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Abstract—This paper presents a computational approach to the two-
dimensional time domain inverse scattering problem of a dielectric
cylinder based on the finite difference time domain (FDTD) method
and the particle swarm optimization (PSO) to determine the shape,
location and permittivity of a dielectric cylinder. A pulse is incident
upon a homogeneous dielectric cylinder with unknown shape and
dielectric constant in free space and the scattered field is recorded
outside. By using the scattered field, the shape and permittivity of
the dielectric cylinder are reconstructed. The subgridding technique is
implemented in the FDTD code for modeling the shape of the cylinder
more closely. In order to describe an unknown cylinder with arbitrary
shape more effectively, the shape function is expanded by closed cubic-
spline function instead of frequently used trigonometric series. The
inverse problem is resolved by an optimization approach, and the global
searching scheme PSO is then employed to search the parameter space.
Numerical results demonstrate that, even when the initial guess is far
away from the exact one, good reconstruction can be obtained. In
addition, the effects of Gaussian noise on the reconstruction results are
investigated. Numerical results show that even the measured scattered
E fields are contaminated with some Gaussian noise, PSO can still yield
good reconstructed quality.

1. INTRODUCTION

The objective of the inverse scattering is to determine the
electromagnetic properties of the scatterer from scattering field
measured outside. Inverse scattering problems have attracted much
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attention in the past few years. This kind of problem has several
important applications such as medical imaging, microwave remote
sensing, geophysical exploration, and nondestructive testing.

In the past twenty years, the inversion techniques are developed
intensively for the microwave imaging both in frequency domain and
time domain [1–25]. Although intrinsic ill-posedness and nonlinearity
of these problems appear consequentially in the inverse scattering
problems [26–29], the study can be applied in widespread use. Most of
the inversion techniques are investigated for the inverse problem using
only single frequency scattering data (monochromatic source) [1–11].
However, the time domain scattering data is important for the inverse
problem because the available information content about scatterer is
more than the only single frequency scattering data. Therefore, various
time domain inversion approaches are proposed [12–25] that could
be briefly classified as the layer-stripping approach [12], the iterative
approach: Born iterative method (BIM) [13–15], the distorted Born
iterative method (DBIM) [16], Local Shape Function (LSF) [17] and
optimization approach [18–21]. Traditional iterative inverse algorithms
are founded on a functional minimization via some gradient-type
scheme. In general, during the search of the global minimum, they
tend to get trapped in local minima when the initial guess is far from
the exact one. Some global optimal searching method such as genetic
algorithm [22–24], neural network [25], have be proposed to search the
global extreme of the nonlinear functional problem. In the 1995, the
Kennnedy and Eberhart first proposed the particle swarm optimization
(PSO) [30]. The particle swarm optimization is a population based
stochastic optimization algorithm. It is a kind of swarm intelligence
that is based on social behavior. In recent year, some researchers
have focused on applying PSO in the inverse problem [31–35]. To the
best of our knowledge, there is still no investigation on using the PSO
to reconstruct the electromagnetic imaging of homogeneous dielectric
cylinders with arbitrary shape in free space under time domain.

In this paper, the computational methods combining the FDTD
method [36] and the PSO algorithm are presented. The forward
problem is solved by the FDTD method, for which the subgridding
technique [37] is implemented to closely describe the fine structure of
the cylinder. The inverse problem is formulated into an optimization
one and then the global searching scheme PSO is used to search
the parameter space. Cubic spline Interpolation techniques [38] are
employed to reduce the number of parameters needed to closely
describe a cylinder of arbitrary shape as compared to the Fourier
series expansion. In Section 2, the theoretical formulation for the
electromagnetic imaging is presented. The general principle of the PSO
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and the way we applied them to the imaging problem are described.
Numerical results for various objects of different shapes are given in
Section 3. Section 4 is the conclusions.

Figure 1. Geometry for the inverse scattering of a arbitrary shape
dielectric cylinder in free space.

2. THEORETICAL FORMULATION

Consider a 2-D homogeneous dielectric cylinder in a free space as shown
in Figure 1. The cylinder is assumed infinite long in z direction, while
the cross-section of the cylinder is arbitrary. The object is illuminated
by line source with Gaussian pulse located at these points denoted
by Tx around the scatterer. The incident waves of TMz polarization
are generated by a home made FDTD code with fine grid to mimic
the experimental data, and only scattered waves are recorded at those
points denoted by Rx. The computational domain is discretized by the
Yee’s cell. It should be mentioned that the computational domain is
surrounded by the optimized PML absorber [39] to reduce the reflection
from the air-PML interface.

2.1. Forward Problem

The direct scattering problem is to calculate the scattered electric
fields while the shape, location and permittivity of the scatterer is
given. The shape function F (θ) of the scatterer is approximated by
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the trigonometric series in the direct scattering problem

F (θ) =
N/2∑
n=0

Bn cos(nθ) +
N/2∑
n=1

Cn sin(nθ)

In order to closely describe the shape of the cylinder for
the forward scattering procedure, the subgridding technique is
implemented in the FDTD code, the details are presented as follows.

2.1.1. Subgrid FDTD

A subgridding scheme is employed to divide the problem space into
regions with different grid sizes. The grid size in coarse region is
about

(
1
20 ∼ 1

10λmax

)
as in normal FDTD, while in the fine region

the grid size is scaled by an integer ratio. As an example, the Yee
cells with subgridding structure are shown in Figure 2, of which the
scaling ratio is 1:3. For the time domain scattering and/or inverse
scattering problem, the scatterers can be assigned with the fine region
such that the fine structure can be easily described. If higher resolution
is needed, only the fine region needs to be rescaled using a higher ratio
for subgridding. This can avoid gridding the whole problem space using
the finest resolution such that the computational resources are utilized
in a more efficient way, which is quite important for the computational
intensive inverse scattering problems.

: Ez
: Hx

: Hy

: Subgrid Hx

: Subgrid Hy

1H 2H
3Hh3

(h2)
h1

: Subgrid Ez

Figure 2. The structure of the TMz FDTD major grids and local
grids for the scaling ratio (1:3): H fields are aligned with the MG-LG
boundary.
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Because non-magnetic material is used in this study, the interfaces
of the major grid and local grid (MG-LG) are set along with those lines
containing the H fields as shown in Figure 2.

Since the permeability and thus the magnetic fields are continues
across the MG-LG interfaces, no special treatment is required for
evaluating the magnetic fields at those interfaces.

In Figure 2, E and H stand for the electric and magnetic fields
on the major grids, respectively, while e and h denote the electric and
magnetic fields on the local grids. If the scaling ratio is set at odd-
ratio, for example 1 : 3, then the E and H fields coincide with e and h
fields in the fine region and in the time domain as shown in Figure 2
and Figure 3, respectively. Figure 3 shows the corresponding update
sequence for the E, H, e and h fields in the fine region of Figure 2.
Since the local grid size is one third of the main grid size, the time
stepping interval ∆t′ for the e and h fields on the local grids is also
one third of that for the E and H fields on the main grids.
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Figure 3. The update sequence for the (E, H) fields and (e, h) fields
in the fine region of Figure 2.

Note that the e and h fields inside the fine region can be updated
through the normal Yee-cell algorithm except those at the MG-LG
boundary, such as h1, h2 and h3 in Figure 2, for example.

The h fields at the MG-LG interface can be linearly interpolated
as follows:

hn+v
1 = Hn+v

1 + 2/3
(
Hn+v

2 −Hn+v
1

)
hn+v

2 = Hn+v
2 , for v =

1
3
,

2
3

and
3
3

(1)

hn+v
3 = Hn+v

2 + 1/3
(
Hn+v

3 −Hn+v
2

)



386 Huang et al.

Note that for (1) the Hn+v fields don’t exist on the main grids
actually for v = 1

3 and 2
3 and need extra parabolic interpolation

calculation by

Hn+v = Hn + Av +
Bv2

2
(2)

with

A =
Hn+1 −Hn−1

2
B = Hn+1 −Hn−1 − 2Hn

The flow chart associated with Figure 3 to update the fields in
the fine region is shown in Figure 4. Note that at the time step n + 3

6

the En+ 1
2 fields on the main grids should be updated by the coincided

en+ 3
6 fields on the local grids. Similarly, at the time step n + 6

6 the
Hn+1 fields are updated by the coincided hn+ 6

6 fields.
Finally, in order to avoid the unstability due to the mismatch of

grid size at MG-LG interface, the h2 fields right next to the H1 fields
of the MG-LG boundary as shown in Figure 5 are updated by

h2 = αh2 + (1 − α)
(
H1 + h3

2

)
(3)

while the coincided E2 and e2 fields right closest to the MG-LG
boundary are updated by

E2 = βE2 + (1 − β)e2

e2 = (1 − β)E2 + βe2
(4)

where α = 0.95 and β = 0.8 are adopted in this paper.

2.2. Inverse Problem

For the inverse scattering problem, the shape, location and permittivity
of the dielectric cylinder are reconstructed by the given scattered
electric field obtained at the receivers. This problem is resolved by
an optimization approach, for which the global searching scheme PSO
is employed to minimize the following cost function (CF):

CF =

Ni∑
n=1

M∑
m=1

T∑
t=0

∣∣∣Eexp
z (n,m, t) − Ecal

z (n,m, t)
∣∣∣

Ni∑
n=1

M∑
m=1

T∑
t=0

|Eexp
z (n,m, t)|

(5)
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Calculation of E 
fields and H fields in 

main grid

Calculation of H  
fields on the MG-LG 

boundary at each  
local-grid time step

To ob tain h fields of 
the MG-LG 

boundary using  
linear interpolation

Calculation of e 
fields and h fields in 

local grid

E fields and H  fields at the 
MG-LG boundary are 

obtained.

When time step is equal 
n+3/6 , let 

E(n+1/2)= e(n+3/6).

When time step is equal 
n+6/6 , let 

H(n+1)=h(n+6/6).

Figure 4. The flowchart to update the (E, H) fields on the major
grids and (e, h) fields on local grids.

where Eexp
z and Ecal

z are experimental electric fields and the calculated
electric fields, respectively. The Ni and M are the total number of the
transmitters and receivers, respectively. T is the time duration of the
recorded electric fields.

2.2.1. Particle Swarm Optimization (PSO)

Particle swarm optimization (PSO) was proposed by Kennedy and
Eberhart in 1995 which is a population-based, self-adaptive search
optimization technique. It is a kind of swarm intelligence that is based
on social behavior. The social behavior in PSO is a population of
particles moving towards the most promising region of the search space.

The PSO is initialized with a population of random solutions
which assigns a randomized velocity to each potential solution, called
the particle. Thus, each particle has a position and velocity vector,
and moves through the problem space. In each generation, the particle
changes its velocity by its best experience, called pbest, and that of the
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H1 h3h2

MG- LG boundary

E2 and e2

Figure 5. The relation of the E, H , e and h fields that used to enhance
the stability.

best particle in the swarm, called gbest. Assume there are Np particles
in the swarm that is in a search space in D dimensions, the position
and velocity could be determine according to the following equations:

vk
id = w·vk−1

id +c1 ·ϕ1 ·
(
pbestid−xk−1

id

)
+c2 ·ϕ2 ·

(
gbestd−xk−1

id

)
(6)

xk
id = xk−1

id + vk
id (7)

where vk
id and xk

id are the velocity and position of the i-th particle in
the d-th dimension at k-th generation, ϕ1 and ϕ2 are both the random
number between 0 and 1, c1 and c2 are learning coefficients and w is
the inertial weighting factor that can avoid the particle trapped into
the local minimized solution. After generations, the PSO can find the
best solution according to the best solution experience.

2.2.2. Cubic Spline Interpolation Technique

In order to reduce the unknowns required to describe the arbitrary
cylinder, the shape function of the cylinder is expressed in terms of
a cubic spline. As shown in Figure 6, the cubic spline consists of
the polynomials of degree 3 Pi(θ), i = 1, 2, . . . , N , which satisfy the
following smooth conditions:

Pi(θi) = Pi+1(θi) = ρi

P ′
i (θi) = P ′

i+1(θi) i = 1, 2, . . . , N (8)
P ′′

i (θi) = P ′′
i (θi)
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Figure 6. A cylinder of arbitrary shape is described in terms of the
cubic spline.

and

P1(θ0) = PN (θN )
P ′

1(θ0) = P ′
N (θN ) = ρ′N (9)

P ′′
N (θi) = P ′′

N (θN )

Through the interpolation of the cubic spline, an arbitrary
smooth cylinder can be easily described through a few parameters
ρ1, ρ2, . . . , ρN and the slope ρ′N , the details are referred to [38]. By
combining the PSO and the cubic spline interpolation technique, we
are able to reconstruct the microwave image efficiently.

3. NUMERICAL RESULTS

As shown in Figure 1, the problem space is divided in 68 × 68 grids
with the grid size ∆x = ∆y = 1.47 cm. The homogeneous dielectric
cylinder is located in free space. The cylindrical object is illuminated
by a transmitter at four different positions, Ni = 4. The scattered E
fields for each illumination are collected at the eight receivers, M = 8.
The transmitters and receivers are collocated at a distance of 24 grids
from the origin. The excitation waveform Iz(t) of the transmitter is
the Gaussian pulse, given by:

Iz(t) =




Ae−α(t−β∆t)2 , t ≤ Tw

0, t > Tw

(10)
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where β = 24, A = 1000, ∆t = 34.685 ps, Tw = 2β∆t, and

α =
(

1
4β∆t

)2
.

The time duration T is set to 300∆t. Note that in order to
accurately describe the shape of the cylinder, the subgridding FDTD
technique is used both in the forward scattering (1:9) and the inverse
scattering (1:5) parts — but with different scaling ratios as indicated
in the parentheses. For the forward scattering, the E fields generated
by the FDTD with fine subgrids are used to mimic the experimental
data in (5).

Three examples are investigated for the inverse scattering of the
proposed structure by using the PSO. There are twelve unknown
parameters to retrieve, which include the center position (X0, Y0), the
radius ρi, i = 1, 2, . . . , 8 of the shape function and the slope ρ′N plus
the relative permittivity of the object, εr = ε2/ε0. Very wide searching
ranges are used for the PSO to optimize the const function given by
(5). The parameters and the corresponding searching ranges are listed
follow: −30.88 cm ≤ X0 ≤ 30.88 cm, −30.88 cm ≤ Y0 ≤ 30.88 cm,
0 cm ≤ ρi ≤ 11.8 cm, i = 1, 2, . . . , 8, −1 ≤ ρ′N ≤ 1 and 1 ≤ εr ≤ 15.
The relative coefficient of the PSO are set as below: The learning
coefficients, c1 and c2, are both set to 2. The inertial weighting factor
is set to 0.4 and the population size set to 120.
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Figure 7. The average fitness value versus generation for example 1
using the Gaussian pulse illumination as the PSO executed five times.
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Figure 8. The reconstructed shape of the cylinder at different
generations for example 1.

The first example, a simple circular cylinder is tested, of which
the shape function F (θ) is chosen to be F (θ) = 7.352 cm, and the
relative permittivity of the object is εr = 3. The average convergence
curve of cost function versus generation as the PSO executed five
times is shown in Figure 7. The reconstructed shape function of the
best population member (particle) is plotted in Figure 8 for different
generation. The final reconstructed shape and the cylinder position
(Xc

0, Yc
0) are compares to the exact shape and the position (X0, Y0)

in Figure 9. It is observed that even reconstructed cylinder position
(Xc

0, Yc
0) is far away from exact one, the cubic spline interpolation

technique can still recover it well. The r.m.s. error (DF) of the
reconstructed shape F cal(θ) and the relative error (DIPE) of εcal

r with
respect to the exact values versus generation are shown in Figure 10.
Here, DF and DIPE are defined as

DF =

{
1
N ′

N ′∑
i=1

[
F cal(θi) − F (θi)

]2 /
F 2(θi)

}1/2

(11)

DIPE =

∣∣εcal
r − εr

∣∣
εr

(12)

where the N ′ is set to 160. The r.m.s. error DF is about 1.77% and
DIPE= 0.97% in final. It is seen that the reconstruction is good.
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Figure 9. The final reconstructed shape and center position of the
cylinder compared to the exact ones for example 1.
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In the second example, the dielectric cylinder with shape function
F (θ) = 5.88 − 1.47 sin(2θ) cm and relative permittivity εr = 3.5 is
considered. The reconstructed images for different generations and
the relative error of this object are shown in Figure 11 and Figure 12,
respectively. The r.m.s. error DF is about 4.8% and DIPE=1.8% in
final generation. From the reconstructed result of this object, we
conclude the proposed method can be used to reconstruct dielectric
cylinder successfully when the dielectric object with high-contrast
permittivity.
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Figure 11. The reconstructed cross section of the cylinder of example
2 at sequential generations.

The reconstructed result of the final example is shown in Figure 13,
where the shape is F (θ) = 5.88+1.47 cos(θ)+2.94 cos(3θ) cm, and the
relative permittivity of the object is εr = 3.2. Figure 14 shows that
the relative errors of the shape and the permittivity decrease quickly
by generations. The r.m.s. error DF is about 4.45% and DIPE = 1.5%.
In order to investigate the sensitivity of the imaging algorithm against
random noise, the additive white Gaussian noise of zero mean is added
into the experimental electric fields. The signal to noise ratio (SNR)
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Figure 12. Shape-function error and permittivity error at different
generations of example 2.
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Figure 13. The reconstructed cross section of the cylinder of example
3 at sequential generations.
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Figure 14. Shape-function error and permittivity error at different
generations of example 3.
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is define as:

SNR = 20 log10

Ni∑
n=1

M∑
m=1

T∑
t=0

|Eexp
z (n,m, t)|

Ni∑
n=1

M∑
m=1

T∑
t=0

|noise(n,m, t)|
(13)

Figure 15 shows the reconstructed results under the condition that
the experimental scattered field is contaminated by noise. The SNR
include 40 dB, 30 dB, 20 dB, 10 dB, 7 dB and 3 dB for simulation
purpose. It could be observed that good reconstruction has been
obtained for both the relative permittivity and shape of the dielectric
cylinder when the SNR is above 10 dB.

4. CONCLUSION

We present a study of the time domain inverse scattering of an
arbitrary cross section dielectric cylinder in free space. By combining
the FDTD method and the PSO, good reconstructed results are
obtained by using Gaussian pulse illuminations. The subgridding
scheme is employed to closely describe the shape of the cylinder for the
FDTD method. Some stabilization techniques to avoid the mismatch
at the MG-LG interface are adopted. The forward problem is solved
by using the subgridding FDTD method and the shape function of
the cylinder is approximated by Fourier series expansion. The inverse
problem is reformulated into an optimization one, and then the global
searching scheme PSO is employed to search the parameter space.
Interpolation technique through cubic spline is utilized to reduce the
number of parameters needed to describe an arbitrary shape. By using
the PSO, the shape, location and dielectric constant of the object
can be successfully reconstructed even when the dielectric constant
is fairly large. In our study, even when the initial guess is far
from the exact one, the PSO can still yield a good solution for the
properties of the object, while the gradient-based methods often get
stuck in a local extreme. Numerical results have been carried out and
good reconstruction has been obtained even in the presence of white
Gaussian noise in experimental data.
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