
i=0

τ i(S + 1)i

Γ(i+ 1)
exp (−τ(S + 1))

(S + 1)M




n2




1 −
M−1∑
k=0

τk (S + b)k

Γ(k + 1)
exp (−τ(S + b))

(S + b)M/bM




r2

(40)

Since the noise level estimates Z1 and Z2 are statistically independent,
the final noise power level estimate Zf has a CF that is given by the
product of their characteristic functions. Hence,

ΩZf (S) = ΩZ1(S)ΩZ2(S) (41)

Finally, the processor detection performance can be evaluated by using
the final noise level estimate Zf in the definition of the probability of
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detection which becomes

Pd =
(

T

1 + ψ

)M (−1)M−1

Γ(M)
dM−1

dSM−1

{
ΦZf (S)

} ∣∣∣S= T
1+ψ

(42)

where the Laplace transformation of the CDF of the final noise level
estimate Zf can be easily obtained by substituting Eq. (41) into
Eq. (34).

Once the Laplace transformation of CDF of the final noise level
estimate is calculated, the processor performance evaluation becomes
an easy task as Eq. (42) demonstrates.

4. PERFORMANCE EVALUATION RESULTS

In this section, we are going to give some numerical results to
demonstrate the validity of our analysis as well as to obtain an
idea about the behavior of DT-CFAR processor under noncoherent
integration of M pulses when the operating environment contains
an intense number of outlying targets along with the target under
investigation. These results include the processor detection and false
alarm performances. The set of figures presented here provides some
insight into the influence of the various variables on the detector’s
performance, and therefore assists in the design of proper procedures
for determination of the detector parameters. Owing to the importance
of the SWII target fluctuation model in practical applications, we focus
our numerical results to this model for the primary and the secondary
extraneous targets. All our results are calculated for a sample set
of size 24 and a design false alarm rate of 10−6. Fig. 2 displays the
detection probability as a function of the discarding threshold τ when
the radar receiver noncoherently integrates M pulses and operates in
an environment which is free of spurious targets. The strength of the
primary target return (SNR) is assumed to be 5 dB. It is obvious from
the results of this figure that as M increases, the critical value of the
discarding threshold “τc” increases. This critical value is defined as
the lower discarding threshold value at which the processor detection
performance attains a reasonable value. It is known that as the
number of integrated pulses increases, the average value of the reference
sample augments and consequently the probability of preventing this
sample from collaboration in the estimation of the detection threshold
increases. As a result of this, the number of reference samples used in
estimating the detection threshold will be decreased and this in turn
will lead to augment the detection threshold very high making the
probability of detection to attain a negligible value. For a fixed value
of the discarding threshold, the probability of detection increases as
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the number of noncoherently integrated pulses increases. For example,
the detection probability equals 0.0164 for single sweep case (M = 1)
while it attains a value of 0.688 when 10 consecutive sweeps (M = 10)
are integrated to represent the input of the decision circuit, given
that the discarding threshold is held constant at 10 dB. This example
demonstrates to what extent the processor detection performance will
be enhanced with noncoherent integration of M pulses.
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Figure 2. M-sweeps ideal detection performance, as a function of the
discarding threshold, of the double-threshold adaptive processor when
N = 24, SNR = 5 dB, and Pfa = 1.0E-6.

To show the effect of changing the signal strength on the detection
probability, let us go to plot, in Fig. 3, the same characteristics for
several values of SNR after fixingM (at single sweep case) and allowing
the reference channels to be contaminated with 5 (R = R1 + R2 = 5)
interfering target returns of relative strength (INR/SNR) of −5 dB.
It is shown that the critical value of τc is 0.58 dB, in the case of
single sweep (M = 1), below which there is no detection (Pd =
0), as it is previously defined. As the SNR increases, there is an
improvement in the multitarget detection performance of the processor
under consideration. For a specified SNR, the detection probability
starts to increase at τc till it attains its maximum value after which
there is a zone in which it is slowly decreasing and beyond this zone
it rests constant without any fluctuations. This behavior is common
for all SNR’s with exception that the ratio of the maximum to the
minimum values decreases as the SNR increases and becomes unity for
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Figure 3. Single sweep multitarget detection performance of the
double-threshold CFAR scheme, as a function of the discarding
threshold, when N = 24, R = 5, INR/SNR = −5 dB, and Pfa = 1.0E-
6.

higher values of this important parameter.
The presence of interferers in the sample set, from which the noise

power level is estimated, performs the major source of performance
impairment of some types of CFAR schemes [3, 4, 6, 7]. Therefore, one
of the main task of CFAR procedures is to avoid this performance
impairment when radar operates in multitarget environments. Fig. 4
depicts the detection probability, of the considered algorithm, as a
function of the level of interference (INR) resulting from five spurious
targets (R = 5) in the case of monopulse detection (M = 1). The
candidates of this figure are parametric in the discarding threshold
(τ) as well as the strength of the primary target (SNR = ψ = α).
Three groups of curves are displayed according to the three selected
values of the SNR parameter: α = 0, 5, and 10 dB. Each group has
four curves according to the chosen discarding thresholds: τ = 2.5,
5.0, 7.5, and 10.0 dB. For lower values of interference level, the DT-
CFAR scheme has no sensitivity to the interfering target returns
and treats them as thermal noise samples. In this case the size
of the reference set increases and the estimated noise power level
approaches its actual value which lowers the detection threshold and
consequently improves the detection probability. As the interference
level increases, the outlying target returns start to be of considerable
value and still lower than the discarding threshold. Based on this
explicit reason, these interfering target returns have a considerable
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Figure 4. M-sweeps detection performance, as a function of the
interference strength, of the double-threshold CFAR scheme when
N = 24, M = 1, R = 5, and Pfa = 1.0E-6.

role in constructing the detection threshold which becomes augmented
and consequently the detection probability is decreased. For higher
values of interference level, on the other hand, the discarding threshold
eliminates the outlying target returns from the contents of the reference
set leaving those of thermal noise only to be used in estimating the
unknown noise power level. In this case, the candidates of the reference
set become to be homogeneous resulting in decreasing the detection
threshold and this in turn improves the probability of detection. In
this discussion, it is assumed that the discarding threshold is held
unchanged (τ = constant). For lower values of τ , the previous
phenomena is not clearly demonstrated and the detection probability
seems to be constant irrespective to the level of interference. As the
discarding threshold increases, the explained phenomena is explicitly
illustrated. On the other hand, if the strength of the primary target
return becomes higher (α = 10 dB), the presence of outlying target
returns amongst the candidates of the reference set has little effect on
the processor detection performance.

In the second category of our numerical results, we are concerned
with the processor false alarm rate performance as a function of the
interference strength excited by outlying targets for several values of
discarding threshold when the processing data are collected from M
pulses. This set of figures includes Figs. 5–7 for τ = 10, 15, and 20 dB,
respectively. The curves of each figure are parametric in M and the
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Figure 5. M-sweeps actual probability of false alarm, as a function of
the interference strength, of the double-threshold CFAR detector when
N = 24, τ = 10 dB, R = 5, and design Pfa = 1.0E-6.
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Figure 6. M-sweeps actual probability of false alarm, as a function of
the interference strength, of the double-threshold CFAR detector when
N = 24, τ = 15 dB, R = 5, and design Pfa = 1.0E-6.
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Figure 7. M-sweeps actual probability of false alarm, as a function of
the interference strength, of the double-threshold CFAR detector when
N = 24, τ = 20 dB, R = 5, and design Pfa = 1.0E-6.

reference channels are assumed to be contaminated by 5 interfering
target returns. The designed false alarm rate is, as previously stated,
taken to be 10−6. Generally, the presence of spurious target returns
amongst the candidates of the reference channels raises the decision
threshold and consequently decreases the false alarm rate. Since the
decision threshold is constructed on the basis that the elements of
the reference set are homogeneous; i.e., free from any other object
returns except the clear background, any reason for making these
samples nonhomogeneity degrades the processor performance. When
the strength of outlying targets is modest, their corresponding cells
succeed to escape from the discarding threshold and hence they play an
important role in establishing the decision threshold. In other words,
if the interference level is of low value that makes the extraneous
target returns to be smaller than the excising threshold, the setting
of the decision threshold must take into account these returns. As a
result of them, the decision threshold becomes of higher value than
that proposed in the case where the contents of the reference set
are homogeneous. Increasing the decision threshold means decreasing
the probability of detection either the target is present (Pd) or the
target is absent (Pfa). As the interference level (INR) increases, the
amplitude of outlying target returns augments but still lower than
the trimming threshold, and the decision threshold becomes higher,
and this in turn leads to decrease the false alarm rate more and
more. At the instant where the interference level becomes of value
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that making the strength of interferers to be comparable with the
discarding threshold, the reference channels start to be purged from
their returns and step-by-step the content of the reference set tends to
be again homogeneous. This behavior will lead to improve the false
alarm probability towards its design value. In the above explanation,
it is assumed that the number of noncoherently integrated pulses is
held constant. On the other hand, if the number of integrated pulses
increases, the effective value of the interfering target returns increases
and consequently the probability of excising them also increases leaving
only the clear background samples to be used in noise level estimation
and hence the probability of false alarm will be improved. This
means that, as M increases, the interference level, at which the false
alarm rate starts to be explicitly degraded, decreases and that level
at which Pfa starts to be improved, after it attains its worst value,
also decreases, as Fig. 5 illustrates this behavior. In other words, the
interference level, at which the false alarm attains its worst rate, as
well as the value of this worst rate will be lowered as the number
of noncoherently integrated pulses increases, given that the excision
threshold rests unchanged. Fig. 6 shows the same characteristics while
the censoring threshold is changed from 10 dB to 15 dB under the same
operating conditions as in Fig. 5. The displayed results illustrate that
increasing the discarding threshold degrades the processor false alarm
rate performance drastically along with making the worst false alarm
rate more severe. In addition, the interference level at which the false
alarm rate attains its worst value is shifted towards higher values of
INR. This result is predicted because increasing τ means increasing
the effective value of interfering target return at which it is discarded.
To verify this prediction, we repeat the same characteristics in Fig. 7
after setting τ to 20 dB. Similar comments can be extracted from the
behavior of the curves of the underlined figure.

In order to confirm our anticipation about the false alarm
rate performance of the processor under investigation, we focus our
attention in the next group of displayed results, Figs. 8–9, on the same
behavior, as in the previous set of curves, when the parameters M
and τ vary simultaneously. Four values are chosen for each one of
the underlined parameters: M = 1, 2, 4, 5, and τ = 10, 20, 30,
50 dB. The single sweep results are considered here as a reference with
which the noncoherent integration of M-pulses is compared. Firstly,
let us take the parameter M to be fixed and make the parameter τ
to be varied giving it all its selected values. For each one of these
values, the false alarm probability changes in the same manner as
that discussed in Figs. 5–7. As τ increases, the worst rate of false
alarm shifts its value towards higher interference level (INR) after
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Figure 8. M-sweeps actual false alarm probability of the double-
threshold CFAR scheme as a function of the interference strength,
when N = 24, R = 5, and design Pfa = 1.0E-6.

1.0E-30

1.0E-25

1.0E-20

1.0E-15

1.0E-10

1.0E-05

-5 -1 3 7 11 15 19 23 27 31
Interference strength (INR) "dB"

A
c

tu
a

l 
fa

ls
e

 a
la

rm
 p

ro
b

a
b

il
it

y
 "

P
fa

"

τ = 5 τ = 10 τ = 15

τ = 20 τ = 25 τ = 30

τ = 35 τ = 40 τ = 50

Figure 9. M-sweeps actual false alarm probability of the double-
threshold CFAR scheme as a function of the interference strength,
when N = 24, M = 3, R = 5, and design Pfa = 1.0E-6.

which it begins to be improved towards its designed value (10−6). For
very high values of τ , the false alarm rate decreases continuously as
interference level increases in such a way that it becomes be unable to
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return to its designed value. On the other hand, increasing M makes
the rate of decreasing of false alarm rate to be rapidly increased as
well as decreases the interference level, at which the probability of
false alarm begins to be augmented on focusing to attain its steady
state value. The numerical results presented in this scene give a good
idea about the reaction of the DT-CFAR detector against the number
of noncoherently integrated pulses and the variation of the excision
threshold when the operating environment contains an intense number
of outlying targets along with the target under test. It is of importance
to note that as τ becomes very high (τ → ∞), the DT scheme behaves
like the well-known cell-averaging (CA) procedure in its false alarm
and detection performances. Before discussing the ineffectiveness zone
of the processor under consideration, attention should be drawn to the
following conclusion: when interferers are discarded from the sample
set, the noise power estimation is based on a smaller number of samples
and, if the detection threshold is taken as its initial value, computed
in the absence of extraneous targets (R = 0), the false alarm rate
increases. This behavior is clearly shown in Fig. 9 which illustrates
the double-threshold false alarm rate performance as a function of
the strength of interfering targets (INR) for several values of τ when
three consecutive sweeps are noncoherently integrated (M = 3) to
prepare the data from which the detection threshold is established.
The number of reference cells that are contaminated by interfering
target returns is 5. For this family of curves, the notation (τ = 5) on a
specified curve indicates that it is plotted for τ = 5 dB. It is observed
that for low values of the censoring threshold τ , the false alarm
probability remains approximately constant with small deviations,
from its designed value, for weakly extraneous targets and these
deviations are rapidly decreased as either the interfering strength or
the number of noncoherently integrated pulses increases. When τ tends
to infinity, Pfa decreases rapidly with INR, since all the interferers
are survived and their presence amongst the elements of reference
set raises the detection threshold which consequently decreases the
false alarm rate intolerably. In other words, for smaller values of
the discarding threshold, the false alarm rate remains approximately
constant irrespective of the interference strength. In that case, it is
obvious that all the interferer returns are eliminated from the reference
window and the construction of the detection threshold is actually a
direct translation of the homogeneous background and consequently
the false alarm rate is independent of the interference level. As τ
increases, the interfering target returns can escape from the censoring
threshold if their interference level is moderate and this in turn raises
the detection threshold which yields to decrease the probability of false
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alarm. This process is continued till the interference level becomes
strong. In that case, the interferer returns are completely discarded
and they have no influence on the setting of the detection threshold.
Because of this, the false alarm rate tends to be constant. Based on this
behavior, we define what we will call ineffectiveness zone of the double-
threshold detector. This zone is defined as the range below the excision
threshold in which the spurious target returns succeed to escape from
the discarding threshold and therefore they have a direct effect on the
setting of the detection threshold. As τ increases, the location of this
zone is shifted towards the higher interference level. In the limit, as τ
tends to be infinity, the ineffectiveness zone disappeared and the rate
of false alarm monotonically decreases as the interferer level increases.
This behavior is logically since the excision threshold has no effect on
the extraneous target returns and consequently they collaborate to the
construction of the detection threshold whatever the strength of their
level. This important conclusion is explicitly demonstrated in Fig. 9
which varies the discarding threshold τ and holds M constant. The
curves of this figure have the same behavior as those of the previous
figure with a significant change of the location of ineffectiveness region.

To guess the influence of interferers on the processor detection
performance, we turn our attention in the next subset of figures to
the variation of the detection probability with the most important
parameters in order to show the role that these parameters may play in
the behavior of the DT-CFAR scheme against the secondary interfering
targets. This group of displayed figures includes three important
subgroups. The first one depicts the detection probability as a function
of the strength of the primary target return (SNR) in the presence
of five outlying target returns of the same strength as the primary
target (α = INR/SNR = 1). Fig. 10 shows the detection performance
of the underlined processor when the radar receiver noncoherently
integrates 3, 5, 7, and 9 pulses. Two preassigned values for the
discarding threshold (τ = 10 & 50 dB) are assumed for each M . As the
results of Fig. 2 demonstrate, we note that as M increases, the critical
value of τ increases. In order to choose a suitable lower value for
the censoring threshold that gives reasonable detection performance,
it must take into account the highest value of M . For this reason,
the indicated minimum value of τ is selected. On the other hand, the
top value is chosen in such a way that the DT-CFAR scheme tends
to be CA-CFAR scheme. The curves of this figure are parametric
in M and τ . The single sweep (M = 1) results are considered here
as a reference with which the noncoherent integration of M-pulses is
compared. For fixed τ , the processor detection performance improves
as M increases. The rate of improving decreases as M increases. On
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Figure 10. Multipulse detection performance of double-threshold
adaptive processor operating in multitarget environment whenN = 24,
R = 5, α = 1 and Pfa = 1.0E-6.

the other hand, the detection probability for τ = 10 dB is higher than
that for τ = 50 dB, given that M is held unchanged. This behavior
is predicted since the probability of eliminating the interfering target
returns in the case of τ = 10 dB is higher than that in the case of
τ = 50 dB. The contamination of the reference channels with outlying
target returns raises the threshold with which the primary target return
is compared to decide whether or not this target is present. Increasing
the detection threshold means decreasing the detection probability,
as Fig. 10 demonstrates. Fig. 11 illustrates the same behavior
under the same operating conditions as that presented in Fig. 10, on
the exception that it depicts the graduation at which the processor
detection performance degrades as the discarding threshold increases.
Since the optimum value of τ , that gives the maximum performance,
is 2 dB for monopulse integration and 5 dB for noncoherent integration
of two pulses, the starting value of τ is chosen to be 5 dB. We again
repeat that the inclusion of monopulse results in this figure is for the
purpose of comparison. If M is taken to be fixed, the detection
performance degrades as τ increases. For the same value of τ , the
processor performance improves as the number of integrated pulses
increases, as we have previously stated. In the second category of the
detection group, we are concerned with the density of the appearance
of outlying target returns and their effect on the detection of the target
under investigation. This subgroup includes Figs. 12–13. It displays
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Figure 11. M-sweeps multitarget detection performance of the
double-threshold adaptive processor when N = 24, R = 5, α = 1
and Pfa = 1.0E-6.
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Figure 12. M-sweeps multitarget detection performance of the
double-threshold CFAR scheme as a function of the outlying target
returns when N = 24, τ = 10 dB, SNR = 10 dB, α = 1, and
Pfa = 1.0E-6.
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Figure 13. M-sweeps multitarget detection performance of the
double-threshold CFAR scheme as a function of the outlying target
returns when N = 24, τ = 50 dB, SNR = 10 dB, α = 1, and
Pfa = 1.0E30-6.

the detection probability as a function of the number of interfering
target returns for several numbers of noncoherently integrated pulses
when the primary as well as the secondary interfering targets fluctuate
in accordance with SWII fluctuation model and have the same strength
of signal return (SNR = 10 dB & α = INR/SNR = 1). In Fig. 12,
the discarding threshold is assumed to be 10 dB, while the curves of
Fig. 13 are drawn for τ = 50 dB. For low values of τ , it is noted
that as the number of spurious target returns increases, there is a
noticeable degradation in the processor detection performance when
the number of integrated pulses is small and this degradation is rapidly
disappeared as M increases. For large values of M (M ≥ 6), the
detection probability remains constant although more than half of
the elements of the reference set are contaminated with extraneous
target returns (R = 15). This performance is physically logic since
increasing M means increasing the mean value of the reference sample
that may contaminated with interfering target return and this, in turn,
means increasing the probability of discarding it. In that case, the
interferer samples are purged from the candidates of the reference
set and hence have no effect on the estimation of the noise power
level and consequently on the setting of the detection threshold. The
behavior of the curves of Fig. 13 support this explanation. For higher
values of τ (τ = 50 dB), the processor performance is rapidly degraded
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as the number of outlying target returns increases because of the
contribution of them on establishing the detection threshold where
there is no chance to excise these returns from the estimation set. This
situation corresponds to the well-known CA processor. Generally, asM
increases, the processor performance improves and the required SNR
to achieve a specified value of detection probability decreases, either τ
is chosen low or high.

The last subgroup of detection performance is devoted to the
presentation of the improvement of detection probability with the
number of noncoherently integrated pulses. It contains Figs. 14–15.
In these figures, the probability of detection is plotted, against the
number of integrated pulses M , in the absence (R = 0) as well as
in the presence of five outlying target returns amongst the cells of
the reference set for various values of the strength of primary target
return and for α = INR/SNR = 1. For small numbers of integrated
pulses, the homogeneous processor performance exceeds its multitarget
detection performance. As M increases, the gap between the two
performances is gradually reduced till they become coincide on one
another. This behavior is noted for each preassigned value of SNR.
Additionally, the value of M , at which the homogeneous performance
coincides with the multiple-target one, decreases as the signal return
becomes strengthened. Moreover, increasing SNR improves both the
homogeneous and the multitarget processor performances.

Now, let us repeat the same results of Fig. 14 after changing
the excision threshold from 10 dB to 30 dB and holding the operating
conditions unchanged. The obtained results are displayed in Fig. 15.
In this case, the gap between the homogeneous and the multitarget
performances increases and there is no chance for the coincidence of
the two performances although M attains large values (M = 10). As
noted earlier, increasing τ means increasing the probability of escaping
the interfering target returns from the discarding threshold and
consequently raising the detection threshold which leads to lowering
the detection probability. The curves of this figure vary in the same
manner as those of the previous figure. The chance for the absence
and the presence of extraneous target return’s performances to be
coincide increases as either M , SNR or both of them increases. For
our numerical results to be comparable, the single-sweep behaviors are
incorporated in constructing the underlined figures.

To examine the effects of interfering targets on detectability of the
cell under test, the final group of figures is concerned with computing
the required SNR to achieve a predefined operating point under
different operating conditions. This set of curves includes Figs. 16–
19. In the first two ones, Figs. 16–17, the probability of detection is
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Figure 14. M-sweeps detection performance of the double-threshold
CFAR scheme in the absence as well as in the presence of extraneous
targets when N = 24, α = 1, τ = 10 dB, and Pfa = 1.0E-6.
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Figure 15. M-sweeps detection performance of the double-threshold
CFAR scheme in the absence as well as in the presence of extraneous
targets when N = 24, α = 1, τ = 30 dB, and Pfa = 1.0E-6.

taken as an independent parameter that varies from 2% to 98%. For
each value of this interesting parameter, the required SNR is calculated
in the presence of 5 outlying target returns, of the same strength as the
primary target (α = INR/SNR = 1), amongst the reference cells given
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Figure 16. Monopulse required signal strength to achieve an
operating point of (Pd, 1.0E-6) of the DT-CFAR scheme in the presence
of 5 outlying targets of the same strength as the primary target (α = 1)
when N = 24.
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Figure 17. M-sweeps required signal strength to achieve an operating
point of (Pd, 1.0E-6) of the double-threshold scheme in the presence of
5 outlying targets when N = 24, α = 1, and M = 3.

that the required rate of false alarm is fixed at 10−6 when the. number
of integrated pulses equals 1 and 3, respectively. The curves of each
figure are parametric in the indicated values of the discarding threshold
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τ in dB. For lower values of τ , the required SNR to achieve a specified
detection level is small and increases gradually as Pd increases. Each
curve of Fig. 16 can be divided into three regions from the rate of
increasing point of view. In the first region (Pd < 10%), the increasing
rate is relatively high. In the medium region (10% ≤ Pd ≤ 90%), the
increasing rate is relatively low, while in the third region (Pd > 90%),
the rate of increasing is higher than those in the previous two regions.
Additionally, as τ increases, the slope of the first region increases
while the slope of other two regions rest approximately unchanged. To
illustrate the effect of noncoherent integration on reducing the required
SNR, the results of this figure are repeated under the same operating
conditions taking into account that the radar receiver integrates three
consecutive pulses before processing data to estimate the unknown
noise power level. The obtained numerical values are displayed in
Fig. 17, which shows the same variation for the required SNR with the
predefined detection level. For the same detection level, the required
SNR for M = 3 is much smaller than that required for monopulse
operation. For example, if Pd=0.5, the required SNR’s are 15 dB
and 8.64 dB for M = 1 and 3, respectively, given that the excision
threshold is held constant at 10 dB in the two cases. This numerical
example demonstrates the importance of noncoherent integration in
enhancing the detection performance of the CFAR processor. As
the discarding threshold becomes large, the multiple-target processor
performance becomes considerably degraded. This behavior is intuitive
since increasing τ increases the number of reference cells used in
noise power level estimation, together with an inevitable violation
of the inherent assumption that the estimation cells are identically
distributed and properly represent the noise in the detection cell. In
addition, the likelihood that an interfering target or a spiky clutter
return has entered the reference window is obviously larger for larger
τ . On the other hand, once the estimator has been captured by the
extraneous target, the primary target is less suppressed by increasing
the number of noncoherently integrated pulses.

In the final category of the required SNR figures, it is of
importance to show the variation of this interesting parameter with the
discarding threshold and the number of integrated pulses. Figs. 18–19
depict explicitly these variations. Fig. 18 illustrates the required SNR
as a function of the discarding threshold for several values of M when
the reference channels are contaminated with five interfering target
returns for the possible practical application of equal strengths for the
signal return from the primary and the secondary outlying targets. For
low values of τ , the required SNR has a constant value till τ = 15 dB,
after which the calculated SNR increases linearly with increasing the
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Figure 18. M-sweeps multitarget required SNR to achieve an
operating point of (9.0E-1, 1.0E-6) of the double-threshold adaptive
detector when N = 24, R = 5, and α = 1.
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Figure 19. M-sweeps multitarget required SNR to achieve an
operating point of (9.0E-1, 1.0E-6) of the DT-CFAR processor when
N = 24, and R = 5, and α = 1.
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censoring threshold. This behavior is common for all values of M with
the exception that the required SNR decreases as M increases and
the rate of decreasing decreases with increasing M . The slope of the
curves in the linear part of these characteristics is approximately the
same and the critical value of τ increases as M increases, as we have
previously explained. In Fig. 19, the required SNR is plotted against
M and parametric in τ under the same operating conditions. The
displayed results of this figure anticipate the previous conclusions and
similar comments can be extracted from the displayed results of this
figure.

5. SUMMARY AND DISCUSSION

An interference saturated environment is frequently encountered in
radar application. This situation is nominated as multitarget in the
radar terminology. In order to improve the detection performance of
an adaptive processor in such type of operating environments, it is of
importance to purge the interfering target returns from the estimation
cells prior the processing of estimation in order to avoid their
contribution on the construction of the detection threshold. However,
the elimination of the contaminated samples from the candidates
of the reference set reduces the size of the estimation cells. To
compensate for this reduction, the technique of noncoherent integration
of M consecutive pulses is a promising processing to enhance the
detection behavior of the CFAR processor. In this manuscript, we
analyze the detection performance the double-threshold (DT) CFAR
scheme designed to operate in an interference saturated environment,
in which the well-known CA processor fails to detect the target under
consideration owing to the inevitable influence of the spurious samples
on the establishing of the detection threshold, when the radar receiver
contains a video integrator amongst its basic elements. Closed form
expressions are derived for the false alarm and detection probabilities
in the case where there is an intense number of outlying target
returns amongst the estimation cells. The primary and the secondary
spurious targets are assumed to be fluctuating in accordance with χ2

fluctuation model. Special interest was given to the most important
SWII fluctuation model and to the possible practical application of
equal strengths for the primary and the secondary extraneous target
returns (α = INR/SNR = 1). The DT type of adaptive radar detectors
combats the effect of variations in the noise level and interferences
by adapting the detection threshold to the sample average and by
neutralizing the effect of strong interfering signals by censoring them
prior to the cell averaging operation. Even if not all interferers are
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discarded, censoring the strongest ones; which are the most damaging
to processor performance, among them is assured. The purpose of the
integrator is to diminish the effect of strong, random interfering signals,
while enhancing the detection probability of a periodic sequence of
pulses. The numerical results provide an important insight into the
effect of the system’s parameters on its performance. These results
will be useful for designing the DT-CFAR detector with noncoherent
integration because of the prevalence of frequency diversity between
noncoherent pulse bursts in real radar systems.

For the DT processor to be effective, the censoring threshold
should be set as low as possible so that any sample that is not a
noise sample is discarded. However, if the input signal is contaminated
by a wide band jamming signal, a low censoring threshold can result
in discarding most of the noise samples and therefore cause a drastic
degradation in performance. On the other hand, if we set the censoring
threshold too high, an ineffectiveness zone is created. The samples in
this zone, which originate from various interfering transmissions, are
not discarded.
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