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Abstract—In the analysis, an open-ended rectangular waveguide in an
infinite ground plane is used as a near-field probe and the two-element
waveguide array in an infinite ground plane is used as a radiator.
Moment method analysis is used to find the reflection coefficient of
the array element and probe voltage. The reflection coefficient of the
array element, which is also an open-end of a rectangular waveguide,
is computed and compared with the reflection coefficients, when the
probe is at different positions in the near-field. The computations have
also been carried out to find the induced probe voltage, when the probe
scan in transverse plane (planar scanning) at a distance z1 from the
radiator. Good agreement is obtained between measured and MOM
results.

1. INTRODUCTION

The radiating waveguide is a fundamental electromagnetic structure,
and one about which a great deal is known. With the realization of
large-scale microwave arrays, the subject of waveguide radiation and
mutual coupling has aroused renewed interest. The waveguide elements
in two-element array in an infinite ground plane being used as radiating
elements are assumed to be excited in the dominant TE10 mode. An
electromagnetic wave incident on the open-end of a waveguide being
used as a near-field probe causes an electric field to be induced at
the plane of the waveguide. The boundary conditions imposed at
the radiating apertures and probe aperture by automatically taking
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multiple reflections between radiator and probe, and also mutual
coupling effect between radiating elements into account.

The field is described as a sum of M number of weighted sinusoidal
basis functions, defined over the extent of the aperture at the plane
of the waveguide. This field can be considered to be a magnetic
current source which scattered some field into the free space and some
field is scattered within the waveguide. The tangential components of
the scattered magnetic field within the waveguide and that scattered
into the free space must be continuous at the plane of the aperture.
Enforcement of this boundary condition leads to an integral equation
involving the M unknowns used to describe the aperture electric field.
This is transformed into a matrix equation by taking moments with
entire domain sinusoidal weighting functions [1]. A solution of this
matrix equation provides the values of the unknown coefficients. The
fields scattered inside and outside the waveguide are obtained in terms
of these coefficients. Assuming a matched detector, the power received
by the detector and the voltage measured by the measuring device are
calculated.

2. FORMULATION OF THE PROBLEM

The geometry of the problem is a measuring waveguide probe at the
near-field of a two-element waveguide array radiator and it is shown in
Figure 1. The aperture dimension of each waveguide is 2a× 2b.

Figure 1. Open-ended waveguide as a near-field probe of the two-
element array radiator.
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The incident magnetic fields at the radiating waveguide apertures
1 and 2 for the dominant TE10 mode are given by:

H inc1
x = −Y0 cos

(πx
2a

)
e−jβz (1)

H inc2
x = −Y0 cos

(πx
2a

)
e−jβz = H inc1

x (2)

and the electric fields at the radiating apertures 1 and 2 are described
by:

−→
E1(x′, y′, 0) = ûy

∑M

p=1
E1

pe
1
p (3)

−→
E2(x′, y′, 0) = ûy

∑M

p=1
E2

pe
2
p (4)

where the entire domain basis functions ep (p = 1, 2, . . . , M) are
defined by

e1p =

 sin
{pπ

2a
(x+ a)

} {
−a ≤ x ≤ a
−b ≤ y ≤ b

0 elsewhere

= e2p (5)

The equivalent magnetic current at aperture 1 for computing the
externally radiated magnetic field using the plane-wave spectrum
approach is given by [2]:

−→
M1

e = 2
−→
E1(x′, y′, 0) × ûz

= ûx

∑M

p=1
2E1

p sin
{pπ

2a
(x+ a)

}{
−a ≤ x ≤ a
−b ≤ y ≤ b

(6)

The electric vector potential
−→
F 1 at any point in space due to magnetic

current at aperture 1 is given by:

−→
F 1 =

∫∫
aper

−→
M1

e e
−jk|r− r′|

4π |r − r′| ds′ (7)

From the identity [3]:

e−jk|r− r′|

|r − r′| =
1

2πj

∞∫
−∞

∞∫
−∞

ej{(x−x′)kx+(y−y′)ky−(z−z′)kz}

kz
dkxdky (8)
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The electric and magnetic fields at any point in space are given by

−→
E1 = −∇×

−→
F 1 (9)

−→
H1 = −∇×−→

E1

jωµ
=

1
jkη

∇×∇×
−→
F 1 (10)

From Equations (2) through (10), the externally scattered magnetic
field at the plane of the aperture 1 (z = 0) is obtained as:

−→
H ext1 =

1
2πkη

∞∫
−∞

∞∫
−∞

k × k ×−→ε s×
ûz

kz
ej(kxx+kyy)dkxdky

where
−→
ε1s is the Fourier Transform of the aperture electric field

−→
E1

s ; it
is given by

−→
ε1s = ûxε

1
x + ûyε

1
y =

1
2π

∫∫
Aperture

E1
s (x′, y′, 0)e−j(kxx′+kyy′)dx′dy′ (11)

Therefore, the x-component of the magnetic field is given by

Hext1
x =

−1
2πkη

∞∫
−∞

∞∫
−∞

kxkyε
1
x +

(
k2 − k2

x

)
ε1y

kz
ej(kxx+kyy)dkxdky (12)

Substituting Equation (11) in (12) and simplifying, we obtain

Hext11
x = − ab

π2kη

M∑
p=1

E1
p

∞∫
−∞

∞∫
−∞

k2 − k2
x(

k2 − k2
x − k2

y

)1/2
sinc(kyb)

{
j sin(kxa) p even
cos(kxa) p odd

}
pπ

2

{
1 −

(
2akx

pπ

)2
} ej(kxx+kyy)dkxdky (13)

Equation (13) gives the x-component of the externally scattered
magnetic field at the aperture 1 due to the magnetic current source
at the aperture 1. Similarly, the externally scattered magnetic field at
the plane of the aperture 2 due to the magnetic current source at the
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aperture 2 is obtained as:

Hext22
x = − ab

π2kη

M∑
p=1

E2
p

∞∫
−∞
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−∞

k2 − k2
x(
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y
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} ej(kxx+kyy)dkxdky (14)

The internally scattered field at the waveguide aperture is
obtained by using the modal expansion approach [3]. The x-component
of the internally scattered magnetic fields at apertures 1 and 2 are
obtained as:

H int1
x =

M∑
p=1

E1
pY

e
p0sin

{mπ
2a

(x+ a)
}

(15)

H int2
x =

M∑
p=1
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pY

e
p0sin

{mπ
2a

(x+ a)
}

(16)

The externally radiated x-component of the magnetic fields at the
plane of the probe’s aperture due to the radiating apertures 1 and
2 are obtained as:

Hext31
x = − ab

π2kη

M∑
p=1

E1
p

∞∫
−∞
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y
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where superscript 3 indicates the probe aperture. The x-component of
the magnetic field at the plane of the probe aperture scattered by the
magnetic current on the probe is the same form as the Equation (13)
(or (14)). In addition, the x-component of the magnetic fields, at the
plane of the radiating waveguide apertures 1 and 2 scattered by the
magnetic current on the probe are same form as Equations (17) and
(18), respectively.

The boundary conditions are simultaneously imposed at the plane
of the radiating waveguide apertures 1 and 2, and at the plane of the
near-field probe’s aperture. The boundary condition at the region of
the waveguide aperture is the tangential component of the magnetic
field both inside the waveguide and outside it should be identical.

At z = 0 plane, the x-component of the magnetic field at the plane
of the radiating aperture 1 is given by:

2H inc1
x +H int1

x = Hext11
x +Hext12

x +Hext13
x (19)

The x-component of the magnetic field at the plane of the radiating
aperture 2 is given by:

2H inc2
x +H int2

x = Hext22
x +Hext21

x +Hext23
x (20)

At z = z1 plane, the x-component of the magnetic field at the
plane of the measuring probe’s aperture is given by:

H int3
x = Hext33

x + 2Hext31
x + 2Hext32

x (21)

Since the field is described by M basis functions, M unknowns are
to be determined from the boundary condition. The Galerkin’s
specialization of the method of moments is used to obtain M different
equations from the boundary condition to enable the determination of
the Ep. The weighting function wq is selected to be of the same form
as the basis function ep. The integral Equations (19), (20) and (21)
are then converted into matrix form as:

2
[
Linc1

]
+

[
Lint1

][
E1

p

]
=

[
Lext11

][
E1

p

]
+

[
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p

]
+

[
Lext13
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E3

p

]
(22)

2
[
Linc2

]
+

[
Lint2
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E2

p

]
=

[
Lext22
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E2

p

]
+

[
Lext21

][
E1

p

]
+

[
Lext23

][
E3

p

]
(23)[

Lint3
] [
E3

p

]
=

[
Lext33

] [
E3

p

]
+

[
Lext31

] [
E1

p

]
+

[
Lext32

] [
E2

p

]
(24)

where the superscripts 1, 2 and 3 indicate the radiating apertures 1, 2
and probe aperture 3 respectively. The moment elements are obtained
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as:[
Linc1
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= Linc1
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y
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cos2 (kxa) p,q both odd
0 otherwise
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pπ

2

{
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(
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pπ

)2
}
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2
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(
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The expressions for
[
Linc2

]
is the same form as Equation (25),[

Lint2
]

and
[
Lint3

]
are the same form as Equation (26),

[
Lext22

]
and[

Lext33
]

are the same form as Equation (27),
[
Lext21

]
is the same as

Equations (28) and
[
Lext23

]
,
[
Lext31

]
and

[
Lext32

]
are the same form as

Equation (29). Solving Equations (22), (23) and (24) simultaneously,
we obtain the coefficients of the basis functions E1

p , E2
p and E3

p . From
these coefficients, radiating element reflection coefficient and power
received by the probe and hence the voltage are determined. The
expression for power coupled into the probe waveguide in the TE10

mode is given by [4]:

P = 2abY0E
3
pE

3∗
p (30)

Since measuring devices viz. spectrum analyzer has an input
impedance of 50 ohms, the voltage is given by:

V =
√

50 × P volts (31)

3. RESULTS AND DISCUSSION

The standard X-band WR-90 rectangular waveguide in an infinite
ground plane is used as a radiating element of the array radiator. The
near-field measuring probe is also the same structure as the radiating
element. Figure 2 shows the variation of the probe voltage with
position of the probe, when the probe scan in the transverse (planar)
plane and separation between radiating elements d is 2.54 cm (1 inch).
It is evident from the plots that as the scan plane is closer to the
radiator, probe voltage is larger. The variation of the probe voltage
as a function of frequency, when the probe position is fixed at 1.5 cm,
3.0 cm and 5.0 cm in z-axis is shown in Figure 3. The measured results,
when the probe is fixed at 5.0 cm from the radiator, are compared to
the MoM results. Good agreement is obtained. Figure 4 shows the
absolute reflection coefficient of the radiating element as the function
of frequency, when the probe position is fixed in the near-field and
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Figure 2. Probe voltage in x-y plane at x = 0 and z = 0.5λ/1.0λ/2.0λ,
and at 10 GHz, when separation between radiating elements is d =
2.54 cm.

Figure 3. Probe voltage at x = 0, y = 0 and z =
1.5 cm/3.0 cm/5.0 cm, and compared to the measured results when the
probe at z = 5.0 cm, over 8 to 12 GHz, when the separation between
radiating elements is d = 2.54 cm.
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Figure 4. Absolute reflection coefficient for the radiating array
element in the presence of the probe at x = 0, y = 0 and z =
1.5 cm/3.0 cm/5.0 cm/8.0 cm, and in the absence of the probe over 8 to
12 GHz when the separation between radiating elements is d = 2.54 cm.

Figure 5. Reflection coefficient phase for the radiating array
element in the presence of the probe at x = 0, y = 0 and z =
1.5 cm/3.0 cm/5.0 cm/8.0 cm, and in the absence of the probe over 8 to
12 GHz when the separation between radiating elements is d = 2.54 cm.
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separation between radiating elements d is 2.54 cm. When the probe
is closer to the radiator, the reflection coefficient reduces, as it makes
the better matching between radiator and probe. These are compared
with the reflection coefficient of the radiating elements when there is
no probe at the near-field. The reflection coefficient phase plots are
shown in Figure 5.

4. CONCLUSION

When the radiating elements and probe are open-ended waveguides,
because of multiple reflections and mutual coupling effect, and
equivalent circuit properties of dominant mode the radiating element
reflection coefficient improves. When the distance between probe and
radiator reduces, the reflection coefficient decreases drastically, and the
probe voltage increases, as evident from the plots. When the distance
between the radiator and probe is larger, then the reflection coefficient
values tend to the results obtained when there is no probe at the near-
field.
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