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Abstract—A general design technique for the coaxial resonator cavity
duplexer is proposed in this paper, based on the design method
of the general Chebyshev band-pass filter. We can obtain the
coupling matrixes of cross-coupled resonator duplexer by optimization
technique, and complete the design of duplexer fast. The proposed
duplexer is designed and fabricated with the 1.92–1.98 GHz downlink
and 2.11–2.17 GHz uplink frequencies. Across the bandwidth, the
measured insertion losses at the both bands are less than 1 dB, while
the input and output return losses are well below 20 dB. More than
50 dB isolation performance is obtained from the duplexer. The
measured results approximately meet all the conditions of the design
targets.

1. INTRODUCTION

As the frequency spectrum becomes more crowded, communication
systems require transmit and receive using one antenna in many
frequency spectrum ranges. Duplexer becomes critical component in
the functioning of a wireless transceiver, because it allows simultaneous
transmission and reception of signals from a single antenna.

With a single antenna, duplexer is normally used in RF transceiver
to isolate a transmitter and a receiver electrically. To achieve
high-dynamic range transceiver, a high-isolation and low insertion
loss duplexer design is needed [1–5]. Duplexer can be realized in
various media, for example microstrip or waveguide [2–7]. Though
planar microstrip is preferable due to its easy integratability and
compatibility with standard manufacturing process, but low unloaded-
Q in a planar microstrip resonator causes high insertion loss and poor
isolation performance. Numerous techniques have been introduced
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to improve the isolation performance but most of the techniques
are yet improbable to apply in practice. For example, the stepped-
impedance coupled-line resonator based hairpin filter [8] and the
double-loop resonator [9] though considerably increase the isolation
performance but the complexity in their design and implement issues
are of mainly practical concerns. Therefore, this paper describes
the coaxial resonator cavity duplexer based on the design method of
the general Chebyshev band-pass filter, high unloaded-Q in a coaxial
resonator cavity causes low insertion loss. In Section 2, the utilization
of the design of the general Chebyshev band-pass filter enables the
two finite transmission zeros of such resonators close to and on the
opposite side in the other pass-band respectively, resulting in high
isolation between both channels. To validate the performance, the
proposed scheme is designed for the UMTS communication systems at
the center frequencies of 1.95 GHz for downlink and 2.14 GHz for uplink
channels, while each operates at 60 MHz bandwidth. The design results
are presented in Section 3 and finally are concluded in Section 4.

2. COAXIAL RESONATOR CAVITY BAND-PASS
FILTER

Coaxial resonator cavity filters achieve magnetic coupling or capacitive
coupling by opening iris or placing probe between two cavities.
The values of the magnetic or capacitive coupling are controlled
by the dimensions of the iris or probe. The position and number
of transmission zeros is determined by cross coupling between
coaxial resonators. Considering the unloaded-Q factor of the coaxial
resonators and the power capability, the volume of coaxial resonator
are achieved by changing the size of its inner and outer conductors.
In a word, the coaxial resonator cavity filter with the characteristic of
equal-ripple general Chebyshev function has many advantages, such as
smaller volume, narrower band-pass, better slope and higher power
capability. So it has become study focus because of its expanded
perspective.

The design specifications are as follows

RX channel
Center frequency 1.95 GHz
Bandwidth 60 MHz
Return loss 20 dB
Transmission zeroes 2.05 GHz and 2.14 GHz
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TX channel
Center frequency 2.14 GHz
Bandwidth 60 MHz
Return loss 20 dB
Transmission zeroes 2.085 and 1.95 GHz
Isolation between RX and TX 50 dB.

2.1. General Chebyshev Filtering Function

Compared to the familiar pure Chebyshev function, the advantages of
general Chebyshev function as follows.

(1) The positions of all N of the prescribed transmission zeros
are arbitrary. Those zeros locate ω axis become the finite
transmission zeros of the corresponding function, others will affect
the characteristic of group delay.

(2) The general Chebyshev function keeps the characteristic of equal-
ripple.

(3) Because the transmission zeros are arbitrary, the general
Chebyshev filtering function has asymmetric or symmetric
characteristics.

From [13], we can obtain the following expressions.
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The reductions of the expressions are presented in [13]. CN (ω) is know
as the filtering function of degree N and has the general Chebyshev
characteristic [12].

2.2. Coupling-Matrix

Generally speaking, filters with finite transmission zeroes are designed
by cross-coupling resonators. As illustrated in Fig. 1, coupling matrix
will be obtained by synthesizing the elements values. Because there is
very close relationship between topology of the structure and coupling
matrix, it is very important to make sure the topology of the structure.
The network topology with finite transmission zeroes can be realized
fast by using three resonators cross-coupled network [10, 11].
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Figure 1. N resonators cross-coupled network.

Then using CT form as illustrated in Fig. 2.

(a) (b)

Figure 2. Network topology of filters with finite transmission zeroes.
(a) Center frequency is 1.95 GHz. (b) Center frequency is 2.14 GHz.

The synthesis process of the corresponding coupling-matrixes of
Fig. 2 will be shown in the following. Consider the design specifications
of filters, normalized coupling-matrixes M01 and M02 are obtained
according to the method introduced in [12–14].
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R1 = R2 = 1.0041

M01 =




0.0099 -0.2527 -0.5372 -0.5684 -0.1794 0.0000
-0.2527 0.8914 0.2722 -0.0075 0.0045 -0.2638
-0.5372 0.2722 -0.4392 0.0000 0.0000 -0.5372
-0.5684 -0.0075 0.0000 0.2350 -0.2207 0.5684
-0.1794 0.0045 0.0000 -0.2207 -0.9483 0.1794
0.0000 -0.2638 -0.5372 0.5684 0.1794 0.0099




R1 = R2 = 1.0032

M02 =




-0.0153 -0.2764 -0.5260 -0.5743 -0.1577 0.0000
-0.2764 -0.8906 -0.2935 -0.0038 0.0038 0.2823
-0.5260 -0.2935 0.4969 0.0000 0.0000 0.5260
-0.5743 -0.0038 0.0000 -0.1830 0.2011 -0.5743
-0.1577 0.0038 0.0000 0.2011 0.9638 -0.1577
0.0000 0.2823 0.5260 -0.5743 -0.1577 -0.0153




R1 is the internal resistance of the voltage source, R2 is the load resistor
at the output.

Then, the Matlab programs are compiled to optimize coupling-
matrixes according to the optimization technique introduced in [15].
M01 and M02 are initial coupling-matrixes, but we set no coupling
entries to zero. And the inverse normalized coupling-matrixes
optimized are M1 and M2. (The inverse normalization is to multiply
FBW to coupling-matrixes optimized.)

M1 =




0.0003 0.0255 0.0050 0 0 0
0.0255 -0.0068 0.0183 0 0 0
0.0050 0.0183 0.0013 0.0180 0 0

0 0 0.0180 0.0010 0.0187 0.0026
0 0 0 0.0187 -0.0034 0.0258
0 0 0 0.0026 0.0258 0.0003




M2 =




-0.0004 0.0220 -0.0085 0 0 0
0.0220 0.0116 0.0155 0 0 0
-0.0085 0.0155 -0.0019 0.0163 0 0

0 0 0.0163 -0.0012 0.0170 -0.0022
0 0 0 0.0170 0.0026 0.0235
0 0 0 -0.0022 0.0235 -0.0004




The FBWs of two filters are 0.0280 and 0.0308.
The insertion and return loss of the synthesized filters are shown

in Fig. 3.



110 Li et al.

(a) (b)

1.7 1.8 1.9 2.0 2.1 2.2
-160

-140

-120

-100

-80

-60

-40

-20

0
S

-p
a
ra

m
e
n
ts

(d
B

)

Frequency(GHz)

 S11

 S21

1.9 2.0 2.1 2.2 2.3 2.4
-160

-140

-120

-100

-80

-60

-40

-20

0

S
-p

a
ra

m
e
n
ts

(d
B

)

Frequency(GHz)

 S11

 S21

Figure 3. Inverse normalized frequency insertion and return loss
of filters. (a) Center frequency is 1.95 GHz (b) Center frequency is
2.14 GHz.

2.3. Model Simulation

Generally speaking, there are two methods to design duplexer. One
is to design the band-pass filters first, connect the T-Junction next
and optimize filters; the other is to design the band-pass filters first,
connect the T-Junction and tune the T-Junction next.

In this paper, the second method is adopted. We designed two
coaxial resonator cavity band-pass filters which center frequencies are
1.95 GHz and 2.14 GHz respectively, and connected the two filters with
T-Junction to be a duplexer. The high-isolation duplexer is gained by
using the EDA software to optimize the T-Junction.

First, we set up a single resonator cavity in Ansoft, and change the

Figure 4. Simulation model of duplexer in Ansoft.
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dimensions of inner and outer conductors to make resonant frequencies
at center frequencies. Second, the sizes of irises or probes are changed
in simulation to realize the coupling coefficients. At last, the simulation
model is obtained in Ansoft, shown in Fig. 4.

The tune bolts of resonance and coupling are taken into account in
these simulations. So the complex structure of simulation model and
numbers of parameters are unavoidable, but the physical realization of
duplexer is feasible [16, 17].

Figure 5. Photo of duplexer.
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Figure 6. Measured and computed traces.
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3. MEASURED DATA

Figure 6 shows the measured return loss and insertion loss of the
duplexer in Fig. 5. The measured return loss of the duplexer is
about 20 dB, which in-band insertion loss is smaller than 1 dB, and the
isolation between two pass-bands is 50 dB. The measured data agrees
well with the conditions of the design targets. In Fig. 6, because of the
effect of noise we can not see the four transmission zeros designed, but
it dose not affect the performance of the cavity duplexer.

4. CONCLUSION

On the base of the design of the general Chebyshev band-pass filter
with finite transmission zeros, the coaxial resonator cavity duplexer in
Fig. 5 is designed and realized in this paper. The measured results in
Fig. 6 approximately meet all the conditions of the design targets, so
this method is provided correct and feasible.
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