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Çayırova Campus, P.K.: 141,41400 Çayrova, Gebze/Kocaeli, Turkey

Abstract—The aim of this work is to increase the instability of the
marching-on-in-time (MOT) method that is used in the analysis of
wide-band electromagnetic pulse scattering from structures made of
thin wires. The stability problem has been identified with the advent
of the MOT method in 1991, and although several improvements have
been suggested to overcome this difficulty no exact solution has been
found [1]. In this thesis two methods (the Newmark-Beta formulation
and the analytic integration) to suppress the instabilities of the MOT
algorithm for thin wire scatterers have been proposed and their effects
on the stability have been inspected. The results are compared with
the results obtained with time domain method of moments (MOM) [2]
and it is observed that the results are both stable and accurate. It
is shown how the stability is changed by a determined β parameter.
Also, Newmark-Beta formulation results for selected different types
of structures such as dipole antenna illuminated by a Gaussian pulse
given in [3], three pole structure given in [4], loop antenna given in [3]
has been shown.
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1. INTRODUCTION

Nowadays, there is a growing interest in the study of radiation and
propagation of transient electromagnetic waves. Numerical methods
have very important roles for the analysis of transient electromagnetic
scattering problems and may involve both frequency-domain (FD)
solutions together with inverse discrete Fourier transform (IDFT)
technique to convert the results to time domain or time-domain (TD)
solutions by formulating the problem directly in the time-domain using
a time-marching algorithm. Most popular time-domain techniques are
the method of finite difference in time domain (FDTD) [5] and the
method of marching-on-in-time (MOT) [6, 7].

This study aims to increase the stability of the MOT
method which was developed to examine scattering of wide-band
electromagnetic pulses from objects. In the past, various solutions
were suggested to increase the stability of the MOT method such as
time or space averaging methods [7–10], good choice of temporal basis
functions [11], and the use of combined-field integral equation [1].
However, the solutions in question are either applicable for analysis
of scattering from surfaces (for example, [1]) or provide stability by
employing artificial signal processing techniques [7–10]. As a result,
literature does not contain a special stability analysis and solution
suggestion developed for the MOT methods solving the problem of
scattering from thin wires.

This study suggests two basic solutions to increase the stability in
analysis of scattering from wires. The first solution is the Newmark-
Beta formulation which was used in general for the time-domain finite
element method (FEM) [12]. This method calculates the derivatives
of the terms approximately by using finite differences and uses an
independent beta (β) parameter to increase the stability. The second
solution examines the contribution of analytic evaluation of some of the
integrals, which had been considered in numerical terms to date for the
MOT method, to the stability. Numeric errors have been suggested to
be one of the reasons of instability in the MOT method [8]. Here
the basic hypothesis is that, the integral results calculated analytically
will eliminate some of the numeric errors and will contribute to the
stability.

2. THE ELECTRIC FIELD INTEGRAL EQUATION
(EFIE)

The electric field integral equation (EFIE) is based on the condition
that the total tangential electric field on a perfect electric conducting
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(PEC) scatterer surface is equal to zero. Therefore, we have

∂Ei
t

∂t
=

[
∂2A

∂t2
+
∂

∂t
∇φ

]
t

(1)

where A and φ are the magnetic vector and scalar electric potentials,
respectively, and Ei denotes the incident electric field. The subscript
‘t’ denotes the tangential components to wire surface. The magnetic
vector potential A and scalar potential φ are in the retarded time
integral form and are mathematically represented by

A(r, t) = µ

∫
v

J(r, t−R/c)
4πR

dv′ φ(r, t) =
1
ε

∫
v

ρ(r, t−R/c)
4πR

dv

(2)
where R = |r − r′| represents the distance between the observation
point r and source point r′, ρ is the charge density, J is the current
density, c is the velocity of propagation of electromagnetic wave in the
space, µ and ε are the permeability and permittivity of free space,
respectively. t − R/c represents the retarded time. In Eq. (1), the
incident field Ei

t is known and induced current density on the scatterer
J(r, t−R/c) is not known, but it is wanted to be found.

3. SOLUTION OF EFIE FOR THIN-WIRES BY
CLASSICAL MOT

In this section the solution of the EFIE for thin wires by the classical
MOT method will be outlined.

3.1. Basis Function

When conductors are thin wires (a << λ), the current is assumed to
flow only in the wire axis direction �̂ and only along the wire axis.
Hence, the unknown current density can be expressed as J(r, t) =
J(�, t) = �̂(�)I(�, t) by using thin wire approximation.

Current density in terms of N spatial basis functions fn(�), and
temporal basis functions Ti(t) is:

J(�, t) =
N∑
n=1

In(t)fn(�) =
N∑
n=1

∑
i

In,iTi(t)fn(�) (3)

Here, In,i are the unknown coefficients, Ti(t) is time basis function and
it can be expressed as Ti(t) = T (t − i∆t) where it is assumed time
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Figure 1. Definition of the basis function.

interval is divided into ∆t equal time steps and T (t) is a quadratic
function [13]. The subscript ‘i’ denotes the current on the ith time
step is related with basis functions T (t− i∆t). fn(�) is a linear basis
function [14], the parameters related to the spatial basis function fn(�′)
are shown in Fig. 1 and its mathematical expression can be given as

fn(�
′) =




�′ − �n−1

s−n
�̂−n �′ ∈ S−

n

�n+1 + �′

s+n
�̂+n �′ ∈ S+

n

; n ∈ {1, . . . , N} (4)

Here, �n means nth node’s coordinate in term of � parameter and
s±n = |�n+1 − �n|. Also, s−n is wire segment between [�n−1, �n] points
and s+n is wire segment between [�n, �n+1] points. Eq. (4) can be written
as

fn(�
′) =

{
±�n±1 − �

s±n
�̂±n �n <> � <> �n±1 (5)

For the thin wire case, the EFIE can be written in the form of

∂tE
i
t(�, t) =

[
∂2
tA(�, t) + ∇∂tφ(�, t)

]
t

(6)

where ∂t denotes ∂/∂t. After substituting Eq. (3) in (6), so we need
to solve this integro-differential equation.
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3.2. Testing Procedure

If we apply spatial Galerkin testing at time t = tj to Eq. (6), the result
is〈

fm(�), ∂tEi(�, t)
〉 ∣∣∣

t=tj︸ ︷︷ ︸
Emj

= ∂2
t 〈fm(�),A(�, t)〉

∣∣∣
t=tj︸ ︷︷ ︸

ψmj

+ 〈fm(�),∇∂tφ(�, t)〉
∣∣∣
t=tj︸ ︷︷ ︸

varphimj

; m ∈ {1, . . . , N} (7)

where 〈f, g〉 inner product is 〈f, g〉 =
∫
f(�)g(�)d�. Eq. (7) can be

written as
Em,j = ∂2

t ψm,j + ϕm,j (8)
Since there are N number of basic functions, different m ∈ {1, . . . , N}
values can be used for Eq. (7) in order to write an equation indicating
N number of numeric parities. Second order derivative in Eq. (8) can
be implemented with the finite difference method and Eq. (8) can be
written in the form

Em,j ∼=
ψm,j+1 − 2ψm,j + ψm,j−1

∆t2
+ ϕm,j (9)

approximately. In the inner product expression shown as ψm,j in
Eq. (7), can be written as

ψm,p = 〈fm(�),A(�, t)〉
∣∣∣
t=tp

=
∫
Sm

fm(�)A(�, tp)d� (10)

can be expanded by using Eqs. (2), (3) and the result can be shown as

ψm,p = µ

∫
Sm

fm(�) ·
∫
S

J(�′, tp −R/c)
4πR

d�′d�

=
µ

4π

N∑
n=1

∑
i

In,i

∫
Sm

fm(�) ·
∫
Sn

fn(�
′)
Ti(tp −R/c)

R
d�′d�

︸ ︷︷ ︸
Zψmn,p−i

(11)

And Eq. (11) can be written in matrix form as:

ψp =
µ

4π

∑
i

Z
ψ

p−iIi (12)
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In Eq. (11), the term Zmn,p−i can be interpreted as the “potential
created by the nth basis function radiating at time i on the mth test
function at time p”. Similarly, the inner product expression shown as
ϕm,j in Eq. (7) can be written in the similar form:

ϕm,p = 〈fm(�),∇∂tφ(�, t)〉
∣∣∣
t=tp

=
∫
Sm

fm(�)∇∂tφ(�, tp)d�

=
∫
Sm

∇ · [fm(�)∂tφ(�, tp)] d�−
∫
Sm

[∇ · fm(�)] ∂tφ(�, tp)d� (13)

Benefiting from the fundamental theorem of calculus, it can be shown
the expression

∫
Sm

∇ · [fm(�)∂tφ(�, tp)]d� in Eq. (13) is equal to zero.
Then Eq. (13) can be written in the form of

ϕm,p = −
∫
Sm

[∇ · fm(�)]∂tφ(�, tp)d�

=
1

4πε

∫
Sm

[∇ · fm(�)]
∫
S

∇ · J(�′, tp −R/c)
R

d�′d�

=
µ

4π

N∑
n=1

∑
i

In,ic
2

∫
Sm

[∇ · fm(�)]
∫
Sn

[∇ · fn(�′)]
Ti(tp −R/c)

R
d�′d�

︸ ︷︷ ︸
Zϕmn,p−i

(14)

Eq. (14) can be written in matrix form as:

ϕp =
µ

4π

∑
i

Z
ϕ

p−iIi (15)

In Eq. (12) and Eq. (15), summation of
∑
i

must be started from “zero”

(i = 0) because it is assumed that the electric field illuminates the wire
at the time instant t = 0.

When Eq. (10) and (14) are added into Eq. (9), it can be written
in matrix form as:

∆t2Ej = ψj+1 − 2ψj + ψj−1 + ∆t2ϕj (16)

As the value of the current at the (j+1)st time step shown in Eq. (16)
is drawn, the current values are calculated by marching on step by step
in time. Since this method reaches a conclusion by stepping in time,
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it is known as “Marching-on-in-Time”. The current density which is
induced on the wire can be obtained by pulling out as:

Ij+1 =
[
Z
ψ

0

]−1

4π
µ

∆t2Ej −
j−1∑
i=0

Λj−iIi − Λ0Ij


 (17)

and the current density term which occurs at (j + 1)st time step can
be calculated marching in the time step by step. Here, Λj−i and Λ0

can be defined as

Λj−i = Z
ψ

j−i+1 − 2Z
ψ

j−i + Z
ψ

j−i−1 + ∆t2Z
ϕ

j−1

Λ0 = Z
ψ

1 − 2Z
ψ

0 + ∆t2Z
ϕ

0

(18)

For instance, for the first time step (j = 0) current value I1 can be
calculated as

I1 =
[
Z
ψ

0

]−1 [
4π
µ

∆t2E0

]
(19)

and for the time step j = 1 current value I2 can be calculated as

I2 =
[
Z
ψ

0

]−1 [
4π
µ

∆t2E1 − Λ1I0 − Λ0I1

]
(20)

In the classic marching-on-in-time method, the integrals shown in
Eq. (11) and Eq. (14) are evaluated numerically. It has been
observed in the studies we conducted that evaluating these integrals by
employing the 7-point Gauss-Legendre method over triangular patches
is sufficient.

4. SOLUTION OF EFIE FOR THIN-WIRES BY
NEWMARK-BETA FORMULATION (B-MOT)

It will be shown in Section 6 that the solutions arrived by employing
the classic MOT method described in the previous section are instable.
Such instabilities have prevented the MOT method from being used
in a wide scale. Although many studies were conducted to overcome
these instabilities in surface scattering problems, the number of studies
conducted on problems of scattering from wire structures is almost nil.
It is known that similar instabilities were also observed in the time-
domain finite element method and that the Newmark-Beta formulation
was suggested to solve them [12]. Newmark-Beta Formulation can be
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given as

d2v

dt2
=

1
∆t2

[v(n+ 1) − 2v(n) + v(n+ 1)] (21)

dv

dt
=

1
2∆t

[v(n+ 1) − v(n− 1)] (22)

v = βv(n+ 1) + (1 − 2β)v(n) + βv(n− 1) (23)

In Eqs. (21)–(23), expression of v(n) is discrete form of v(t) function
and it can be written as v(n) = v(n∆t). β is a free parameter that
effects stability.

This section examines whether or not the use of the Newmark-Beta
formulation in the MOT method will also provide stability. In Section
3.2, second order derivation in Eq. (8) was implemented with the finite
difference method which is identical with Eq. (21). Additionally, by
using Eq. (23), ϕm,j term in Eq. (9) can be expanded as

Em,j ∼=
ψm,j+1 − 2ψm,j + ψm,j−1

∆t2
+ βϕm,j+1 + (1− 2β)ϕm,j + βϕm,j−1

(24)
approximately. This equation can be expressed in matrix form as
follows:

∆t2Ej = ψj+1−2ψj+ψj−1+∆t2
[
βϕj+1 + (1 − 2β)ϕj + βϕj−1

]
(25)

If it is considered in this expression that β = 0, it will be understood
that the definition given in Eq. (9) is reached. In other words, the
classic formulation is a special case of the Newmark-Beta formulation.
Using Eq. (25), the current values at (j + 1)st time step is calculated
by employing the marching-on-in-time method in the same way as the
classic formulation. Due to the use of the β parameter, this method
will be referred to as “B-MOT” henceforth.

As it will be evident in Section 6, the use of B-MOT formulation
outlined here does produce stable results for judiciously chosen β
values. However, it is observed that the results are not accurate.
Hence, the following measures are taken to assure accuracy. In this
method, integrals are also evaluated numerically.

5. SOLUTION OF EFIE WITH ANALYTIC
EVALUATION OF POTENTIAL INTEGRALS

In the classic and B-MOT formulations, the integrals in ψm,p and
ϕm,p were calculated numerically. Analytic results of the relevant
integrals were expressed and used in the frequency domain in the past.
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However, this study uses a new formulation by calculating the analytic
results directly in the time domain by taking into account the currents’
variation in time, too.

The term J(�, tp −R/c) included in Eq. (10) can be expressed as
the J(�, t) current density’s convolution with the Dirac delta function
as J(�, t) ∗ δ(t−R/c). Thus, the term J(�, tp−R/c) can be written in
the form of

Jn(�, t−R/c) = Jn(�, t) ∗ δ
(
t− R

c

)
=

∫
Jn(�, t− t′)δ

(
t′ − R

c

)
dt′

(26)
Current density term in Eq. (26) can be expanded in terms of N spatial
basis functions fn(�), and temporal basis functions Ti(t) as

Jn(�, t−R/c) =
N∑
n=1

∑
i

In,i

∞∫
−∞

Ti(t− t′)δ
(
t′ − R

c

)
fn(�)dt

′ (27)

Hence Eq. (10) can be rearranged as follows:

ψm,p =
∫
Sm

fm(�) · µ
∫
S

J(�′, tp −R/c)
4πR

d�′d� (28)

=
µ

4π

N∑
n=1

∑
i

In,i

∫
Sm

fm(�)·
∞∫

−∞
Ti(tp−t′)

∫
Sn

fn(�
′)
δ

(
t′−R

c

)
R

d�′

︸ ︷︷ ︸
hψn (�,t′)

dt′

︸ ︷︷ ︸
V ϕ
n(�,tp−ti)

d�

︸ ︷︷ ︸
Zϕmn,p−i

Similarly, Eq. (14) can be arranged as follows:

ϕm,p = (29)

µ

4π

N∑
n=1

∑
i

In,ic
2
∫
Sm

[∇·fm(�)]
∞∫

−∞
Ti(tp−t′)

∫
Sn

[∇·fn(�′)]
δ

(
t′−R

c

)
R

d�′

︸ ︷︷ ︸
hψn (�,t′)

dt′

︸ ︷︷ ︸
V ϕn (�,tp−ti)

d�

︸ ︷︷ ︸
Zϕmn,p−i
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The analytic expressions of hn(�, t′) and V n(�, tp − ti) will be given
in Sections 5.1 and 5.2. Currents can be calculated by calculating
the integrals included in Eq. (28) and Eq. (29) and adding them into
Eq. (25). Comparison of the currents calculated by using the B-MOT
and analytic formulations presented in this section (and henceforth
referred to as A-MOT) with those calculated by employing the time
domain method of moments (MOM) [2] has been given in Section 6.
It is observed that the results obtained with A-MOT are stable and
accurate.

5.1. Calculation of ψm,p Expression Anatically

Integration of hn(�, t′) can be written in terms of “+” and “−” egments
as shown in Eq. (5) can be written as

hψ±n (�, t′) =
∫
S±
n

fn(�
′)
δ

(
t′−R

c

)
R

d�′

=

�n±1∫
�n

�n±1 − �′

s±n
�̂±n

δ

(
t′−R

c

)
R

d�′

= c

�n±1∫
�n

�n±1 − �′

s±n
�̂±n
δ(ct′−R)

R
d�′ (30)

At last step of Eq. (30), the rule which has been given below is used.∫
S

δ

(
t− |r|

c

)
dr = c

∫
S

δ(ct− |r|)dr (31)

In Eq. (30), R has been defined as

R =
√

(�′)2 +
(
d±n

)2
(32)

As its known square root function has double value, so �′ can be defined
as

�′ = χ

√
|r′ − r|2 −

(
d±n

)2
; χ =

{
−1 �̂ · (r′ − r) < 0

1 �̂ · (r′ − r) > 0
(33)
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Figure 2. Definition of the basis function’s two segments.

Here, d±n , as shown in Figure 2, is perpendicular distance between
observation point and the wire segment and it can be defined as

d±n =
√
|R|2 − |R · �̂±|2 (34)

By exchanging integration variable �′ with R, d�′ can be written as

d�′ =
RdR

χ

√
R2 −

(
d±n

)2
(35)

By using Eq. (35), Eq. (30) can be written as

hψ±n (�, t′) = c�̂±n

Rn±1∫
Rn

�n±1 − χ

√
R2 −

(
d±n

)2

s±n

δ(ct′ −R)
R

RdR

χ

√
R2 −

(
d±n

)2

(36)
By using the rule given in Eq. (37)∫

S

δ(t− τ)f(τ)dτ = f(t) t ∈ S (37)

Eq. (36) can be written as

hψ±n (�, t′) = �̂±n


χ

�n±1

s±n

1√√√√(t′)2 −
(
d±n
c

)2
− c

s±n


 ;

Rn
c
<
> t′ <>

Rn±1

c

(38)
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By using Table 1, Eq. (38) can be defined as

hψ±n (�, t′) = �̂n


 C1√

(t′)2−C2
2

− C3


 ;

Rn
c
<
> t′ <>

Rn±1

c
(39)

In Eq. (28), V n(�, tp − ti) expression defined as

V ψ
n(�, tp − ti) =

∞∫
−∞

Ti(tp − t′)hψn(�, t′)dt′

=
∞∫

−∞
Ti(tp − t′)hψ+

n (�, t′)dt′ +
∞∫

−∞
Ti(tp − t′)hψ−n (�, t′)dt′

(40)

In Eq. (40), Ti(tp− t′) can be written as T (tp− ti− t′) = T (tq− t′) and
according to [8] temporal basis funciton T (tq − t′) can be given as

T (tq− t′) =




(tq − t′)2

2∆t2
+

3(tq − t′)
2∆t

+ 1 ; tq ≤ t′ ≤ tq + ∆t

−(tq − t′)2

∆t2
+ 1 ; tq − ∆t ≤ t′ ≤ tq

(tq − t′)2

2∆t2
− 3(tq − t′)

2∆t
+ 1 ; tq − 2∆t ≤ t′ ≤ tq − ∆t

(41)
or

T (tq − t′) = e(t′)2 + ft′ + g (42)
In Eq. (42), e, f and g denotes constant coefficients.

By substituting Eq. (39) and Eq. (42), Eq. (40) can be written as

V ψ
n(�, tp − ti) = �̂n

Rn+1
c∫

Rn
c

(e(t′)2 + ft′ + g)


 C1√

(t′)2−C2
2

− C3


 dt′

+�̂n

Rn
c∫

Rn−1
c

(e(t′)2 + ft′ + g)


 C1√

(t′)2−C2
2

− C3


 dt′ (43)

This integration can be calculated by using Table 2. Then, by
calculating

Zψmn,p−i =
∫
Sm

fm(�)V ψ
n(�, tp − ti)d� (44)
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Table 1. Coefficients for Eq. (39).

1C  2C  3C  ˆ
n  

n
�+h  1

1

n

n n

�χ �+

�+ �−

��
 nd

c

�+

 
1n n

c

�+ −
 

ˆ
n
��  1n nt t �+→  

n
−h  1

1

n

n n

�χ −

�− −
 nd

c

−

 
1n n

c

�+ −
 

ˆ
n
����  1n nt t�− →  

�� ��

��

�� ��

�� ��

�� ��

��

��

��

−

�+

−

Limits

Table 2. Integration table.

∫
dx√
x2 − a2

= ln
(
x+

√
x2 − a2

)
∫

xdx√
x2 − a2

=
√
x2 − a2

∫
x2dx√
x2 − a2

=
x
√
x2 − a2

2
+
a2

2
ln

(
x+

√
x2 − a2

)
∫

x3dx√
x2 − a2

=
(x2 − a2)3/2

3
+ a2

√
x2 − a2

Here, integration can be calculated numerically as in Section 3. The
ψm,p term can be written in the matrix form as

ψm,p =
µ

4π

∑
n=1

∑
i

In,iZ
ψ
mn,p−i (45)

5.2. Calculation of ϕm,p Expression Analytically

In Eq. (29), hϕn(�, t′) expression was given as

hϕn(�, t′) =
∫
Sn

[∇ · fn(�′)]
δ(t′ −R/c)

R
d�′ (46)
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In Eq. (46), divergence term can be define as

∇ · fn(�′) =




1
s−n

�′ ∈ S−
n

− 1
s+n

�′ ∈ S+
n

(47)

By using Eq. (47), Eq. (46) can be written as

hϕ±n (�, t′) =
∫
S−
n

1
s−n

δ(t′ −R/c)
R

d�′

︸ ︷︷ ︸
hϕ−n (�,t′)

−
∫
S+
n

1
s+n

δ(t′ −R/c)
R

d�′

︸ ︷︷ ︸
hϕ+
n (�,t′)

(48)

By using the rule given in Eq. (50), Eq. (48) can be re-arranged as

hϕ±n (�, t′) = c

�n∫
�n−1

1
s−n

δ(ct′ −R)
R

d�′ − c

�n+1∫
�n

1
s+n

δ(ct′ −R)
R

d�′ (49)

∫
S

δ

(
t− |r|

c

)
dr = c

∫
S

δ(ct− |r|)dr (50)

By exchanging integration variable �′ with R, Eq. (49) can be written
as

hϕ±n (�, t′) = c

�n∫
�n−1

1
s−n

δ(ct′ −R)
R/

R/dR

χ

√
R2 −

(
d±n

)2

−c
�n+1∫
�n

1
s+n

δ(ct′ −R)
R/

R/ dR

χ

√
R2 −

(
d±n

)2
(51)

By using the rule given in Eq. (37), Eq. (51) can be shown as

hϕ±n (�, t′) = c
1
s−n

dR

χ

√
ct′−

(
d±n

)2
−c 1

s+n

dR

χ

√
ct′−

(
d±n

)2
; Rn<>ct

′<
>Rn±1

= ∓c 1
s±n

dR

χ

√
ct′−

(
d±n

)2
; Rn<>ct

′<
>Rn±1 (52)
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Table 3. Coeffients used in ϕm,p integration.

 1C  2C

,nh t�ϕ �+ �' 1

ns+
−  nd

c

�+

 1n nt t �+→  

nh t�ϕ �−  1

ns−
 nd

c

�−

 1n nt t�− →  

��( )

, �'��( )

Limits

By using Table 3, Eq. (52) can be arranged as

hϕ±n (�, t′) = C1
dR

χ

√
(t′)2−

(
d±n

)2
; Rn<>ct

′<
>Rn±1 (53)

V ϕ
n (�, tp − ti) expression in Eq. (29) was given as

V ϕ
n (�, tp − ti) =

∞∫
−∞

Ti(tp − t′)hϕ±n (�, t′)dt′ (54)

By substituting Eq. (42), Eq. (54) can be written as

V ϕ
n (�, tp − ti) =

Rn+1
c∫

Rn
c

(e(t′)2 + ft′ + g)


 C1√

(t′)2−C2
2


 dt′

+

Rn
c∫

Rn−1
c

(e(t′)2 + ft′ + g)


 C1√

(t′)2−C2
2


 dt′ (55)

V ϕ
n (�, tp− ti) can be found in a similar way which ψm,p was calculated

in Section 5.2 as

V ϕ
n (�, tp − ti) =C1



e


 t′

√
(t′)2−C2

2

2
+
C2

2

2
ln

(
t′ +

√
(t′)2−C2

2

)
 ∣∣∣∣∣

b

a

+f
(√

(t′)2−C2
2

)∣∣∣∣b
a
+g

(
ln

(
t′ +

√
(t′)2−C2

2

))∣∣∣∣b
a



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+C1



e


 t′

√
(t′)2−C2

2

2
+
C2

2

2
ln

(
t′ +

√
(t′)2−C2

2

)
 ∣∣∣∣∣

b

a

+f
(√

(t′)2−C2
2

)∣∣∣∣b
a
+g

(
ln

(
t′ +

√
(t′)2−C2

2

))∣∣∣∣b
a




(56)

In Eq. (29), Zϕmn,p−i expression can be calculated as

Zϕmn,p−i = c2
∫
Sm

[∇ · fm(�)]V ϕ
n (�, tp − ti)d� (57)

Here, integration can be calculated numerically as in Section 3. ϕm,p
term in Eq. (29) can be written in the matrix form as

ϕm,p =
µ

4π

N∑
n=1

∑
i

In,iZ
ϕ
mn,p−i (58)

6. NUMERICAL RESULTS

6.1. A Small Dipole

Usually, the Gaussian pulse is the most popular excitation used for the
computation of transient responses of objects. It is wanted to be of
finite duration in time and also band-limited in the frequency-domain.
Gaussian plane waves which can be seen from Figure 4 can be defined
mathematically as

Ei(r, t) = p̂ cos(2πf0τ) exp

[
−(τ − td)2

2σ2

]
(59)

where f0 = 50 MHz is the center frequency, τ = t− r · k̂/c is retarded
time, k̂ = x̂ is the propagation direction, p̂ = ẑ is the polarization,
σ = 6/(2πfbw), fbw = 23.87 MHz is bandwidth of the signal, td = 3.5σ.
The straight thin wire structure has been used for the perfect conductor
body which is shown in the Fig. 3, where the wire radius a = 1 mm, it
is located on z axis −1 ≤ z ≤ 1 m and divided into 8 equal subsections.

When the wire structure which is shown in Figure 3 is illuminated
by the electric field defined in Eq. (59), the induced current in its
middle point is shown in logarithmic scale in Figure 5. As seen in the
figure, instability is observed starting from the initial time steps. To
correct the instability, the B-MOT formulation was used. As shown in
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Figure 3. Straight thin wire structure.

Figure 4. Incident electric field.

Figure 6, the instability observed in the time steps after 450 ns in the
classic method was corrected through the Newmark-Beta formulation.

It is observed that the stability increases when β value is equal to
0.25, as seen from the Figure 7. However, it was concluded that the
results are not coherent with the results produced by employing the
time domain moment method given in [2]. In order to obtain better
results, the A-MOT formulation was added. Figure 8 indicates that
the results found by using the A-MOT are more stable than those
found by using the B-MOT, while Figure 9 indicates that the results
produced by using the A-MOT are more accurate and stable than those
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Figure 5. Induced current in thin wire’s middle point (log).

Figure 6. Comparison of MoM solution and B-MOT solution for thin
wire structure.

produced by employing the time domain moment method and as seen
from the Figure 10, A-MOT formulation produces stable results even
β = 0.2. This can be explained as, in A-MOT formulation integrals
are calculated by analytically, so resolution of matrix increased.
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Figure 7. Current distribution calculated by B-MOT on thin wire’s
middle point (log) for the values β = 0.15, b = 0.20 and β = 0.25.

Figure 8. Comparison of the current calculated by using the B-MOT
and the current calculated by using A-MOT for straight thin wire
structures.

6.2. Loop Antenna

Gaussian pulse which can be seen from the Figure 11 is represented by

Ei(r, t) = E0
4

T
√
π
e−γ

2
(60)

where γ = (4/T )(ct − cto − r · k), c is the velocity of light, k is the
wave vector for the incident wave, t is the time variable, T is the width
of the pulse and choosen as T = 4, cto is the time delay at which the
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Figure 9. Comparison of MoM solution and A-MOT solution for
straight thin wire structure.

Figure 10. Current distribution calculated by A-MOT on thin wire’s
middle point (log) for the values β = 1, β = 0.6, β = 0.25 and
β = 0.2.

pulse reaches its peak and choosen as cto = 6. Both of these quantities
are defined in light meters (LM), which is the time taken by light to
traverse 1 m. Figure 12 shows a loop antenna whose radius is 0.5 m
[3]. Wire radius is chosen as 5 milimeter (mm) and the same gaussian
pulse is used as incident field which is described in [3] and given in
Eq. (60). Figure 13 shows the current distrubution which is calculated
by B-MOT on point (0.5,0). The results are exactly same with [3].
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Figure 11. Incident electric field.

Figure 12. Loop antenna.

6.3. Three-Pole Structure

The modulated plane wave is used in [4] can be given as

Ei(r, t) =
4

T
√
π

E0e
−γ2

cos

[
2πf0

(
t− t0 −

r · k̂
c

)]
(61)

where

γ =
4c
T

(
t− t0 −

r · k̂
c

)
(62)
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Figure 13. Current distribution calculated by B-MOT for loop
antenna on the point (0.5,0).

Figure 14. Three pole structure.

With E0 linked to the maximum amplitude of the incident field, T is
the time length of the impulse expressed in light metres (LM), t0 is
the delay time of the incident pulse from the start of the simulation,
k̂ is a unit vector, indicating the incidence direction of the wave, and
r is the point where the field is computed. Following parameters are
used: E0 = 120x̂, T = 2 LM, t0 = 3 LM, k̂ = −ẑ, f0 = 0. The length
of the three arms is 1 m, separated by 120◦, each arm is divided into
20 subsections, and the wire radius is 3 mm. The three pole structure
is given in Figure 14. The results obtained by B-MOT compared with
[4] and it is observed that they are exactly same. B-MOT results can
be seen from Figure 15.
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Figure 15. Current distribution on the point “P” for three pole
structure calculated by B-MOT.
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