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Abstract—In this paper, He’s energy balance method is applied
to nonlinear oscillators. We illustrate that the energy balance is
very effective and convenient and does not require linearization or
small perturbation. Contrary to the conventional methods, in energy
balance, only one iteration leads to high accuracy of the solutions.
It is predicted that the energy balance method can be found wide
application in engineering problems.

1. INTRODUCTION

To illustrate its basic concepts of the VIM, we consider the following
differential equation [1]:

u′′ + ω2
0u + εf(u) = 0 (1)

With the initial condition

u(0) = A, u′(0) = 0 (2)

where f is a nonlinear function of u′′, u′, u, in this preliminary report,
we limit ourselves to the simplest case, i.e., f depends upon only the
function of u.

If there is no small parameter in the equation, the traditional
perturbation methods cannot be applied directly. Recently,
considerable attention has been directed towards the analytical
solutions for nonlinear equations without possible small parameters.
The traditional perturbation methods have many shortcomings, and
they are not valid for strongly nonlinear equations. To overcome the
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shortcomings, many new techniques have appeared in open literature,
for example, d-perturbation method [3, 4], variational iteration method
(VIM) [5–10], homotopy perturbation method [11–18], bookkeeping
parameter.

Perturbation method [19], just to name a few, a review on some
recently developed nonlinear analytical methods can be found in detail
in [20–23].

In energy balance method, a variational principle for the nonlinear
oscillation is established, then a Hamiltonian is constructed, from
which the angular frequency can be readily obtained by collocation
method. The results are valid not only for weakly nonlinear systems,
but also for strongly nonlinear ones. Some examples reveal that even
the lowest order approximations are of high accuracy [1].

2. BASIC IDEA

First we consider the Duffing equation [1]:

u′′ + u + εu3 = 0, u(0) = A, u′(0) = 0 (3)

Its variational principle can be easily obtained:

J(u) =
∫ t

0

{
−1

2
u′2 +

1
2
u2 +

1
4
εu4

}
dτ (4)

Its Hamiltonian, therefore, can be written in the form:

H =
1
2
u′2 +

1
2
u2 +

1
4
εu4 =

1
2
A2 +

1
4
εA4 (5)

Or:
H =

1
2
u′2 +

1
2
u2 +

1
4
εu4 − 1

2
A2 − 1

4
εA4 = 0 (6)

In Eqs. (5) and (6) the kinetic energy (E) and potential energy (T )
can be respectively expressed as u′2/2, u2/2 + εu4/4 throughout the
oscillation, it holds that H = E + T constant.

We use the following trial function to determine the angular
frequency ω.

u = A cos ωt (7)

Substituting (7) into (6), we obtain the following residual equation:

R(t) = ω2 sin2 ωt + cos2 ωt +
1
2
εA2 cos4 ωt − 1 − 1

2
εA2 (8)

If, by chance, the exact solution had been chosen as the trial function,
then it would be possible to make R zero for all values of t by
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appropriate choice of ω. Since Eq. (7) is only an approximation to
the exact solution, R cannot be made zero everywhere. Collocation at
ωt = π/4 gives:

ω =
√

1 +
3
4
εA2 (9)

We can apply various other techniques, for examples, least square
method, Galerkin method, to identify the constant ω.

Its period can be written in the form:

T =
2π√

1 + 3
4εA2

(10)

The approximate period obtained by the traditional perturbation
method reads (Nayfeh, 1985).

Tpert = 2π

(
1 − 3

8
εA2

)
(11)

So our theory, in case ε � 1, gives exactly the same result with those
obtained by perturbation method.

What is rather surprising about the remarkable range of validity
of (10) is that the actual asymptotic period as ε → ∞ is also of high
accuracy.

lim
ε→∞

Tex

T
=

2
√

3/4
π

∫ π/2

0

dx√
1 − 0.5 sin2 x

= 0.9294 (12)

The lowest order approximation given by (10) is actually within 7.6%
of the exact frequency regardless of the magnitude of εA2.

If there is no small parameter in the equation, the traditional
perturbation methods cannot be applied directly [1].

3. APPLICATIONS

In order to assess the advantages and the accuracy of the energy
balance method, we will consider the following three examples:

3.1. Example 1

We consider the following nonlinear oscillator [2]:

u′′ + u3 = 0 (13)
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With the boundary condition of:

u(0) = A, u′(0) = 0 (14)

Its Hamiltonian, therefore, can be written in the form:

H =
1
2
u′2 +

1
4
u4 − 1

4
A4 = 0 (15)

Choosing the trial function u = A cos ωt, we obtain the following
residual equation:

R(t) =
1
2
A2ω2 sin2 ωt +

1
4
A4 cos4 ωt − 1

4
A4 = 0 (16)

If we collocate at ωt = π/4, we obtain:

ω =
√

3
4
A2 (17)

Its period can be written in the form:

T =
2π√
3
4A2

=
7.2554

A
(18)

The exact period [23] is T = 7.4163A−1. Therefore, it can be easily
proved that the maximal relative error is less than 2.17%.

We can obtain the following approximate solution:

u = A cos
√

3
4
A2t (19)

3.2. Example 2

We consider the following nonlinear oscillator [2]:

u′′ + u + u
1
3 = 0, (20)

With the boundary condition of:

u(0) = A, u′(0) = 0 (21)

Its Hamiltonian, therefore, can be written in the form:

H =
1
2
u′2 +

1
2
u2 +

3
4
u

4
3 − 1

2
A2 − 3

4
A

4
3 = 0 (22)
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Table 1. Comparison of energy balance frequency with parameter-
expanding frequency.

A Energy balance frequency Parameter-Expanding frequency
0.1 2.427031 2.526334
0.2 2.020101 2.095394
0.3 1.830600 1.894088
0.4 1.714872 1.770783
0.5 1.634784 1.685450
1 1.433046 1.469656
5 1.166333 1.181768
10 1.107698 1.117957
50 1.038090 1.041844
100 1.024161 1.026559

Figure 1. Comparison of the energy balance solution with the
parameter-expanding solution: dashed line: parameter-expanding and
solid line: the energy balance solution (A = 1).
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Figure 2. Comparison of the energy balance solution with the
parameter-expanding solution: dashed line: parameter-expanding and
solid line: the energy balance solution (A = 100).

Table 2. Comparison of energy balance frequency with parameter-
expanding frequency.

A Energy balance frequency Parameter-Expanding frequency
0.1 2.271610 2.321608
0.2 1.809974 1.849507
0.3 1.595201 1.629439
0.4 1.471345 1.501996
0.5 1.396318 1.424164
1 1.363862 1.381881
5 4.373746 4.375680
10 8.674051 8.674666
50 43.302215 43.302256
100 86.602838 86.602851
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Figure 3. Comparison of the energy balance solution with the
parameter-expanding solution: dashed line: parameter-expanding and
solid line: the energy balance solution (A = 0.1).

Choosing the trial function u = A cos ωt, we obtain the following
residual equation:

R(t)=
1
2
A2ω2 sin2 ωt+

1
2
A2 cos2 ωt+

3
4
(A cos ωt)

4
3−1

2
A2−3

4
A

4
3 =0 (23)

If we collocate at ωt = π/4, we obtain:

ω =
√

1 + 1.0536216A− 2
3 , T =

2π

ω
(24)

In order to compare with parameter-expanding solution, we write Lan
Xu’s result [2]:

ω =
√

1 + 1.15959527A− 2
3 , T =

2π

ω
(25)

We can obtain the following approximate solution:

u = A cos
√

1 + 1.0536216A− 2
3 t (26)



54 Pashaei, Ganji, and Akbarzade

Figure 4. Comparison of the energy balance solution with the
parameter-expanding solution: dashed line: parameter-expanding and
solid line: the energy balance solution (A = 1.0).

4. EXAMPLE 3

We consider the following nonlinear oscillator [2]:

u′′ + u3 + u
1
3 = 0, (27)

With the boundary condition of:

u(0) = A, u′(0) = 0 (28)

Its Hamiltonian, therefore, can be written in the form:

H =
1
2
u′2 +

1
4
u4 +

3
4
u

4
3 − 1

4
A4 − 3

4
A

4
3 = 0 (29)

Choosing the trial function u = A cos ωt, we obtain the following
residual equation:

R(t)=
1
2
A2ω2 sin2 ωt+

1
4
A4 cos4 ωt+

3
4
(A cos ωt)

4
3−1

4
A4−3

4
A

4
3 =0 (30)

If we collocate at ωt = π/4, we obtain:

ω =
√

3
4
A2 + 1.1101184A− 2

3 , T =
2π

ω
(31)
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In order to compare with parameter-expanding solution, we write Lan
Xu’s result [2]:

ω =
√

3
4
A2 + 1.15959527A− 2

3 , T =
2π

ω
(32)

We can obtain the following approximate solution:

u = A cos
√

3
4
A2 + 1.1101184A− 2

3 t (33)

5. CONCLUSIONS

In this paper, the Energy balance method has been successfully used
to study the nonlinear oscillators. The method, which is proved to
be a powerful mathematical tool to study of nonlinear oscillators, can
be easily extended to any nonlinear equation. We demonstrated the
accuracy and efficiency of the method by solving some examples.

We showed that the obtained solutions are valid for the whole
domain. The examples show that even the lowest order approximations
obtained by the present theory are actually of high accuracy.
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