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Abstract—After a short presentation of the boundary layer method
extended to strongly elongated objects by Andronov and Bouche [1],
the author develops some techniques for deriving explicit formulas
for the asymptotic currents on a strongly elongated object of
revolution excited by an electromagnetic plane wave propagating in
the paraxial direction. The performance of the different techniques
are demonstrated by comparing numerical results obtained for the
asymptotic currents on an elongated prolate ellipsoid with those
obtained by solving the EFIE.

1. INTRODUCTION

In the classical formulation of creeping waves, the radius of transverse
curvature to the geodesics is supposed large or at least of the same
order than the radius of curvature of the geodesics. As a consequence,
one finds the transverse radius of curvature only in smaller order
corrections. Hong [2] and Voltmer [3] have obtained correction
terms to the attenuation constants and diffraction coefficients of order
(2/ka)2/3. The same results have been obtained with the boundary
layer method for ρt � k−1/3 by Andronov and Bouche [4]. In the case
of a moderately elongated body: k−2/3 � ρt � k−1/3 the transverse
curvature appears in the second order of the asymptotic expansion and
modifies the amplitude factor in the asymptotics of creeping waves. We
consider here the case of a strongly elongated body: ρt = O(k−2/3).
By extending the boundary layer method to this case, Andronov and
Bouche [1] have shown that the transverse curvature appears in the
principal order and modifies the differential equation verified by the
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Fourier transform of the amplitude of the creeping waves which is no
longer an Airy equation but a biconfluent Heun equation. Whereas
the theory of creeping waves on strongly elongated bodies is now well
established, no attempt has been made so far to control the accuracy
of the formulas obtained which, as shown by Andronov [5], predict
an enhancement of the magnetic creeping wave. Comparison of the
asymptotic currents on the surface with the results obtained by a
strictly numerical solution encounters several problems. One of the
difficulties is that no analytical solution of the Heun equation expressed
in terms of tabulated functions is available. Another difficulty is the
derivation of a closed form expression of the incident field in the
semi-geodesic co-ordinate system used in the boundary layer theory
[6]. We will present some techniques permitting to overcome both
difficulties and test their accuracy on an elongated prolate ellipsoid, by
comparing the asymptotic currents to the currents obtained by solving
the Electric Field Integral Equation (EFIE). The remainder of the
paper is organized as follows. In Section 2 we recall the main steps
of the boundary layer theory extended to strongly elongated bodies.
In section 3, we present a first approach for deriving explicit formulas
for the asymptotic currents and in section 4 an alternative approach
is given. In both Sections 3 and 4 numerical results are shown and
compared with a reference solution. Finally, some concluding remarks
are made in Section 5.

2. CREEPING WAVES ON STRONGLY ELONGATED
BODIES

The behavior of acoustic or electromagnetic creeping waves propagat-
ing on the surface of a strongly elongated convex body has been first
studied by Andronov and Bouche [1] using the boundary layer method.
We recall here the main steps of their approach applied to the electro-
magnetic creeping waves. We consider a family of geodesics followed by
a creeping wave on a convex object and the curves orthogonal to these
geodesics. In order to locate a point M in space, we define a system
of semi-geodesic co-ordinates (s, a, n) where s denotes the curvilinear
abscissa along any geodesic of the family, a denotes the curvilinear ab-
scissa along a reference curve orthogonal to the geodesics and n denotes
the distance of M to the surface along the normal.

The quadratic tensor gij of these co-ordinates defined by:∣∣∣d−−→OM
∣∣∣2 = gijdx

idxj , xi = (s, a, n) (1)

will be needed for writing Maxwell’s equations in these co-ordinates.
The derivation of the components of this tensor by differential
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geometry is straightforward and is given in [6]. The result is:

gij =




(
1 +

n

ρ

)2

+ τ2n2 −hτ

[
2n + n2

(
1
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+
1
ρt

)]
0

−hτ

[
2n + n2

(
1
ρ

+
1
ρt

)]
h2

[(
1 +

n

ρt

)2

+ τ2n2

]
0

0 0 1



(2)

where ρ is the radius of curvature of the geodesic passing trough the
point P corresponding to the normal projection of M on the surface, ρt

the radius of curvature of the curve orthogonal to the geodesic passing
though P which is also the radius of curvature of the wave front at
P, h is the divergence of the geodesics along s and τ is the torsion of
the geodesic.

With the notations:
√
ε�e = �E,

√
µ�h = �H

Maxwell’s equations in vacuum, with the e−iωt time convention, read:

rot �E = ik �H, rot �H = −ik �E (3)

In the co-ordinate system (s, a, n) the first equation (3) becomes:

ikHs =
1√
g
(∂aEn − ∂nEa)

ikHa =
1√
g
(∂nEs − ∂sEn) (4)

ikHn =
1√
g
(∂sEa − ∂aEs)

where g is the determinant of the quadratic tensor (2). The second
equation (3) gives three equations which may be deduced from (4) by
the substitution �E → �H, �H → − �E.

The covariant components in (4) are related to the contravariant
components by:

Vi = gijV
j i, j = s, a, n (5)

In the boundary layer n is small, of order k−2/3. However since
ρt = O(k−2/3) for a strongly elongated object, we must retain the terms
n2

ρt
and n2

ρ2
t

which are respectively of order k−2/3 and 1. Then, according
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to (4), Maxwell’s equations (3) expressed with only contravariant
components take the form:

ikHs =
1√
g

{
∂aE

n − ∂n

[
−τhn

(
2 +

n

ρt

)
Es + h2

(
1 +

n

ρt

)2

Ea

]}

ikHa =
1√
g

{
∂n

[(
1 +

2n
ρ

)
Es − τhn

(
2 +

n

ρt

)2

Ea

]
− ∂sE

n

}

ikHn =
1√
g

{
∂s

[
−τhn

(
2 +

n

ρt

)
Es + h2

(
1 +

n

ρt

)2

Ea

]

− ∂a

[(
1 +

2n
ρ

)
Es − τhn

(
2 +

n

ρt

)2

Ea

]}
(6)

where g has also been approximated by neglecting the terms of order
smaller than k−2/3.

g ∼=
(

1 + 2n
ρ

) (
ρt + n

ρt

)2

To these equations we have to add three other equations obtained by
the substitution �E → �H, �H → − �E.

In order to solve these equations, the general procedure consists
in dividing the shadowed part of the surface boundary layer of the
convex body into two regions: the penumbra region in the vicinity of
the surface shadow boundary and the deep shadow region. In each
region, the solution is stated in the form of an asymptotic expansion
with unknown coefficients but with a term describing explicitly the
dominant behaviour of the phase. This general analytic form of
the solution is usually called an “Ansatz”. The coefficients of the
asymptotic expansions are determined recursively by substituting the
stated form of the solution into the Maxwell equations and boundary
conditions and equating terms of similar order in the large parameter
k.

In the penumbra region, we start with the following Ansatz:

�E = exp(iks)
N∑

j=0

�Ej(s, a, n)k−j/3, �H = exp(iks)
N∑

j=0

�Hj(s, a, n)k−j/3

(7)
However since the thickness of the boundary layer and the radius
of the transverse curvature on strongly elongated bodies are of the
same order, the asymptotics loses its locality with respect to the a co-
ordinate. Consequently, in order to construct the asymptotic expansion
one needs to know precisely the shape of the cross-section of the body.
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In the case of a plane wave incident along the axis of a body of
revolution, the incident field behaves like cosϕ where ϕ = a[ρt(s =
0)]−1 and the diffracted field has the same behaviour. It is therefore
possible to incorporate explicitly the ϕ behaviour in the phase term of
the Ansatz (7) by writing:

�E = �E+ − �E−, �H = �H+ + �H−

where:

�E± = exp(iks± iϕ)
N∑

j=0

�Ej(s, a, n)k−j/3

�H± = exp(iks± iϕ)
N∑

j=0

�Hj(s, a, n)k−j/3

(8)

For an arbitrary convex cross-section, a similar Ansatz can be stated
but ϕ is then a more complicated function of the variable a.

Subsequently, we assume that we deal with a body of revolution.
Then by substituting (8) into (6) and in the homologous equations
derived from the second Maxwell equation (3) and equate the terms of
order k, k2/3 and k1/3 we obtain a hierarchy of twelve equations relating
the components of the first three coefficients �Ej , �Hj(j = 0, 1, 2) of the
asymptotic expansion (8). A part of these equations can be used to
express the components En, Es and Hn, Hs via Ea, Ha. The other
equations form a degenerated system whose compatibility conditions
give a system of differential equations for the components Ea and Ha.
The details concerning the derivation of the expressions for the two
principal order terms are given in [1] and [7]. By introducing the
reduced variables:

σ =
ms

ρ
, v =

kn

m
, κ =

kρt

m
, m =

(
kρ

2

)1/3

(9)

and Fourier transforming with respect to σ the system of differential
equations verified by Ea and Ha, we obtain:

∂2Uo

∂v2
+

3
v + κ

∂

∂v
Uo +

(
v − ξ −

(
1

v + κ

)2
)
Uo = 0 (10)

where Uo is the Fourier transform of either Ea
o = (Ea

o )+ − (Ea
o )− or

Ha
o = (Ha

o )+ + (Ha
o )− and ξ the spectral variable.

In the derivation of (10) we have neglected the variation of ρ(s)
and ρt(s) with respect to s, in the penumbra region close to the shadow
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boundary. The differential equation:

d2V

dv2
+

3
v + κ

dV

dv
+

(
v − ξ −

(
1

v + κ

)2
)
V = 0. (11)

is a biconfluent Heun equation [8].
An exact solution of that equation is not available. However,

some particular solutions can be obtained when tends to zero. One
class of particular solutions satisfying (11) is given by the solutions of
the equation:

d2V

dv2
+

3
κ

dV

dv
+

(
v − ξ − 1

κ2

)
V = 0 (12)

which transforms in an Airy equation by the transformation W =
exp

(
3v
κ

)
V and gives:

V = e−
3v
2κW

(
ξ +

13
4κ2

− v

)
(13)

where W (x) is the general solution of the following Airy equation:

d2W

dx2
− xW = 0 (14)

By applying the transformation

Y = (v + κ)3/2V (15)

equation (11) reduces to:

d2Y

dv2
+

(
v − ξ − 7

4(v + κ)2

)
Y = 0 (16)

From this equation we can derive another class of particular solutions
of (11) for v → 0 by neglecting the term v in the denominator of (16)
which transforms this equation in an Airy equation the general solution
of which is Y = W

(
ξ − v + 7

4κ2

)
.

Moreover, since for v → 0 we have (v + κ)−2 ∼= κ−2
(
1 − 2v

κ

)
and

by keeping the term vκ−1, we obtain again an Airy equation defining
a third class of particular solutions of (11) for v → 0.

All these particular solutions satisfy equation (11) only at the limit
v → 0, but they do not satisfy it in a given neighbourhood of v = 0.
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Now, we are not only interested in a solution valid for v → 0
giving the field at an observation point located on the surface of the
elongated body, but also in the correct value of the derivative of the
field at that point in order to substitute it in the boundary conditions.
Moreover we observe that for ξ = − 7

4κ2 , the differential equation (16)
has a turning point or transition point at v = 0. This property has
to be taken into account in the research of an approximate solution in
the neighbourhood of this point.

Before going on in our investigation of solutions of the Heun
equation (11), we come back to the physical problem and define the
conditions which must be verified by the diffracted field.

3. MAGNETIC FIELD ON THE SURFACE —
ASYMPTOTIC CURRENT

Equation (10) is verified in vacuum by any solution of Maxwell’s
equations expressed in the co-ordinates (s, a, n) satisfying the special
conditions verified on a strongly elongated object. It is important to
note that the formulation presented until now is only a mathematical
representation, the object being absent. Equation (10) is therefore
verified by the incident field, the diffracted field and the total field.

When v → ∞, the transformed equation (16) reduces to the Airy
equation:

d2Y

dv2
+ (v − ξ)Y = 0

which has two independent solutions given by the Miller type Airy
functions W1 and W2 having the properties [9, 10]:

W1(ξ − v) → 0 when v → ∞
W2(ξ − v) → ∞ when v → ∞

Since the diffracted field must satisfy the radiation condition when
v → ∞, the solution of (16) must behave like W1(ξ − v). Hence, if we
denote by Y

(1)
ξ (v, κ) the solution of (16) satisfying:

lim
v→∞Y

(1)
ξ (v, κ) = W1(v − κ) (17)

the Fourier transform of the diffracted field is given by:

Ud
o (ξ, v, κ) = A(ξ, κ)(v + κ)−3/2Y

(1)
ξ (v, κ) (18)

where Ud
o is the Fourier transform of either (Ea

o )d or (Ha
o )d.
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According to (16), we have:

lim
κ→∞Y

(1)
ξ (v, κ) = W1(v − ξ) (19)

and consequently we must have:

lim
κ→∞κ−3/2A(ξ, κ) = A(ξ) (20)

in order to recover the classical solution corresponding to a non
elongated object.

The solution Y
(1)
ξ (v, κ) can be calculated by solving (16)

numerically using the method of Runge-Kutta. Starting with the
function W1(ξ−v) and its first derivative with respect to v for v large,
one obtains by this method the values on the surface (v = 0) of:

Y
(1)
ξ (o, κ) and


dY

(1)
ξ

dv
(v, κ)




v=o

(21)

All particular solutions mentioned so far must be Airy functions of the
type W1 in order to satisfy the necessary conditions (17) and (19). Let
W1(ξ, v, κ) be a particular solution satisfying (16) for v → 0. In order
that this solution satisfy also the radiation condition, we should have:

W1(ξ, o, κ)[
d

dv
W1(ξ, v, κ)

]
v=o

=
Y

(1)
ξ (o, κ)[

d

dv
Y

(1)
ξ (o, κ)

]
v=o

(22)

where the right hand side of (22) is determined numerically.
According to (17) and (19) this condition is satisfied for all values

of ξ when κ is large compared to 1 or for all values of κ when ξ is large
compared to 1. However, (22) is not satisfied for ξ close to the value
−7(4κ2)−1 for which the Heun equation (11) has a turning point at
v = 0. The deviation from the correct value of the first quotient in
(22) depends on κ. It augments when κ decreases and may be large
for κ = 1. An example is shown on Fig. 1. The curves show the
variation with respect to ξ for different values of κ of the quotient
of the second member of (22) over the first member of this equation
computed with the particular solution (13). We see that for κ equal to
1.6 the modulus of this quotient differs from unity in a limited interval
extending approximately from ξ = −5 to ξ = 5 with a maximum
deviation at the turning point. When the values of are augmented,
the deviations from unity appear in the same interval but with an
amplitude which declines rapidly.
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Figure 1. Variation of R(ξ, κ) with ξ for different values of κ Real
- - - - - Im ...... Modulus ——.
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dv
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13
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−1

Coming back to equation (18) we see that in order to determine
completely the diffracted field we have to determine A(ξ, κ). This
coefficient is obtained by applying the boundary conditions on the
surface which involve the incident field and its derivative with respect
to v, on the surface.

Using the method described in [11] consisting in expanding the
incident field in a Luneburg-Kline series and expressing the eikonal
equation in the (s, a, n) co-ordinates, Andronov [12] obtained the
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following equation where S is the eikonal:(
1 − 2n

ρ

) (
∂S

∂s

)2

+
(
∂S

∂n

)2

+
3

ikρt

1

1 +
n

ρt

∂S

∂n
= 1 (23)

The solution of (23) can be searched in the form of the series:

S = s + a20s
2 + a11sn + ao2n

2 + a30s
3 + a21s

2n + · · ·

the coefficients of which are determined by substituting this series in
(23) and equating the terms of similar power of s and n. Following this
procedure we find that the asymptotics of the eikonal S(s, a, n) takes
the form:

S(s, a, n) = s+
3is2

4kρρt
+
sn

ρ
− s3

6ρ2

(
1 − 9

4
ρ

ρt

1
k2ρ2

t

)
− 3ins2

4kρρt
+0(n2) (24)

or, in reduced variables:

S(s, a, n) = s +
1
κ

[
σv − σ3

3

(
1 − 9

2κ3

)
+

3iσ2

2κ2

(
1 − v

κ

)]
(25)

If we neglect the terms of order κ−3, this procedure leads to an explicit
expression for the Fourier transform of the incident field:

U i
o(ξ, v, κ) =

1√
π

exp
(

3ξ
2κ

+
9

4κ3

)
e−

3
2

v
κV

(
ξ +

9
4κ2

− v

)
(26)

where V is the Miller-type Airy function defined by:

V =
W1 −W2

2i

It is important to observe that (26) does not verify the Heun equation
(10) for v → 0. Moreover, in order to apply the boundary conditions,
an explicit expression for the derivative of the incident magnetic field is
also needed. Indeed, if we substitute (8) into the boundary conditions
for a perfectly conducting surface Es = 0, Ea = 0, we obtain for the
dominant term of the components on the binormal:

Ea
o = 0

∂Ha
o

∂v
+

2
κ
Ha

o = 0
(27)

where Ha
o = (Ha

o )i + (Ha
o )d.
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The derivative of the incident field involves higher order terms in
the series expansion of the eikonal in powers of s and n. Especially
it can be shown that the term s2n is important. Unfortunately, by
keeping this term in the expression of the incident field, its Fourier
transform can no longer be obtained by analytical integration.

By substituting (26) into the Fourier transform of the boundary
conditions we derive the expression of A(ξ, κ) and by an inverse Fourier
transform of the sum of (18) and (26) we obtain finally the expression
of the total magnetic field and of the derivative of the total electric
field on the surface:

Ha
o (o, σ, κ) =

1√
π
e

9
4κ3

+∞∫
−∞

ei(σ−i 3
2κ)ξF (ξ, κ)dξ (28)

F (ξ, κ) =
V

(
ξ +

9
4κ2

, o

) ∂Y
(1)
ξ

∂v
(o, κ) + V ′

(
ξ +

9
4κ2

, o

)
Y

(1)
ξ (o, κ)

∂Y
(1)
ξ

∂v
(o, κ) +

1
2κ

Y
(1)
ξ (o, κ)

∂Ea
o (o, σ, κ) =

1√
π
e

9
4κ3

+∞∫
−∞

ei(σ−i 3
2κ)ξG(ξ, κ)dξ (29)

G(ξ, κ) =
V

(
ξ +

9
4κ2

, o

) ∂Y
(1)
ξ

∂v
(o, κ) + V ′

(
ξ +

9
4κ2

, o

)
Y

(1)
ξ (o, κ)

Y
(1)
ξ (o, κ)

where we have used the notation:

∂

∂v
V

(
ξ +

9
4κ2

− v

)∣∣∣∣
v=0

= −V ′
(
ξ +

9
4κ2

)
(30)

The current on a perfectly conducting surface is given by:

�J = n̂× �H (31)

where �H is the total magnetic field on the surface.
With the magnetic field expressed in the co-ordinate system

(s, a, n), (31) takes the form:

�J = n̂× (hHs
o ŝ + hHaâ)

where ŝ and â are unit vectors along the co-ordinates s and a and
where h is the divergence of the geodesics which for axial incidence
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can be approximated by 1 in the penumbra region. Coming back to
the system of equations verified by the coefficients of the Ansatz (8) it
can be shown that on the surface:

Hs
o = 0,

Hs
1

k1/3
=

i

m

∂Ea
o

∂v

Hence the asymptotic approximation of Hs is given by:

Hs =
i

m

∂Ea
o

∂v
(32)

and by neglecting the higher order terms of Ha, the asymptotic form
of the current on the surface is given by:

�J = −
(
â

1
m

∂Ea
o

∂v
+ ŝHa

o

)
(33)

We have evaluated the asymptotic currents numerically using the
formulas (28) and (29) and compared the results with those given by
the Method of Moments. The elongated object that we have chosen
is a perfectly conducting prolate ellipsoid defined by ρ(o) = 6.25 m
and ρt(o) = 0.3125 m, the abscissa s = 0 corresponding to the
shadow boundary. The incident plane wave propagates along the
axis of revolution of the ellipsod, with its magnetic field of amplitude
unity perpendicular to the plane of the geodesic along which the
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1.5
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graph heun-kutta

Figure 2. Asymptotic solution (solid lines) compared to MoM solution
(dotted lines).
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Figure 3. Classical Fock solution (solid lines) compared to MoM
solution (dotted lines).

current is calculated. In that configuration we have Hs = 0. The
results for a frequency of 1 GHz are given on Fig. 2 where the curves
representing the real part, the imaginary part and the modulus of
the current are drawn as a function of the abscissa s. The curves
with the ripples represent the Method of Moments (MoM) results.
Those corresponding to the asymptotic currents have been obtained by
solving numerically the Heun equation via the Runge-Kutta procedure.
They have no ripples since the contribution of the creeping wave
following the geodesic surrounding the ellipsod which is weaker due
to a longer path, has not been added to that corresponding to the
direct way. The comparison of the curves show that our asymptotic
formulas overestimate by about 20% the modulus of the MoM current
at the shadow boundary. On Fig. 3 the MoM results are compared
to the Fock solution. From these results it is evident that classical
creeping wave theory does not predict the weaker attenuation of the
amplitude of these waves on an elongated object as confirmed by the
MoM results. On the other hand our asymptotic solution predicts the
correct behaviour.

In order to improve our asymptotic formulas we describe in the
next chapter another method for calculating the derivative of the
incident field which seems to be the weak point of our approach.
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4. INDIRECT DETERMINATION OF THE DERIVATIVE
OF THE INCIDENT FIELD

Another procedure for calculating the derivative of the incident field
consists in specifying the behaviour of the incident field when v tends
to infinity.

Let Vξ(v, κ) be the solution of (16) which behaves like V (ξ − v)
when v → ∞.

Since the incident field is a solution of (10) we have:(
H̃a

o

)i
(ξ, v, κ) = a(κ, ξ)(v + κ)−3/2Vξ(v, κ) (34)

When κ → ∞, we must recover the expression of the incident field for
a classical non elongated object. Hence:

lim
κ→∞

(
H̃a

o

)i
(ξ, v, κ) =

1√
π
V (ξ − v) (35)

and by stating: a(κ, ξ) = κ3/2√
π
α(κ, ξ) we get:

(
H̃a

o

)i
(ξ, v, κ) =

κ3/2

√
π

(v + κ)−3/2α(ξ, κ)Vξ(v, κ) (36)

with:
lim

κ→∞ = α(κ, ξ) = 1 (37)

In (36), only the coefficient α remains unknown. We can determine it
by identifying (36) to (26) for v = 0 which gives:

α = exp
(

3ξ
2κ

+
9
κ3

) V

(
ξ +

9
4κ2

)
Vξ(o, κ)

(38)

Since Vξ(o, κ) tends to V (ξ) when κ tends to infinity, we see that α
satisfies (37).

Knowing the incident field we determine the coefficient A(ξ, κ) of
the diffracted field by applying the boundary conditions (27). The
final result for the component Ha

o of the total magnetic field and the
derivative of the component Ea

o of the total electric field on the surface
is:

Ha
o (v, σ, κ) = − 1√

π

+∞∫
−∞

eiσξα(ξ, κ)
dξ

∂

∂v
Y

(1)
ξ (v, κ)|v=0 +

1
2κ

Y
(1)
ξ (o, κ)

(39)
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Figure 4. Amplitude of the current along a generatrix of an elongated
prolate ellipsoid illuminated by a plane wave propagating in the
direction of its axis.

[
∂

∂v
Ea

o (v, σ, κ)
]
v=0

=
1√
π

+∞∫
−∞

eiσξα(ξ, κ)
dξ

Y
(1)
ξ (o, κ)

(40)

In order to obtain (39), (40), we have established, using (16), that the
derivative with respect to v of the Wronskian between Y

(1)
ξ (v, κ) and

Vξ(v, κ) is equal to zero for all values of v. This Wronskian can therefore
be calculated for v → ∞. It is therefore equal to the Wronskian
between W1(ξ − v) and V (ξ − v), the value of which is (−1).

Different approaches have been tried for the computation of the
integral (39). When ξ takes positive and negative values on the real
axis, we had no difficulties for calculating Y

(1)
ξ (v, κ) by the method of

Runge-Kutta, starting with its value W1(ξ − v) for v large. However,
until now, we did not succeed, using the same method, for the
computation of Vξ(v, κ) in (38). If we replace in (38) the ratio of
the Airy functions by 1 and keep only the exponential term, then the
results show that (39) overestimates Ha

o at the shadow boundary. If we
state α = 1, then the integral (39) converges poorly on the negative ξ
axis. A deformation of the integration contour on the negative axis into
the contour (∞ exp(2iπ/3), 0) would be adequate, but then the Runge-
Kutta algorithm must be adapted to complex values of ξ. The results
shown on Figure 4 correspond to α = 1, Y (1)

ξ (v, κ) = W1

(
ξ + 7

4κ2 − v
)

which is a particular solution of (16) when v → 0. The curves give the
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variation at 1 GHz of the modulus of the current on the same ellipsod
as in Section 2, for an incident magnetic field of amplitude unity, as
a function of the abscissa s along the geodesic located in the plane
defined by the incident electric field and the axis of the ellipsod. Now
the interaction between the direct creeping wave and the creeping wave
propagating around the axis of the ellipsoid has been taken into account
in the asymptotic evaluation. The Method of Moments (MoM) results
give the highest value at the shadow boundary (s = 0), compared to
the two other curves. The results obtained with the formula for a
non elongated (classical) body, underestimates the value of the field,
whereas the actual solution based on formula (39) gives intermediate
values close to the MoM results.

5. CONCLUSION

Explicit formulas for the asymptotic currents on a strongly elongated
body have been derived and tested on an elongated prolate ellipsod by
comparing the results with those obtained by the Method of Moments
(MoM).

The main results are
1) the confirmation by the MoM that the magnetic creeping wave is

less attenuated on an elongated object than on a non elongated
object

2) The results given by the asymptotics of elongated objects are close
to those given by the MoM.

Some problems remain in the numerical computation of the Fock
integral for elongated objects and in the determination of the normal
derivative of the incident field on the surface.

REFERENCES

1. Andronov, I. and D. Bouche, “Asymptotics of creeping waves on
a strongly prolate body,” Annales des Tlcommunications, Vol. 49,
No. 3–4, 205–210, 1994.

2. Hong, S., “Asymptotic theory of electromagnetic and acoustic
diffraction by smooth convex surfaces of variable curvature,” J.
Math. Phys., Vol. 8, No. 6, 1223, 1967.

3. Voltmer, D. R., “Diffraction by double curved convex surfaces,”
Ph.D. Dissertation, The Ohio State University, Columbus, Ohio,
1970.

4. Andronov, I. and D. Bouche, “Computation of the second order
term for the propagation parameter of creeping waves by boundary



Progress In Electromagnetics Research B, Vol. 6, 2008 151
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