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Abstract—A theoretical analysis of the lateral shift for an
electromagnetic beam reflected from an uniaxial anisotropic slab
coated with perfect conductor is presented. The analytic expression
for the lateral shift is derived by using the stationary-phase approach,
and the conditions for negative and positive lateral shifts are discussed.
It is shown that the lateral shift depends not only on the slab thickness
and the incident angle, but also on the constitutive parameters of the
uniaxial medium. Enhancement and suppression of lateral shift are
observed and are attributed to the interference between the reflected
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waves from the two interfaces of the slab. By tuning the thickness of
the slab and material parameters, large negative and positive shifts can
be attained. In particular, when total reflection occurs at the upper
interface, the lateral shift will saturate with increasing slab thickness.

1. INTRODUCTION

The Goos-Hänchen effect [1, 2], which usually refers to the lateral shift
of a totally reflected beam displaced from the path of geometrical
optics, has been widely analyzed both theoretically [3–5] and
experimentally [6–9]. The concept of Goos-Hänchen lateral shift
has been expanded to partial reflection at arbitrary incident angle
[10–13]. In order to get a large or negative lateral shift, many
attempts have been made with various materials and configurations,
such as dielectric slabs [14–17], metal surfaces [18–20], dielectric-
chiral surface [21], multilayered structures [22], metallic gratings
[23], and photonic crystals [24]. Recently, left-handed metamaterial
with negative permeability and permittivity has attracted a lot of
attention due to their extraordinary electromagnetic characteristics
[25–32], and negative lateral shift has been observed in left-handed
materials [33–37]. In those works, the case for the isotropic left-handed
material has been analyzed extensively. In practice, left-handed
materials in experiments are intrinsically anisotropic. Furthermore,
each component of the permittivity and permeability tensors of the
metamaterial can have either a positive or negative real part. Hence, it
is worthwhile to illustrate the relationship between material parameters
and the corresponding lateral shift at the anisotropic interface. The
lateral shift of the transmitted beam from an anisotropic slab has
been discussed [38, 39], but little work has been done on the lateral
shift of the reflected beam from a grounded anisotropic slab, which
has the advantage that the reflected beam energy is always equal
to the incident one at any incident angles no matter whether total
reflection occurs or not. In this paper, we consider an electromagnetic
beam reflecting from an indefinite uniaxial slab on the top of a perfect
conductor. The analytic expression for the lateral shift as a function
of the slab parameters is derived by the stationary-phase method and
different conditions are discussed for both negative and positive lateral
shifts. By tuning the thickness of the slab and material parameters,
large negative or positive shift can be attained.
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Figure 1. Configuration of an electromagnetic beam incident upon
a grounded uniaxial slab. Medium 1 is isotropic, and medium 2 is
uniaxial with its optical axis in the z-direction. The slab is backed by
a perfect conductor.

2. LATERAL SHIFTS OF AN GROUNDED UNIAXIAL
SLAB

The grounded uniaxial anisotropic slab is shown in Figure 1, in which
medium 1 is isotropic and is characterized by the relative permittivity
ε1 and permeability µ1. Medium 2 is uniaxial with its optical axis being
normal to the interface, and the relative permittivity and permittivity
tensors of medium 2 can be expressed in the following form:

ε =




εt 0 0
0 εt 0
0 0 εz


 , µ =




µt 0 0
0 µt 0
0 0 µz


 . (1)

When a TE polarized wave is incident from the isotropic medium into
the uniaxial medium at an oblique angle θ with respect to the normal of
the interface, the dispersion relations in the two media can be written
as

k2
1z + k2

x = k2
0ε1µ1 (2)

k2
2z + σk2

x = k2
0εtµt (3)

where σ = µt/µz, k0 is the wavenumber in the free space, kx =
k0
√

ε1µ1 sin θ is the wavenumber in the x-direction of the two media,
and k1z and k2z are wavenumbers in the z-direction of the media 1 and
2 respectively. Here, we consider only TE polarized wave and the case
for a TM polarized wave can also be discussed in the similar manner.
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The reflection coefficient can be expressed as [40]

R = −k2z + ipk1z tan(k2zd)
k2z − ipk1z tan(k2zd)

(4)

where p = µt/µ1, and d is the thickness of the slab.
From Eq. (4), we can get the amplitude and phase of the reflection

coefficient as

|R| = 1 (5)
φ = 2 tan−1(pk1z tan(k2zd)/k2z) + π (6)

From Eq. (5), we can see that the amplitude of reflection coefficient
is unity and is independent of the incident angle. This means that the
reflected intensity of each plane wave component is always equal to the
incident one no matter whether the total reflection occurs or not.

For a wide beam with a narrow angular spectrum, the lateral shift
can be calculated by the stationary-phase method [41]:

∆ = − 1
k1 cos θ

dφ

dθ
(7)

where k1 = k0
√

ε1µ1.
Substituting Eq. (6) into Eq. (7), we can get the lateral shift as

∆ = 2dp tan θ

(
k2

2z − σk2
1z

)
sin(2k2zd)/2k2zd + σk2

1z

k2
2z cos2(k2zd) + p2k2

1z sin2(k2zd)
(8)

Obviously, the denominator in Eq. (8) is positive, so the sign of
lateral shift is determined by the numerator of Eq. (8).

In the limit k2zd � 1, sin(2k2zd) ≈ 1, Eq. (8) can be
approximately written as

∆ ≈ 2dp tan θ (9)

In the limit k2zd � 1, the first term of Eq. (8) which is proportional
to function sin(2k2zd)/2k2zd tends to vanish and the lateral shift is
dominated by the second term of Eq. (8). Hence, Eq. (8) can be
approximately expressed as

∆ ≈ 2dp tan θ
σk2

1z

k2
2z cos2(k2zd) + p2k2

1z sin2(k2zd)
(10)

From Eq. (10), we can see that the enhancement of lateral shift
occurs if the k2zd satisfies the resonant conditions k2zd = mπ for
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|k2z| > |pk1z| and k2zd = (m − 0.5)π for |k2z| < |pk1z|, where m
is positive integer. In fact, the lateral shift enhancement results
from the constructive interference of the reflected waves from the
isotropic-uniaxial interface and uniaxial-conductor interface. When
k2z = pk1z, the refection caused by the isotropic-uniaxial interface
vanishes, and the corresponding Brewster angle can be calculated by
θb =

√
(εtµt/ε1µ1 − p2)/(σ − p2). In such case, the enhancement of

the lateral shift will be negated.
When total reflection occurs, according to Eq. (3), the inequality

σk2
x > k2

0εtµt should be satisfied in order to keep k2z imaginary. If we
assume that k2z = iα2z, then, the Eq. (8) can be rewritten as

∆ = 2dp tan θ

(
α2

2z + σk2
1z

)
sh(2α2zd)/2α2zd − σk2

1z

σ2
2zch

2(α2zd) + p2k2
1zsh

2(α2zd)
(11)

where sh(·) and ch(·) are hyperbolic sin and cos functions. In the limit
α2zd � 1, Eq. (11) can be approximately written as

∆ ≈ 2dp tan θ (12)

which is the same as Eq. (9).
In the limit α2zd � 1, Eq. (11) can be approximately written as

∆ ≈ 2p tan θ

α2z

α2
2z + σk2

1z

α2
2z + p2k2

1z

(13)

which is consistent with that of [28].
From the analysis above, we can conclude that the lateral shift

from the grounded uniaxial slab can be positive as well as negative,
which is related to the incident angle, the slab thickness, and the
constitutive parameters of the uniaxial medium.

3. DISCUSSION AND RESULTS

In the following analysis, we assume that medium 1 is free space
(ε1 = 1, µ1 = 1) and the medium 2 is an indefinite uniaxial medium.
Since the components of the permittivity and permeability tensors
of the uniaxial medium may not have the same sign, the dispersion
relation in the indefinite uniaxial medium will correspond to either
an elliptic or hyperbolic equation depending on the combination of
material parameters. Hence, the lateral shift from the grounded
uniaxial slab is greatly influenced by the dispersion property of the
uniaxial medium.
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From Eqs. (2) and (3), the dispersion relation for the uniaxial
medium can be rewritten as

k2
2z = k2

0(εtµt − (µt/µz)ε1µ1 sin2 θ). (14)

The sign of k2
2z can be used to distinguish the propagation property

of an electromagnetic beam in the uniaxial medium. The cases with
k2

2z > 0 and k2
2z < 0 correspond to solutions of waves with real

k2z and imaginary k2z respectively. According to their spatial cutoff
properties [42], the uniaxial media can be classified into four kinds:
cutoff medium, anti-cutoff medium, never-cutoff medium, and always-
cutoff medium. All the conditions for both real and imaginary k2z

solutions are considered and summarized in Table 1. Here, we focus
on the discussion on the lateral shift for µt > 0, and the result for
µt < 0 is opposite to that for µt > 0. In addition, it should be noted
that the critical angles for both the normal total reflection in the cutoff
medium and the anomalous total reflection in the anti-cutoff medium
can be calculated by θc = sin−1

√
(εtµz)/(ε1µ1).

Table 1. Conditions for the real and imaginary.

Uniaxial medium εtµt µt/µz εtµz θ k2z

0 < εtµz < ε1µ1 0 < θ < θc Real

Cutoff εtµt >0 µt/µz >0 0<εtµz <ε1µ1 θc <θ<π/2 Imaginary

εtµz >ε1µ1 0<θ<π/2 Imaginary

0 < εtµz < ε1µ1 0 < θ < θc Imaginary

Anti-cutoff εtµt <0 µt/µz <0 0<εtµz <ε1µ1 θc <θ<π/2 Real

εtµz >ε1µ1 0<θ<π/2 Real

Never-cutoff εtµt >0 µt/µz <0 θc <θ<π/2 Real

Always-cutoff εtµt <0 µt/µz >0 θc <θ<π/2 Imaginary

In order to illustrate the relationship between the lateral shifts
and dispersion property of the grounded uniaxial slab, we starts with
discussing the lateral shift for the solution with real k2z. When k2z is
real, it means that the electromagnetic beam can propagate inside the
uniaxial medium and is influenced by the reflection from the perfect
conductor. In the limit k2zd � 1, according to Eq. (9), the sign of
lateral shift for the solution with real k2z is determined by the sign
of µt. In the limit k2zd � 1, enhancement and suppression of lateral
shifts occur, corresponding to constructive resonances and destructive
resonances, respectively. In addition, according to Eq. (10), the sign
of the lateral shift in the limit k2zd � 1 is determined by the sign of
µz. For a given incident angle, large negative or positive shift can be
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attained by tuning the slab thickness and material parameters. As an
example, the dependence of lateral shifts on the slab thickness for the
solution with real k2z at different incident angles for different media is
presented in Figure 2. The insets in Figure 2 show the lateral shift of
a much thicker slab. It is shown that the lateral shift depends on not
only the slab thickness and the incident angle, but also the material
parameters. When the slab thickness is small, the lateral shift is always
positive due to the assumed positive µt. As the slab thickness increases,
fluctuation of lateral shift is observed due to the periodic occurrence
of the constructive resonances and destructive resonances, as shown in
the insets of Figure 2.

In the cut-off uniaxial slab, the solution with real k2z can exist for

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 2. Dependence of lateral shift on the thickness of a grounded
uniaxial slab for different incident angles. (a) εt = 2, µt = 1, and
µz = 0.25; (b) εt = 2, µt = 1 and µz = 1; (c) εt = −2, µz = 1, and
µz = −0.25; and (d) εt = 2, µt = 1, and µz = −1. The insets show
the lateral shifts as a function of the slab thickness for a much thicker
slab.

a small incident angle (θ < θc) in the case of εtµz < ε1µ1, or arbitrary
incident angle in the case of εtµz > ε1µ1. The calculated lateral shifts
for the two cases are shown in Figures 2a and 2b. In the first case
(εt = 2, µt = 1, and µz = 0.25), when the incident angle is smaller
than the critical angle (θc = 45◦), the lateral shift remains positive in
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spite of its fluctuation. However, in the second case (εt = 2, µt = 1,
and µz = 1), the fluctuation of the lateral shift is so strong that both
positive and negative lateral shift can be attained by choosing the
proper thickness of the slab. Moreover, in the first case, when the
incident angle is close to the Brewster angle of the isotropic-uniaxial
interface (θb = 35.4◦), the fluctuation of lateral shift diminishes due
to a lack of reflected wave from the isotropic-uniaxial interface, and
since there is a phase shift of π upon the reflection in the isotropic-
uniaxial interface of the slab, hence the large enhancement of lateral
shift can occur near the resonances at k2zd = (m − 0.5)π for θ < θb,
and k2zd = mπ for θ > θb. In the second case, the large enhancement
of lateral shift can occur near the resonances at k2zd = (m− 0.5)π for
any incident angle. In addition, as the slab thickness increases, the
lateral shifts for the two cases tend to be positive.

In the anti-cutoff uniaxial slab, the solution with real k2z can only
exist for an large incident angle (θ > θc), which is opposite to the
cutoff uniaxial slab. Figure 2c shows the lateral shift as a function
of the slab thickness with εt = −2, µt = 1, and µz = −0.25. The
corresponding Brewster angle θb and critical angle θc are 50.77◦ and
45◦ respectively. When the slab thickness is smaller, the lateral shift
is positive, but as the slab thickness increases, the lateral shift tends
to be negative, which is different from that of the cutoff uniaxial slab.
The large negative enhancement of lateral shift can occur near the
resonances at k2zd = mπ for θ < θb and k2zd = (m − 0.5)π for θ > θb.

In the never-cutoff uniaxial slab, the incident wave can propagate
inside the slab and is reflected from the perfect conductor. Hence, the
solution with real k2z can exist for any incident angle. The dependence
of the lateral shift on the slab thickness is illustrated in Figure 2d,
where εt = 2, µt = 1, and µz = −1. It can be observed that
the lateral shift increases with the increasing of the incident angle,
and tends to be negative as the slab thickness increases. The large
negative enhancement of lateral shift can occur near the resonances
k2zd = (m − 0.5)π for any incident angle. Moreover, when the
incident angle increases, the fluctuation of the lateral shift with the
slab thickness becomes more obvious.

Now, we turn to discuss the lateral shift for the solution with
imaginary k2z (k2z = iα2z). In such case, the electromagnetic beam
will become evanescent in the uniaxial medium and total reflection
phenomenon occurs. In the limit α2zd � 1, according to Eq. (12), the
sign of lateral shift is determined by the sign of µt and is positive under
the present condition. The property of lateral shift for the solution with
imaginary k2z in the uniaxial grounded slab is shown in Figure 3. The
insets in Figure 3 show the relationship between the lateral shift and
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the incident angle in the grounded slab. We can see that the lateral
shift for the thin slab is positive, which is identical to the real k2z case.
However, as the slab thickness increases, the lateral shift approaches to
a saturated value, which is different from the real k2z case. Moreover,
the lateral shift for the thick slab in the present case depends on the
incident angle more than the slab thickness.

In the cut-off uniaxial slab, the solution with imaginary k2z can
exist for a large incident angle (θ > θc) in the case of εtµz < ε1µ1.
The calculated lateral shift is shown in Figure 3a, where the material
parameters are the same as Figure 2a. It is shown that, as the
increase of the slab thickness, the lateral shifts will increase quickly,
and then gradually approach to an asymptotic positive value. The

 

(a) 

 
(b) 
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(c) 

 
(d) 

Figure 3. Dependence of lateral shift on the thickness of a grounded
uniaxial slab for different incident angles. (a) εt = 2, µt = 1, and
µz = 0.25; (b) εt = −2, µt = 1 and µz = −0.25; (c) εt = −2, µz = 1,
and µz = −1; and (d) εt = −2, µt = 1, and µz = 1. The insets show
the lateral shifts as a function of the slab thickness for a much thicker
slab.

inset in Figure 3a shows the relation between the lateral shift and
the incident angle when the slab thickness is d = 0.1λ, 0.5λ, and 1λ.
It is straightforward to see that the lateral shift increases with the
increasing of incident angle in the thin slab, while in the thick slab the
lateral shift decreases, reaches a minimum, and then increases with the
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increasing incident angle.
In the anti-cutoff uniaxial slab, the solution with imaginary k2z

can exist for an small incident angle (θ < θc) in the case of εtµz < ε1µ1,
or any incident angle in the case of εtµz > ε1µ1. The calculated lateral
shifts for the two cases are shown in Figures 3b and 3c, in which,
εt = −2, µt = 1, and µz = −0.25 and εt = −2, µt = 1, and µz = −1,
respectively. From Figures 3b and 3c, we can see that the signs of
lateral shift for the two cases are positive when the slab thickness is
smaller. However, as the slab thickness increases, the lateral shift for
the first case tends to be negative while the lateral shift for the second
case tends to be positive. Moreover, the lateral shifts for a given slab
thickness in the two cases increases with the increasing of incident
angle, which is different from that of the cutoff uniaxial slab.

In the always-cutoff uniaxial slab, any incident wave will become
evanescent and the total reflection occurs at all times. Hence, the
solution with imaginary k2z can exist for any incident angle. The
dependence of the lateral shift on the slab thickness with εt = −2, µt =
1, and µz = 1 is shown in Figure 3d. The result indicates that the
lateral shift is always positive when µt > 0. Besides, as shown in the
inset of Figure 3d, the lateral shift increases with the increasing of
the incident angle, this is obviously different from that of the cut-off
uniaxial slab.

4. SUMMARY

In summary, an investigation on the lateral shift for a grounded
indefinite uniaxial slab has been done by using the stationary-phase
approach. The result shows that the lateral shift is related to the
slab thickness, the incident angle, and the material parameters of
the uniaxial medium. By changing the material parameters of the
uniaxial medium, we can get real or imaginary k2z. In the case of
real k2z, the fluctuation of lateral shift can be observed due to the
interference between the reflected waves from the two interfaces of
the slab. By tuning the thickness of the dielectric slab and material
parameters, large negative and positive shift can be attained. In the
case of imaginary k2z, the lateral shift due to the total reflection at
the isotropic-uniaxial interface will be saturated with the increasing of
slab thickness.
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