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Abstract—The approximate analytical solution of the integral
equation concerning the current in a thin straight vibrator with
complex surface impedance has been obtained. The vibrator is
located in unlimited space and is excited in an arbitrary point
along its length. The calculations have been made and the plots of
electrodynamic characteristics of the vibrator, depending of the value
and the type of its surface impedance and the excitation point location,
are represented. The comparative analysis between the calculated and
the experimental data and also the results, obtained by the method of
moments, are represented for perfectly conducting vibrators.

1. INTRODUCTION

At present thin vibrators have wide application as different resonant
elements of antenna-waveguide devices. The variety of available
vibrator structures and also creation of new constructions on their basis
stipulate constant interest of investigators to the problems of their
analysis and synthesis. So, for example, location of different active
and passive elements in definite points along the length of a vibrator’s
antenna and also vibrator’s excitation in a distinctive from its centre
point create additional opportunities to form the set electrodynamic
characteristics of vibrator radiators [1–5]. From our point of view, thin
vibrators, on the surface of which impedance boundary conditions are
performed, can serve these aims [6–21]. In the proposed paper the
approximate analytical solution of the current integral equation in a
thin impedance vibrator with the arbitrary point of excitation has
been obtained. In order to check reliability of the obtained solution
the comparison with the experimental values and calculated results,
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obtained by the method of moments, has been made. The results,
showing the efficiency, possibilities and perspectives of the vibrator’s
use with the distributed surface impedance in practical application,
are also represented.

2. PROBLEM FORMULATION AND INITIAL
INTEGRAL EQUATIONS

Let us formulate a general problem of electromagnetic waves scattering
(radiation) by finite-size conducting bodies. Let the field of the �E0(�r )
and �H0(�r ) impressed sources, dependent of the time t as eiωt, influences
the material body of the V volume, which is bounded by the S smooth
closed surface and is characterized by the permittivity ε and the
permeability µ = 1, and the conductivity σ. This field can be set
either as the wave field, falling on the obstacle (a scattering problem),
or as the field of the impressed electromotive forces (EMF), applied
to the body, different from null only in some part of the volume V (a
radiation problem). It is necessary to find the scattering (radiation)
field in any point of space, characterized by permittivity ε1 and the
permeability µ1 (in a general case of a complex type) in the presence
of the set interfaces of mediums.

The whole electromagnetic field �E(�r ) and �H(�r ), satisfying the
Maxwell’s equations and the boundary conditions on the body surface,
is defined by integral equations of macroscopical electrodynamics [22]:

�E(�r ) = �E0(�r ) + (grad div + k2ε1µ1)�Πe(�r ),
�H(�r ) = �H0(�r ) + ikε1rot �Πe(�r ),

(1)

in which �Πe(�r ) is the Hertz’s electrical vector

�Πe(�r ) =
1

iωε1

∫
V

Ĝe(�r, �r ′) �Je(�r ′)d�r ′, (2)

�Je(�r ) is the volume density of the electrical current, and Ĝe(�r, �r ′) is
the electrical tensor Green’s function for the vector potential, satisfying
the Helmholtz’s equation

∆Ĝe(�r, �r ′) + k2ε1µ1Ĝ
e(�r, �r ′) = −4πÎδ(�r − �r ′) (3)

and corresponding conditions on the mediums interface, if there is
a such one. Here Î is the unit tensor, �r is the radius-vector of the
observation point, �r ′ is the radius-vector of the source point, ω = 2πf
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is the circular frequency (f is the frequency, measured in Hertz),
k = 2π/λ (λ is the wavelength in free space), δ(�r − �r ′) is the Dirac’s
delta-function.

The induced current is generally concentrated near the body
surface at a strong skin-effect, so it is expedient to transform the
volume integral in (2) in the following way:

�Πe(�r ) =
1

4πikε1

∫
S

Ĝe(�r, �r ′)[�n, �H(�r ′)]d�r ′. (4)

It turns out to be useful, when the field on the scattering obstacle is
situated from some additional considerations. In fact, neglecting the
skin-layer thickness, one can use the approximate Leontovich-Shchukin
impedance boundary conditions [23]

[�n, �E(�r )] = ZS(�r )[�n, [�n, �H(�r )]], (5)

in which �n is the outward normal to the S surface, ZS(�r ) =
RS(�r ) + iXS(�r ) = ZS(�r )/Z0 is the normalized surface impedance
(Z0 = 120πOhm is the wave impedance of free space), which can vary
on the body surface from one point to another in a general case. Thus,
the scattering field in the whole environment is fully defined by setting
tangential components of the field on the S boundary of the V volume.

Locating the observation point on the body surface, we obtain the
following integral equation (the “e” index is omitted) due to (1)–(5):

ZS(�r ) �J(�r ) = �E0(�r ) +
1

iωε1
(grad div + k2ε1µ1)

∫
S

Ĝ(�r, �r ′) �J(�r ′)d�r ′

+
ZS(�r )

4π
rot

∫
S

Ĝ(�r, �r ′)[�n, �J(�r ′)]d�r ′ (6)

concerning the density of the surface electrical current

�J(�r ) =
1
Z0

[�n, �H(�r )]. (7)

When solving the equation (6) directly, some known mathematical
difficulties appear; however, it is considerably simplified for the
conducting cylinders, the cross-section perimeter of which is small in
comparison with their length and the wavelength in the environment
(thin vibrators). Besides, one manages to spread the boundary
condition of the kind (5) on the cylindrical surfaces with the arbitrary
complex impedance, independent of the excitation field structure
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and the material electrophysical characteristics the vibrator is made
of, in this case. The expressions to calculate different construction
realizations of the surface impedance are given in [24].

Let us transform the integral equation (6) applicably to the
thin vibrator, representing a limited circular cylindrical wire of the
radius r and the length 2L (in a general case of the curvature axial
configuration) for which the following ratios are:

r

2L
� 1,

∣∣∣∣ rλ1

∣∣∣∣ � 1,
r

R̃
� 1, (8)

where λ1 is the wavelength in the environment, R̃ is the radius of the
curvature of the vibrator’s axial line.

These inequalities allow us to consider, that the induced current
density has only a longitudinal component

�J(�r ) = �esJ(s)ψ(ρ, ϕ), (9)

and it is distributed along the section as in a quasi-stationary case [1],
and what is more, ∫

⊥

ψ(ρ, ϕ)ρdρdϕ = 1. (10)

In the expressions (9), (10) �es is the unit vector along tangent to the s
axis, coupled with the vibrator, ψ(ρ, ϕ) is the function of the transverse
(⊥) polar coordinates ρ and ϕ, J(s) is the unknown current, submitted
to the boundary conditions on the vibrator ends:

J(−L) = J(L) = 0. (11)

Taking all this into consideration and taking into account, that the
Green’s function of unlimited space Ĝ(�r, �r ′) = ÎG(�r, �r ′), where

G(�r, �r ′) =
e−ik

√
ε1µ1|�r−�r ′|

|�r − �r ′| , (12)

we obtain the equation concerning the current in the thin vibrator,
located in homogeneous isotropic infinitely extended medium:

zi(s)J(s)=E0s(s)+
1

iωε1

L∫
−L

[
∂

∂s

∂J(s′)
∂s′

+k2ε1µ1(�es�es′)J(s′)
]
Gs(s, s′)ds′.

(13)
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Here E0s(s) is the impressed field projection, parallel to the vector
�es, zi(s) is the internal impedance per unit length, �es′ is the ort of the
s′ axis, coupled with the vibrator surface,

Gs(s, s′) =
π∫

−π

e−ik
√

ε1µ1

√
(s−s′)2+[2r sin(ϕ/2)]2√

(s− s′)2 + [2r sin(ϕ/2)]2
ψ(r, ϕ)rdϕ. (14)

The integral equation solution (13) with the precise kernel in the form
of (14) is connected with serious difficulties, so we use the thin-wire
approximation [1] further

Gs(s, s′) =
e−ik

√
ε1µ1R(s,s′)

R(s, s′)
, R(s, s′) =

√
(s− s′)2 + r2. (15)

The Gs(s, s′) function everywhere is continuous in this case, and the
equation for the current is considerably simplified without notable
aggravation of preciseness [25]. Applying integration in parts, taking
into consideration the condition (11) further in the equation (13), for
the straight conductor ((�es�es′) = 1) we, finally, have:

(
d2

ds2
+k2ε1µ1

) L∫
−L

J(s′)
e−ik

√
ε1µ1R(s,s′)

R(s, s′)
ds′=−iωε1E0s(s)+iωε1zi(s)J(s).

(16)
Thus, the scattering (radiation) problem of electromagnetic waves
by thin impedance vibrators in homogeneous isotropic medium
is formulated as rigorous boundary problem of macroscopical
electrodynamics and is reduced to the current integral equations. Their
solution is a main stage, because when the current is obtained, the
fields of scattering or radiation are calculated due to (1), that does not
meet any principle difficulties.

3. SOLUTION OF THE INTEGRAL EQUATION FOR
THE CURRENT

The equation (16) has the following form for the vibrator with the
constant along its length impedance (zi(s) = zi), located in the free
space (ε1 = µ1 = 1):

(
d2

ds2
+k2

) L∫
−L

J(s′)
e−ikR(s,s′)

R(s, s′)
ds′ = −iωE0s(s) + iωziJ(s). (17)
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Figure 1. The problem geometry and the symbols used.

Let the vibrator is excited in the s = −sδ point by the V0 voltage
generator (Figure 1). Then

E0s(s) = V0δ(s + sδ) = Es
0s(s) + Ea

0s(s),

Es
0s(s) =

V0

2
[δ(s + sδ) + δ(s− sδ)], (18)

Ea
0s(s) =

V0

2
[δ(s + sδ) − δ(s− sδ)],

where Es
0s(s) is the symmetrical (Es

0s(s) = Es
0s(−s), the upper index

“s”), and Ea
0s(s) is the antisymmetrical (Ea

0s(s) = −Ea
0s(−s), the

upper index “a”) relatively to the vibrator’s centre components of the
impressed field. At this, naturally, the vibrator current will also consist
of two parts J(s) = Js(s)+Ja(s), and the equation (17) will transform
into the system of two independent integral equations, concerning the
unknown currents Js(s) and Ja(s):


(
d2

ds2
+ k2

) L∫
−L

Js(s′)Gs(s, s′)ds′ = −iωEs
0s(s) + iωziJ

s(s),

(
d2

ds2
+ k2

) L∫
−L

Ja(s′)Gs(s, s′)ds′ = −iωEa
0s(s) + iωziJ

a(s).

(19)

Let us represent the vibrator currents in the form of the product
of the Js,a

n unknown amplitudes on the given distribution functions
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fs,a
n (s) (n = 0, 1)

Js,a(s) = Js,a
0 fs,a

0 (s) + Js,a
1 fs,a

1 (s), fs,a
n (±L) = 0, (20)

and let us use “the induced electromotive forces method” (IEMFM)
to solve the equations system (19), which is analogical to “the
induced magnetomotive forces method”, approbated by us to solve the
problems of electromagnetic coupling of the electrodynamic volumes
via narrow slots in their common walls [26]. Then the equations (19)
are transformed into the system of algebraic equations of the fourth
order: 



Js
0

(
Zs

00 + Z̃s
00

)
+ Js

1

(
Zs

01 + Z̃s
01

)
= −(iω/2k)Es

0,

Js
0

(
Zs

10 + Z̃s
10

)
+ Js

1

(
Zs

11 + Z̃s
11

)
= −(iω/2k)Es

1,

Ja
0

(
Za

00 + Z̃a
00

)
+ Ja

1

(
Za

01 + Z̃a
01

)
= −(iω/2k)Ea

0 ,

Ja
0

(
Za

10 + Z̃a
10

)
+ Ja

1

(
Za

11 + Z̃a
11

)
= −(iω/2k)Ea

1 .

(21)

The following designations are accepted in (21) (m = 0, 1; n = 0, 1):

Zs,a
mn =

1
2k


−dfs,a

m (s)
ds

As,a
n (s)

∣∣∣∣∣
L

−L

+
L∫

−L

[
d2fs,a

m (s)
ds2

+k2fs,a
m (s)

]
As,a

n (s)ds


,

As,a
n (s) =

L∫
−L

fs,a
n (s′)Gs(s, s′)ds′,

Z̃s,a
mn =

ZS

ir

L∫
−L

fs,a
m (s)fs,a

n (s)ds, (22)

Es,a
m =

L∫
−L

fs,a
m (s)Es,a

0s (s)ds.

When solving the equations system (21) and substituting the obtained
values of Js,a

n in (20), we obtain the final expression of the vibrator
current:

Js,a(s) = − iω

2k
V0

[
Ẽs,a

0 Z
(s,a)Σ
11 − Ẽs,a

1 Z
(s,a)Σ
01

Z̃
(s,a)Σ
00 Z

(s,a)Σ
11 − Z

(s,a)Σ
10 Z

(s,a)Σ
01

fs,a
0 (s)

+
Ẽs,a

1 Z
(s,a)Σ
00 − Ẽs,a

0 Z
(s,a)Σ
10

Z̃
(s,a)Σ
00 Z

(s,a)Σ
11 − Z

(s,a)Σ
10 Z

(s,a)Σ
01

fs,a
1 (s)

]
, (23)

J(s) = Js(s) + Ja(s), Z(s,a)Σ
mn = Zs,a

mn + Z̃s,a
mn.
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It is natural to suppose, that the induced electromotive forces method
gives more precise integral equation solution, if the approximating
fs,a

n (s) current functions are chosen righter. Hence let us choose the
functions, obtained in [15] at solution of the integral equation (17) for
the current in the impedance vibrator by the asymptotic method of
averaging as fs,a

0 (s):

fs
0 (s) = cos k̃sδ sin k̃L cos k̃s− (1/2) cos k̃L(sin k̃|s−sδ| + sin |s+sδ|),

fa
0 (s) = sin k̃sδ cos k̃L sin k̃s + (1/2) sin k̃L(sin k̃|s−sδ| − sin |s+sδ|),

(24)
where k̃ = k − iZS

rΩ , Ω = 2 ln(2L/r). Let us note, that fs
0 (s) =

sin k̃(L−|s|), fa
0 (s) = 0 at the vibrator excitation in its centre (sδ = 0).

We use the expressions, obtained from [2, 27] when investigating the
integral equation (17) characteristics for the function fs,a

1 (s) in the
case, when zi = 0:

fs
1 (s) = cos ks− cos kL,

fa
1 (s) = sin ks− (s/L) sin kL.

(25)

Now substituting the expressions for the functions fs,a
n (s) into the

formulas (22), we obtain all coefficients in the equations system (21),
defining, in their turn, the current formulas (23). The expressions for
Zs,a

mn and Ẽs,a
mn are given in Appendix A.

Knowledge of real distribution of the J(s) current permits us to
calculate all electrodynamic characteristics of the impedance vibrator.
So, the input impedance Zin = Rin + iXin or the input admittance
Yin = Gin + iBin in the excitation point are defined by means of the
following expressions:

Zin[Ohms] =
V0

J(sδ)
=

60i
Js

0f
s
0 (sδ) + Js

1f
s
1 (sδ) + Ja

0 f
a
0 (sδ) + Ja

1 f
a
1 (sδ)

,

Yin[millimhos] =
103

Zin
. (26)

Then the voltage standing wave ratio (VSWR) into the antenna feeder
with the W wave impedance equals:

VSWR =
1 + |S11|
1 − |S11|

, S11 =
Zin −W

Zin + W
, (27)

where S11 is the reflection coefficient in the feeder. And, finally, the
radiation field of the vibrator in the far zone (ρ → ∞, ρ 	 2L) has
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the following form due to (1):

Eθ(ρ, θ) =
ik2

1

ωε1
sin θ

e−ik1ρ

ρ

L∫
−L

J(s)eik1s cos θds,

Hϕ(ρ, θ) =
ik1k

ω
sin θ

e−ik1ρ

ρ

L∫
−L

J(s)eik1s cos θds,

(28)

where k1 = k
√
ε1µ1, (Eθ/Hϕ) =

√
µ1/ε1 is the characteristic

impedance of the environment.

4. NUMERICAL RESULTS

In order to check reliability of the obtained approximate expression for
the current (23) the dependencies of real Gin and imaginary Bin parts
of the input admittance of the perfectly conducting vibrator, excited in
the centre, from its electrical length (the solid curves in Figure 2) have
been calculated. The experimental data from the monograph [27] (the
circles, f = 663 MHz) and the calculated values (the dashed curves),
obtained by the Galerkin’s method at the current approximation by
means of trigonometric functions of the whole region

J(s) =
N∑

n=1

Jn sin
nπ(L + s)

2L
, (29)

are given here for comparison, what is more, to reach necessary
accuracy the functions number in formula (29) are chosen to be
equal N = 24. The comparison of calculation and the experimental
curves between each other in Figure 2 allows us to make conclusion
of adequacy of the current chosen approximating functions (24) and
(25) to real physical process. It is also proved by the plots in Figure 3,
where the dependencies of input admittance of perfectly conducting
vibrator from 2L/λ (Ω = 2 ln(2L/r) = 10) at different location of the
excitation point are represented.

It is necessary, that the main lobe of the antenna radiation pattern
(RP) deviates from the direction θ = 90◦ in series of important
practical applications. Such a situation takes place, for example,
when antennas base stations for cellular mobile communication [28]
are exploited. In [4] it is proposed to use the vibrator with the
length 2L = 0.8λ and with a shifted relatively to the vibrator’s
centre excitation point sδ = −0.2λ (the direction of the main lobe
of the antenna RP equals θmax = 57.7◦). Figure 4 gives the curves
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Figure 2. The input admittance of the perfectly conducting vibrator
at r/λ = 0.007022.

Figure 3. The input admittance of the perfectly conducting vibrator
at Ω = 10.

of the current amplitude-phase distribution J(s) = |J(s)|ei arg J(s)

along the perfectly conducting vibrator, calculated by the method of
moments [4] (circles) and the formulas (23)–(25). We also show here,
how vibrator’s availability of the RS active component of the surface
impedance influences current distribution, and Figure 5 represents the
corresponding field radiation pattern. As it is seen, RS increases —
the current amplitude decreases (at this the character of current phase
change does not, practically, vary) and the side lobe level sufficiently
decreases in the vibrator’s RP.

In [4] it is suggested to use concentrated impedance reactive load,
included into the vibrator between the points s = sδ and s = 0 for
the antenna’s agreement with the feeding line. At this the minimal
values of VSWR at the frequency of f = 900 MHz are: VSWR = 2.2
for W = 50 Ohm, VSWR = 1.46 for W = 75 Ohm. We propose to use
non-concentrated but distributed along the vibrator surface impedance
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Figure 4. The amplitude-phase current distribution in the vibrator
at f = 900 MHz, 2L = 0.8λ, r = 0.005λ, sδ = −0.2λ.

Figure 5. The vibrator’s radiation pattern at f = 900 MHz, 2L =
0.8λ, r = 0.005λ, sδ = −0.2λ.

for the purposes of agreement. As it is seen from the plots in Figures 6,
7, a definite value of the surface impedance (RS = 0.0, XS = 0.0475)
exists, at which |S11| and VSWR are minimal for different W and
sδ at the antenna’s set parameters. The bandwidth on the level
VSWR ≤ 2.0 for W = 75 Ohm and sδ = −0.2λ is 27 MHz when using
concentrated load XL = 203.8 Ohm, located in the point sL = −0.175λ
[4]. Availability of vibrator’s distributed impedance sufficiently widens
the bandwidth (to 50 MHz for level VSWR ≤ 2.0 and 28 MHz for level
VSWR ≤ 1.5), what is more, we can attain an acceptable agreement
for different values of the W wave impedance of the feeding line by
changing the excitation point position.

So, availability of the vibrator’s distributed impedance of a definite
kind (inductive) and the value XS = 0.0475 practically leads to
the increase of its “efficient” electrical length (to 2Leff ≈ λ) and,
as a result, to tuning in the resonance (Bin ≈ 0, Figure 3), the
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Figure 6. The magnitude dependences of the reflection coefficient
|S11| and VSWR on the vibrator’s surface impedance at f = 900 MHz,
2L = 0.8λ, r = 0.005λ, RS = 0.0.

Figure 7. The magnitude dependences of the reflection coefficient
|S11| and VSWR on the frequency at 2L = 0.8λ, r = 0.005λ and
XS = 0.0475 on frequency f = 900 MHz.

(a) (b)

Figure 8. The vibrator’s radiation patterns at f = 900 MHz, 2L =
0.8λ, r = 0.005λ and XS = 0.0475: (a) RS = 0.0; (b) sδ = −0.2λ.
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field radiation pattern is also changed in comparison with the case
2L = 0.8λ (Figure 8a). However, the possibility of lowering of the
pattern side lobe level by including the RS active impedance (Figure
8b) exists, as in the case, represented in Figure 5, though at this the
agreement with the feeding line for some W values is worsened.

5. CONCLUSION

The proposed problem solution of the electromagnetic waves radiation
by a thin impedance vibrator with the arbitrary excitation point, based
on the induced electromotive forces method with choice of the adequate
approximating functions to represent the current distribution, permits
to calculate all electrodynamic characteristics of the vibrator with the
help of simple formulas rather precise. The approximating functions
for the symmetrical and antisymmetrical components of the current are
chosen both from the approximate analytical solution of the integral
equation for the current in the impedance vibrator and from physical
considerations when investigating the properties of this equation. The
given for a concrete example numerical results allow to conclude
the efficiency and wide possibilities of vibrators application with the
distributed surface impedance in antenna’s devices of this type. The
suggested approach to the problem solution of the single impedance
vibrator can be used to analyze multi-elements vibrator structures, for
example, Yagi-Uda antennas or vibrator phased antenna arrays.

APPENDIX A. THE COEFFICIENTS OF THE
ALGEBRAIC EQUATIONS SYSTEM

Zs
0n =

k̃

k

[
cos k̃sδA

s
n(L)−cos k̃LAs

n(sδ)
]
+

(
k2−k̃2

)
2k

L∫
−L

fs
0 (s)As

n(s)ds,

(A1)

Zs
1n = sin kLAs

n(L) − k

2
cos kL

L∫
−L

As
n(s)ds, (A2)

Za
0n = − k̃

k

[
sin k̃sδA

a
n(L)−sin k̃LAa

n(sδ)
]
+

(
k2−k̃2

)
2k

L∫
−L

fa
0 (s)Aa

n(s)ds,

(A3)



288 Nesterenko et al.

Za
1n =

(
sin kL
kL

− cos kL
)
Aa

n(L) − k

2L
sin kL

L∫
−L

Aa
n(s)sds, (A4)

Ẽs
0 = cos k̃sδ sin k̃(L− |sδ|), Ẽs

1 = cos ksδ − cos kL, (A5)

Ẽa
0 = − sin k̃|sδ| sin k̃(L− |sδ|), Ẽa

1 = sin ksδ − (sδ/L) sin kL. (A6)
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