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Abstract—A new numerical technique is proposed for analyzing
arbitrary shaped hollow waveguides. The method is based on
mathematically modelling of physical response of a system to excitation
over a range of frequencies. The response amplitudes are then used
to determine the resonant frequencies. The results of the numerical
experiments justifying the method are presented. The method is
validated by circular waveguide, rectangular waveguide an equilateral
triangular waveguide. We apply the method for multi connected
domains and for waveguides with boundary singularities like the L-
shaped waveguide. Good agreements between the simulated and the
published results have been obtained. The method does not generate
spurious eigenfrequencies.

1. INTRODUCTION

The analysis of the hollow conducting waveguides leads to solution of
the eigenvalue problems of the type

∇2w + k2w = 0, x ∈ Ω ⊂ R2, B [w] = 0, x ∈ ∂Ω. (1)

Here Ω is a simply or multiply connected domain with boundary
∂Ω; the boundary operator B [. . . ] specifies the boundary conditions
and is considered to be of the two types: the Dirichlet B [w] = w
and Neumann B [w] = ∂w/∂n conditions. The eigenvalue problem
is to find such real k (the cutoff wavenumbers) for which there exist
non-null functions w verifying (1).

The problem (1) is a classical problem of mathematical physics [1]
so, there is a variety of methods available in the literature to calculate
the cutoff wavenumbers. However, apart from a few analytically
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solvable cases with simple, regular domains, there is no general solution
of this problem. Therefore a large amount of numerical methods has
been developed for many practical problems. The usual approach
for eigenvalue problems with a positive defined operator is to use
the Rayleigh minimal principle. Then, using an approximation for
w with a finite number of free parameters, one gets the same problem
in a finite-dimensional subspace which can be solved by a standard
procedure of linear algebra. In the framework of this approach the
polynomial approximations are used in [2, 3] and the trigonometric
functions are used in [4]. More recently, the same problems have been
studied by Swaminathan et al. [5] using the surface integral equation
method. Application of the traditional finite-difference method is
presented in [6, 7]. Application of algebraic function approximation
in eigenvalue problems of lossless metallic waveguides is presented in
[8, 9]. The Fourier and Taylors series expansions are used for analysis
longitudinally inhomogeneous waveguides [10, 11]. The method of lines
is utilized for eigenvalue problems in arbitrary geometry in [12]. The
analysis of waveguides with a complex cross-section is of a great interest
for engineering application [13, 14]. To handle such problems the
generalized differential quadrature method has been developed and
applied for waveguide analysis in [15]. Efficient numerical methods
for analysis of arbitrary cross sections waveguide problems have been
developed recently [16–18].

The method of fundamental solutions (MFS) is convenient in
application to the problem (1). A general approach is as follows. First,
using the MFS approximation, one gets a homogeneous linear system
A (k)q = 0 with matrix elements depending on the wave number k.
To obtain the nontrivial solution the determinant of this matrix must
be zero:

det [A (k)] = 0. (2)

This equation must be investigated analytically or numerically to
get the eigenvalues This technique is described in [19–24] in more
details. In the three latest papers there is a complete bibliography
on the subject considered. Note that the MFS is widely used in
electromagnetic calculation under the name of the method of auxiliary
sources (MAS) [25, 26]. It belongs to a new class of numerical methods,
meshless methods (also called mesh-free methods), that has been
developing fast recently [27, 28]. Meshless methods rely on a group
of points. This means that the burdensome work of mesh generation is
avoided and more accurate description of irregular complex geometries
can be achieved.

The method presented in the paper is based on the following quite
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trivial statement. Let we (x) be a smooth enough function defined in
the solution domain below named as the exciting field. If the response
field wr is a solution of the boundary value problem (BVP)

∇2wr + k2wr = −∇2we − k2we, (3)
B [wr] = −B [we] , (4)

then, the sum w (x, k) = wr + we satisfies the initial problem (1).
Let F (k) be some norm of the solution w. This function of k has
extremums at the eigenvalues and, under some conditions described
below, can be used for their determining. The growth of the amplitude
of response near the eigenvalue is a sequence of the degeneracy of the
matrix of the linear algebraic system which approximates the BVP.
From this point of view the presented approach is similar to the one
described in [29], where the degeneracy is measured by the infinitesimal
values of the minimal eigenvalue of the stiffness matrix of the problem.
Recently this technique has been applied for solving problems of free
vibrations of beams, membranes and plates [30–32].

Generally, no conditions are imposed on we (x). As a result, one
gets the sequence of the inhomogeneous PDEs (3), (4) with a non-null
right hand side which can be solved by an appropriate volume method.
For example, the FD method and Kanza’s method were used in [21, 22].
However, when the exciting field is chosen in such a way that the right
hand side of (3) is equal to zero:

∇2we + k2we = 0, (5)

then, the response field wr also satisfies the homogeneous Helmholtz
equation

∇2wr + k2wr = 0, (6)

which can be solved by a boundary method. Note that we can take
any solution of (5) as the exciting field, e.g., we can take it in the
form of a travelling wave or as a field of a point source placed outside
the solution domain. On the other hand, wr depends on this choice
because it should satisfy the boundary condition (4).

The 2D Helmholtz equation has the known fundamental solutions

Φ(x − ζ, k) = H
(1)
0 (k |x − ζ|),

where H
(1)
0 is the Hankel function. This admits of applying very

effective meshless numerical techniques to solve (3), (4): the MFS,
the boundary knot method [35], the boundary integral method [36].
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When applied to the non-singular problems these techniques provide
high accuracy of solutions. To handle the eigenvalue problems with
boundary singularities, we combine the global approximation of the
solution by the Hankel function and the local approximation by the
Fourier-Bessel functions near the singular points.

The outline of this paper is as follows: in Section 2, to explain the
main algorithm we begin with the simplest case when waveguide has
a single connected cross section without boundary singularities.The
multiple connected domains are considered in Section 3. In Section 4,
we present the extension of the algorithm to problems with boundary
singularities. Finally, in Section 5, we give the conclusion.

2. MAIN ALGORITHM

2.1. One-dimensional Case

To illustrate the method presented in the simplest case, let us consider
the wave equation in homogeneous medium ∂2

ttu = ∂2
xxu with the

Dirichlet conditions at the endpoints of the interval [0, 1], i.e., u (0, t) =
u (1, t) = 0. Considering the time dependence u (x, t) = e−iktw (x), we
get the eigenvalue problem on the interval [0, 1]:

d2w

dx2
+ k2w = 0, (7)

w(0) = w(1) = 0, (8)

which admits of an analytic solution kn = nπ.
When applied to (7), (8) the MFS technique is as follows. Let us

consider the fundamental solution of (7)

Φ (x − ξ, k) =
1
2k

exp (ik |x − ξ|) ,

which satisfies the homogeneous equation everywhere except at the
singular point x = ξ. A general solution of the homogeneous equation
in the interval [0, 1] can be written in the form:

w = q1Φ (x − ξ1, k) + q2Φ (x − ξ2, k) .

Here ξ1, ξ2 are two source points placed outside the solution domain
[0, 1]; q1, q2 are free parameters. Using the boundary conditions
w (0) = w (1) = 0, one gets the linear system:

A (k)q =
{

q1e
−ikξ1 + q2e

ikξ2 = 0
q1e

ik(1−ξ1) + q2e
ik(ξ2−1) = 0
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The wave numbers kn can be determined from the condition:
det [A (k)] = 0. After simple transforms we get: exp (2ik) = 1,
or k = nπ. Thus, MFS gets the exact solution. Note that in
multidimensional cases such computations are time consuming and not
so simple. Since the MFS is highly ill conditioned, the determinant
is very small. So, using this technique in the 2D case, one operates
with values of the order ∼ 10−50–10−500, see [24, 37] for more detailed
information.

According to the method presented in the paper, we take the
response field wr as a solution of the BVP:

d2wr

dx2
+ k2wr = −d2we

dx2
− k2we, (9)

wr (0) = −we (0) , wr (1) = −we (1) , (10)

then the sum w = we + wr satisfies the initial BVP (7), (8). The right
hand side of (9) can be considered as an external exciting source. In
this subsection we take we (x) = eikx and so, the right hand side of (9)
is equal to zero. This excitation corresponds to the travelling wave
which propagates along the x-axis from the source placed in −∞. Let
us introduce the norm of the solution as

F (k) =

√√√√ Nt∑
n=1

|w (xn)|2 /Nt, (11)

where the points xn are randomly distributed in [0, 1]. We also use
the dimensionless form of this function: Fd (k) = F (k) /F (1). The
function F (k) characterizes the value of the response of the system to
the excitation with the wave number k. Varying k, we get the response
curve and calculate the eigenvalues as positions of maxima.

However, this initial form of the method is unfit for our goal.
Indeed, looking for the response field in the form

wr = Ar exp (ikx) + Br exp (−ikx) ,

we get the linear system for Ar, Br

Ar + Br = −1, Ar exp (ik) + Br exp (−ik) = − exp (ik) . (12)

For k 
= nπ the system has the unique solution Ar = −1, Br = 0. Thus,
w = we + wr ≡ 0 and F (k) = 0 with the precision error. In Fig. 1 we
place the corresponding response curve to illustrate this situation.
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Figure 1. The response curve without regularization.

The two regularizing procedures which give a smooth response
curve were proposed in [30–32]. Applying the first one, we substitute
BVP (9), (10) as follows:

d2wr

dx2
+

(
k2 + iεk

)
wr = 0, wr (0) = −we (0) , wr (1) = −we (1) , (13)

where ε > 0 is a small value. Here we take into account that the
right hand side of (9) is equal to zero for we (x) = eikx. From the
mathematical point of view this means that we shift the spectra of
differential operator from the real axis. On the other hand, from the
physical point of view, this means that the wave propagates in a weakly
absorbing medium and the initial equation is replaced by the equation
∂2

ttu = ∂2
xxu−ε∂tu. This wave equation also describes vibrations of the

string with friction [1]. Resulting BVP has a unique non zero solution
for all real k.

As a result, we get the following system instead of (12):

Ar + Br = −1, Are
ikε + Bre

−ikε = −eik (14)

and w = we + wr 
= 0. The dimensionless response curves Fd (k)
depicted in Fig. 2 correspond to ε = 10−15 (left) and ε = 10−10

(right). The value ε = 10−15 is too small to regularize the solution.
The response curve Fd(k) has separate maximums at the positions of
eigenvalues but is not smooth. The value ε = 10−10 provides a smooth
curve.

Another regularizing procedure can be described in the following
way. Let us introduce the constant shift ∆k between the wave numbers
of the exciting source and the studied mode, i.e., we take the exciting
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field we (x) = we (x, k + ∆k) = exp [i (k + ∆k) x] and get the linear
system

Ar + Br = −1, Are
ik + Bre

−ik = −ei(k+∆k), (15)

which provides w = we + wr 
= 0. The solution exists for all k except
the eigenvalues kn when the system becomes degenerate. However,
due to iterative procedure of solution and rounding errors we never
solve the system with the exact kn. We observe degeneration of the
system as a considerable growth of the solution in a neighbourhood of
the eigenvalues.

The response curves corresponding to ∆k = 10−15 and ∆k =
10−10 are absolutely similar to the curves depicted in Fig. 2 for
ε = 10−15 and ε = 10−10. The value ∆k = 10−15 is too small to
regularize the solution. But the value ∆k = 10−10 yields a smooth
curve.
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Figure 2. The response curve; ε-procedure with ε = 10−15 — left,
ε = 10−10 — right.

When comparing these two procedures, it should be noted that
they provide approximately the same precision in the calculations
of eigenvalues. However, dealing with a real PDE and using the ε-
procedure, we have to perform the calculations with complex variables.
The use of the k-procedure provides calculations with real variables
only.

Having a smooth response curve, we apply the following simple
algorithm. First, we localize these maxima of F (k) on the intervals
[ai, bi]. Next, we solve the univariate optimization problem inside each
one. In particular, we apply Brent’s method based on a combination
of parabolic interpolation and bisection of the function near to the
extremum (see [41]).
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2.2. Waveguides with Non-singular Boundary

The same technique can be utilized for a homogeneous waveguide
analysis of the TM and TE fields satisfying the eigenvalue problem (1).
For the TM case, w = Ez and w satisfies the homogeneous Dirichlet
boundary condition

B [x, w] = w = 0, x ∈ ∂Ω,

where ∂Ω denotes the conducting boundary of the waveguide wall.
For the TE case, w = Hz and w satisfies the homogeneous Neumann
boundary condition

B [x, w] = ∂w/∂n = 0,

with n being the unit normal to ∂Ω.
In this subsection we consider waveguides with a smooth and

piecewise-smooth boundary ∂Ω without singular points. We apply the
MFS and look for the solution of the Helmholtz equation (6) in the
form of the linear combination

wr (x) =
N∑

n=1

qnΦ(x − ζn, k), (16)

Here qn are free parameters of the problem and the source points ζn

are placed outside the solution domain. This is the so-called Kupradze
basis [42]. The free parameters are obtained from the boundary
condition (4) as a solution of the collocation problem

B [wr (xi)] =
N∑

n=1

qnB [Φ(xi−ζn, k)] = −B [we (xi, k)] , xi ∈ ∂Ω. (17)

The collocation points xi are uniformly distributed on the boundary.
The number of the collocation points is taken twice as large as the
number of unknowns N and the resulting linear system is solved by
the procedure of the least squares. Then, having the solution wr (x)
and so, w (x) = wr (x) + we (x), we introduce the norm F (k) like (11).
Varying k, we get the response curve and calculate the eigenvalues as
positions of maxima. We take the exciting field in the form of the
travelling wave

we (x,k) = exp [ik (x cos υ + y sin υ)] , (18)

which satisfies (5) for any angle of incidence υ.



Progress In Electromagnetics Research, PIER 82, 2008 211

Table 1. The relative errors in solution of eigenvalue problem for the
circular waveguide with the radius R = 1.

TM TE

i k
(ex)
i MFS BIM i k

(ex)
i MFS BIM

1 2.404825560 1.1E-09 1.2E-09 1 1.841183786 2.8E-09 2.8E-09

2 3.831705970 2.5E-12 1.4E-11 2 3.054236921 2.4E-09 2.5E-09

3 5.135622307 1.0E-09 1.0E-09 3 3.831705970 6.4E-12 1.5E-11

4 5.520078106 8.4E-10 8.7E-10 4 4.201188938 8.4E-10 8.5E-10

5 6.380161905 1.4E-09 1.4E-09 5 5.317553128 3.6E-10 3.7E-10

6 7.015586677 1.1E-09 1.1E-09 6 5.331442774 1.4E-10 1.4E-10

7 7.588342447 1.6E-09 1.6E-09 7 6.415616391 2.4E-09 2.4E-09

8 8.417244162 2.6E-09 2.6E-09 8 6.706133203 1.3E-09 1.4E-09

9 8.653727935 2.5E-09 2.5E-09 9 7.015586677 1.1E-09 1.1E-09

10 8.771483842 3.0E-09 2.9E-09 10 7.501266166 2.8E-09 2.4E-09

Using the ε-procedure, we replace the matrix terms Φ(xi−ζn, k)
by Φ(xi−ζn, kε), kε =

√
k2 + iεk. When the k-procedure is used for

smoothing the response curve F (k), the exciting field we (xi, k) in the
right hand side of (17) is replaced by we (xi, k + ∆k).

Circular waveguide: The data placed in Table 1 correspond to the
circular waveguide with the radius 1 and are obtained using the two
different boundary methods:

1) The MFS described above.
2) The dual boundary integral equation method. It is based on

the dual boundary integral formulation
∫

∂Ω
T (s,x) w (s) dl (s) −

∫
∂Ω

U (s,x)
∂w

∂n
(s) dl (s)=

{
0, x ∈ R2\Ω,
2πw (x) , x ∈ Ω,

where U (s,x) and T (s,x) are well-known Green’s function and normal
derivative respectively:

U (s,x) = −1
2

iπH
(1)
0 (kr) , T (s,x) = −1

2
iπkH

(1)
1 (kr)

yini

r
,

where H
(1)
n is the nth-order Hankel function of the first kind, r =

|x − s|, yi = si − xi, and ni is the ith component of the outer normal
vector at the boundary point s. For the Dirichlet problem we find
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the unknown normal derivative ∂w/∂n as a solution of the integral
equation∫

∂Ω
U (s,x)

∂w

∂n
(s) dl (s) = F (x) ≡

∫
∂Ω

T (s,x) w (s) dl (s) , x ∈ Γ,

where the auxiliary contour Γ contains the solution domain Ω and
does not intersect it’s boundary ∂Ω. So, the integrals are not singular.
Having the boundary value of the normal derivative ∂w/∂n (s), we
obtain the solution w (x) in the interior of Ω

w (x) =
1
2π

∫
∂Ω

T (s,x) w (s) dl (s) − 1
2π

∫
∂Ω

U (s,x)
∂w

∂n
(s) dl (s) .

All the integrals are approximated by the finite sums using an
appropriate quadrature rule. The similar technique is used in the case
of Neumann’s boundary condition. The description of this technique
with more details can be found in [36] and in the literature presented
here.

The calculations presented in Table 1 correspond to the following
parameters: MFS utilizes N = 40 sources placed on the circle with the
radius Ra = 5; and using BIM, we take N = 40 unknown values of the
normal derivative ∂w/∂n. Here we place the relative errors

er =
|ki − k

(ex)
i |

k
(ex)
i

(19)

in the calculation of the first ten eigenvalues.
The exciting field (18) is taken with υ = 0.25π. The k-procedure

is used with ∆k = 10−6. The exact eigenvalues k
(ex)
i are the roots of

the equation Jn (k) = 0 (TE) or J ′
n (k) = 0 (TM).

Square waveguide. The data placed in Table 2 correspond to the
waveguide with the cross section [−1, +1] × [−1, +1]. To solve the
Helmholtz equation the MFS is used. The MFS source points are
placed on the same circle with the radius Ra = 5. We take the same
exciting field in the form of the travelling wave with υ = 0.25π. The
k-procedure is used for smoothing with ∆k = 10−6. The left hand
part of the table shows the convergence of the TM solution with the
growth of N — the number of free parameters in approximation (16).
The results of solution in the TE case are shown in the right hand
side of the table. One can see that N = 40 provides the 9–10 true
digits of the first ten eigenvalues. The method gives the eigenvalues
without differing the eigenmodes. For example, k = 1.57079632679489
corresponds to TE10 and TE01 modes.
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Table 2. Square waveguide. Convergence with the growth of the
number of free parameters N .

TM TE

i k (ex )
i N=20 N=30 N=40 i k (ex )

i N=40

1 2.221441469 2.2214 2.221441 2.221441469 1 1.570796327 1.570796327
2 3.512407366 3.5124 3.512407 3.512407366 2 2.221441469 2.221441469
3 4.442882938 4.4429 4.442883 4.442882938 3 3.141592654 3.141592654
4 4.967294133 4.9673 4.967294 4.967294133 4 3.512407366 3.512407366
5 5.663586700 5.6635 5.663587 5.663586700 5 4.442882938 4.442882938
6 6.476559172 6.4743 6.476559 6.476559172 6 4.712388980 4.712388980
7 6.664324407 6.6636 6.664323 6.664324405 7 4.967294133 4.967294133
8 7.024814731 7.0247 7.024815 7.024814731 8 5.663586699 5.663586686
9 7.853981634 - 7.853984 7.853981635 9 6.283185307 6.283185162

10 8.009521122 - 8.009521 8.009521073 10 6.476559172 6.476559184

Rectangular waveguide. The splitting of the eigenvalues is shown
in Table 3. The data correspond to the rectangular waveguide with the
cross section [−1.01, +1.01] × [−1, +1]. The parameters of the MFS,
exciting and smoothing are the same as above.

Table 3. Rectangular waveguide [−1.01, +1.01] × [−1, +1]. Splitting
of the eigenvalues.

TM TM

i k
(ex)
i N = 30 i k

(ex)
i N = 30

1 2.210471590 2.210471590 1 1.555243888 1.555243888
2 3.484614083 3.484614083 2 1.570796327 1.570796327
3 3.505479704 3.505479704 3 2.210471590 2.210471590
4 4.420943181 4.420943181 4 3.110487777 3.110487781
5 4.923053226 4.923053231 5 3.141592654 3.141592639
6 4.962397954 4.962397959 6 3.484614083 3.484614088

Triangular waveguide. The same approach was applied to the
waveguide with the cross section in the form of the equilateral triangle
with the width equal to 1. The parameters of the MFS, exciting and
smoothing are the same as above. The data placed in the last columns
(N = 237) of Table 4 have the 10–11 true digits.
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Table 4. The triangular waveguide. Convergence with the growth of
the number of free parameters N .

TM TE
i N=57 N=107 N=237 N=57 N=107 N=237
1 7.2551975 7.2551974569 7.2551974569 4.1887902 4.1887902048 4.1887902048
2 11.082497 11.0824971761 11.0824971761 7.2551975 7.2551974569 7.2551974569
3 14.510395 14.5103949139 14.5103949139 8.377580 8.3775804095 8.3775804095
4 15.102898 15.1028978655 15.1028978656 11.082497 11.0824971760 11.0824971760
5 18.258514 18.2585131983 18.2585131983 12.566371 12.5663706143 12.5663706144

3. MULTIPLY CONNECTED CROSS SECTION

When we deal with problems in multiply connected domains, the same
basis functions Φ(x − ζn, k) can be used. And the source points should
be placed also inside each hole as it is depicted in Fig. 3(a).
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Figure 3. Geometry configuration of a doubly connected domain.

As an alternative approach one can use the special trial functions
associated with each hole:

Ψs, 1(x, k) = H
(1)
0 (krs),

Ψs, 2n+1(x, k) = H(1)
n (krs) cos nθs,

Ψs, 2n(x, k) = H(1)
n (krs) sin nθs.

(20)

Here rs = |x − xs|, θs is the local polar coordinate system with the
origin at the point xs of multipoles location (see Fig. 3(b)).
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This is so-called Vekua basis [43, 44] or multipole expansion. It is
proven that every regular solution of the 2D Helmholtz equation in a
domain with holes can be approximated with any desired accuracy by
linear combinations of such functions if the origin xs of a multipole is
inside every hole. In this case instead of (16) we use:

wr =
N∑

n=1

qnΦ(xi−ζn, k) +
S∑

s=1

M∑
m=1

ps, mΨs, m(x, k), (21)

where q = (qn)N
n=1, ps = (ps, m)M

m=1, S is the number of holes and M
is the number of terms in each multipole expansion.

Coaxial waveguide. The data shown in Table 5 correspond to the
coaxial with the radii R = 1 (outer) and r = 0.5 (inner). The MFS
is utilized as a solver of the Helmholtz equation. The MFS sources
are placed on the concentric circles with the radii R1 = 5 — around
the cross section, and R2 = 0.2 — inside the central rod cross section.
The data correspond to the N1 = 60 MFS sources placed out of the
cross section and N2 = 30 sources inside the hole. The parameters of
the excitation and smoothing are the same as above. The exact k

(ex)
i

are the roots of the equations: Jn (R) Yn (r) = Jn (r) Yn (R) (TM) and
J ′

n (R) Y ′
n (r) = J ′

n (r) Y ′
n (R) (TE).

Waveguide with two rods inside. The data placed in Table 6
correspond to the waveguide shown in Fig. 4. The domain with a radius
R = 1 contains two circular inner boundaries with the eccentricity of
0.5 and the radii of r = 0.5. The MFS sources are placed on the circle
the radius R1 = 5 — around the cross section and on the two circle with
the radius R2 = 0.15 inside the cross sections of the rods. The numbers

R=1

r =0.3 r =0.3

0.50.5

Figure 4. Cylindrical waveguide with two holes in the cross section.
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Table 5. Coaxial waveguide. The radii R = 1, r = 0.5.

TM TE

i k
(ex)
i N1/N2 = 60/30 i k

(ex)
i N1/N2 = 60/30

1 6.246061839 6.246061839 1 1.354672010 1.354672012

2 6.393156762 6.393156762 2 2.681204287 2.681204294

3 6.813842853 6.813842853 3 3.957754188 3.957754208

4 7.457740136 7.457740136 4 5.175227740 5.175227821

5 8.266730435 8.266730435 5 6.338887082 6.338886815

6 9.190044425 9.190044424 6 6.393156762 6.393156762

7 10.188929924 10.188929921 7 6.564942382 6.564942380

8 11.235707793 11.235707777 8 7.062581616 7.062581614

9 12.311308597 12.311308688 9 7.462157848 7.462157069

10 12.546871428 12.546871428 10 7.840109098 7.840109093

Table 6. Circle with two holes.

TM TE

i N1 = 40 N1 = 50 N1 = 60 i N1 = 40 N1 = 50 N1 = 60

1 4.49759 4.4976021 4.4976022 1 1.38573 1.3857496 1.3857515

2 4.55883 4.5588357 4.5588355 2 1.76998 1.7699497 1.7699483

3 6.39849 6.3985053 6.3985051 3 2.60074 2.6007376 2.6007364

4 7.09633 7.0963032 7.0963042 4 2.63443 2.6344713 2.6344661

5 7.59309 7.5931077 7.5931064 5 3.66223 3.6621892 3.6621924

of the sources placed around the cross section are taken N1 = 40, 50,
60. The corresponding numbers of the MFS sources placed inside the
rods are: N2 = 20, 25, 30. So, the whole numbers of the free parameters
are N = 80, 100, 120 for the data placed in the columns of the table.
We take the same exciting field in the form of the travelling wave with
υ = 0.25π. The k-procedure is used for smoothing the response curve
F (k) with ∆k = 10−6.

Coaxial waveguide with a small central rod. Let us consider
the coaxial waveguide with a very small central rod. Now the
Kupradze type basis functions Φ(x − ζ, k) = H

(1)
0 (k |x − ζ|) are unfit

for approximating the solution in a neighbourhood of the central circle
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Table 7. Coaxial waveguide. The radii R = 1, r = 0.01.

TM TE

i k
(ex)
i ki i k

(ex)
i ki

1 2.8009217551 2.8009217529 1 1.8407980375 1.8407980373

2 3.8328841728 3.8328841727 2 3.0542367965 3.0542367964

3 5.1356230349 5.1356230350 3 3.8328841728 3.8328841729

4 6.0109006903 6.0109006870 4 4.2011889412 4.2011889403

5 6.3801618962 6.3801618962 5 5.3175531261 5.3175487666

because when the singular points, say ζi, ζj , of two sources are very
close, the corresponding functions Φ(x − ζi, k), Φ(x − ζj , k) become
indistinguishable and the collocation matrix has two identical columns.
Here we use a combined basis which includes the Kupradze type
basis functions with the singular points placed on an auxiliary circular
contour outside the solution domain and a multipole expansion (Vekua
basis) with the origin inside the central rod. Thus, we look for an
approximate solution in the form:

w (x|q,p) =
N∑

n=1

qnΦ(xi−ζn, k) +
M∑

m=1

pmΨm(x, k).

The data presented in Table 7 correspond to the coaxial waveguide
with the radii R = 1 (outer) and r = 0.01 (inner). The number of the
sources placed around the cross section is taken N = 30, the number
of harmonics in the multipole expansion is M = 7. So, the calculations
presented in the table were performed using 37 free parameters only.

4. SINGULAR PROBLEMS

In this section our study is focused on the case when the cross section
Ω of the waveguide has boundary singularities like a reentrant corner,
or an abrupt change in the boundary conditions (see Fig. 5). The
MFS faces great difficulties when applied to such problems because it
utilizes smooth basis functions. Indeed, the functions of the Kupradze
basis become very smooth when the singular point is far from the
solution domain. To overcome the difficulties, the Trefftz method
(TM) [29] and the method of particular solutions (MPS) [38–40] have
been developed. These techniques use various particular solutions of
the eigenvalue equation which describes the local behaviour of the
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Figure 5. The domains with boundary singularities. In the right
part of the figure the solid line corresponds to the Dirichlet boundary
condition and the dashed line denotes Neumann’s condition. Here
(ρ, θ) is the local polar coordinate system with the origin at the singular
point.

ϕ 0

��

��

(a)

��

n
�= 0

�
����
�

(b) (c)

∂
∂

π
α 0

=

ϕ =

ϕ

��π
α

��

n
= 0

∂
∂

ϕ

ϕ 0

π
α

=

��

n
= 0

∂
∂

ϕ

Figure 6. A wedge with interior angle π/α and different boundary
conditions along the adjacent line segments: (a) Dirichlet; (b)
Neumann; (c) mixed.

eigenfunction near the singular points. It can be shown that the
convenient sets of particular solutions near a corner of angle π/α are
the functions:

ϕn (ρ, θ)=Jnα (kρ) sin (nαθ) , n = 1, 2, . . . , ∞, (22)
ϕn (ρ, θ)=Jnα (kρ) cos (nαθ) , n = 0, 1, . . . , ∞, (23)
ϕn (ρ, θ)=J(n−1/2)α (kρ) cos ((n − 1/2) αθ) , n = 1, 2, . . . ,∞ (24)

for three cases of the boundary conditions shown in Fig. 6. Here (ρ, θ)
is the local polar coordinate system with the origin at the singular
point. The advantage of these functions (Fourier-Bessel functions) is
that not only do they satisfy the governing equation, but they also
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satisfy the boundary conditions along the adjacent line segments. For
more details see the original papers. To extend the technique described
in the previous section onto the case of the boundary singularities we
use the MFS as a solver of BVP for wr and look for the response field
in the form

wr (x) =
N∑

n=1

qnH
(1)
0 (k |x − ζn|) +

M∑
j=1

pjϕj (ρ, θ) , (25)

where the Fourier-Bessel functions ϕj (ρ, θ) correspond to the kind of
the singularity. Only the Fourier-Bessel functions (22), (23) and (24)
are considered in this paper.

We find the unknowns qn, pj as a solution of the collocation
problem

B [wr (xi)] =
N∑

n=1

qnB
[
H

(1)
0 (k |xi − ζn|)

]
+

M∑
j=1

pjB [ϕj (ρi, θi)]

= −B [we (xi)] , xi ∈ ∂Ω (26)

The collocation points xi ≡ (ρi, θi) are uniformly distributed on
the boundary. The number of the collocation points is taken twice as
large as the number of the unknowns N + M and the resulting linear
system is solved by the procedure of the least squares. Then, having
the solution wr (x), we introduce the norm F (k) like (11). Varying k,
we get the response curve and calculate the eigenvalues as positions of
maxima.

Waveguide with L-shaped cross section. Let us consider the
eigenvalue problem for L-shaped domain with the Dirichlet boundary
conditions (TM). The response field is looked for in the form:

wr (x) =
N∑

n=1

qnH
(1)
0 (k |x − ζn|) +

M∑
j=1

pjJ2j/3 (kρ) sin (2jθ/3)

with the Fourier-Bessel functions satisfying the boundary conditions
ϕj (ρ, 0) = ϕj (ρ, 3π/2) = 0. The data placed in Table 8 are obtained
using the k-procedure with ∆k = 10−6. The exciting field is taken
with the angle υ = π/4. The MFS source points are placed on the
circle with the radius Rs = 3. The data in the last column of the table
are taken from [40]. To compare these data with our result we place
the squares k2

i in the table. It looks like the data corresponding to
N = 120, M = 20 give the eigenvalues with the 10 true digits. To
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Table 8. The L-shaped domain. Dirichlet condition. Convergence
with the growth of the number of free parameters. The value of k2 is
shown.

i N/M=40/15 N/M=60/20 N/M=80/20 N/M=100/20 N/M=120/20 B&T
1 9.639726 9.639723840 9.639723841 9.639723842 9.639723841 9.6397238
2 15.197253 15.19725193 15.197251927 15.197251926 15.197251926 5.197252
3 19.739209 19.73920880 19.739208803 19.739208802 19.739208802 19.739209
4 29.521481 29.52148112 29.521481113 29.521481114 29.521481113 29.521481
5 31.912648 31.91263592 31.912635960 31.912635951 31.912635961 31.912636
6 41.474483 41.47450984 41.474509891 41.474509893 41.474509894 41.474510
7 44.948476 44.94848776 44.948487781 44.948487782 44.948487781 _

8 49.348022 49.34802200 49.348022007 49.348022006 49.348022006
9 56.709605 56.70960993 56.709609889 56.709609885 56.709609884

10 65.376529 65.37653575 65.376535711 65.376535708 65.376535709

_
_
_

Table 9. The L-shaped domain. Neumann condition. Convergence
with the growth of the number of free parameters. The value of k2 is
shown.

i N/M=40/10 N/M=40/15 N/M=60/10 N/M=80/10 N/M=100/10 Shu&Chen
1 1.475623 1.475623 1.475622 1.475621813 1.475621793 1.47455
2 3.534032 3.534032 3.534031 3.534031369 3.534031369 3.53409
3 9.869604 9.869604 9.869604 9.869604401 9.869604401 9.86964
4 11.389478 11.389478 11.389479 11.389479388 11.389479386 11.38951
5 12.572380 12.572383 12.572388 12.572386842 12.572386864 12.56893
6 19.739209 19.739209 19.739209 19.739208802 19.739208802 19.73940
7 21.424745 21.424742 21.424734 21.424732805 21.424734381 21.41668
8 23.344379 23.344378 23.344372 23.344372031 23.344372008 23.34424
9 28.490787 28.490807 28.490812 28.490823385 28.490814353 28.48205

10 35.878650 35.878648 35.878631 35.878631521 35.878631920 -

solve the Neumann problem (TE) we use the expansion:

wr (x) =
N∑

n=1

qnH
(1)
0 (k |x − ζn|) +

M∑
j=0

pjJ2j/3 (kρ) cos (2jθ/3)

with the Fourier-Bessel functions satisfying the boundary conditions
∂ϕj/∂n (ρ, 0) = ∂ϕj/∂n (ρ, 3π/2) = 0. Thus, only the last term is
modified. In Table 9 we test a convergence of the eigenvalues. The
results are compared with the results of Shu and Chew [15] obtained
by the global method of generalized differential quadrature (GDQ).
Note that the L-shaped domain considered in [15] is smaller than the
one depicted in Fig. 5. The similarity coefficient 0.635 is taken into
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account in the data presented in the table.
Rectangular waveguide with an inner rib. The eigenvalue problem

for the rectangular waveguide with an inner rib (Fig. 5, right) is
the example of problems with an abrupt change in the boundary
conditions. We consider TM case (Dirichlet conditions) and set the
symmetry conditions ∂w/∂y = 0 along the interval y = 0, 0 ≤ x ≤ 1.
This problem as the eigenvalue problem of a cracked beam is studied
in detail in [29]. We look for the MFS solution in the form:

wr (x) =
N∑

n=1

qnH
(1)
0 (k |x − ζn|) +

M∑
j=1

pjJj−1/2 (kρ) cos ((j − 1/2) θ)

with the Fourier-Bessel functions corresponding to the boundary
conditions ∂ϕj/∂n(ρ, 0)=ϕj(ρ, π)=0. Some results of the calculations
are presented in Table 10. Using the package Mathematica, the first
two eigenvalues were calculated in [29] with 13 significant digits. They
are shown in the last column of the table. One can see that the method
presented gives the eigenvalues of the problem with 10 true digits.

Table 10. The eigenvalues of the cracked beam.

i N/M=50/15 N/M=60/10 N/M=75/10 N/M=80/10 [17]
1 2.0116970 2.01169717 2.011697117 2.011697117 2.011697117212
2 3.2931526 3.29315261 3.293152635 3.293152635 3.293152635104
3 4.0798642 4.07986416 4.079864129 4.079864128 -
4 4.8863146 4.88631468 4.886314665 4.886314665 -
5 5.2893785 5.28937862 5.289378620 5.289378620 -
6 6.1326889 6.13268898 6.132689008 6.132689010 -
7 6.4719151 6.47191515 6.471915149 6.471915149 -
8 6.8246202 6.82462027 6.824620261 6.824620261 -
9 7.3939713 7.39397129 7.393971287 7.393971287 -

10 7.9781250 7.97812500 7.978125002 7.978125001 -

5. CONCLUSION

In this paper, a numerical technique is proposed for the analysis of
various hollow conducting waveguides. This is a mathematical model
of the physical measurements when the resonant frequencies of a
system are determined by the amplitude of response to some excitation.
Varying the wave number k, we get the eigenvalues as positions of
maxima of the norm function F (k). The growth of the amplitude of
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response near the eigenvalue is a sequence of the degeneracy of the
collocation matrix. The key moment of the algorithm is the use of
the special regularizing procedures which provides a smooth response
curve and, as a sequence, provides a very high precision in determining
eigenfrequencies.

The method can be applied for the analysis of waveguides with
multi connected cross sections and waveguides whose cross sections
contain boundary singularities like a reentrant corner, or an abrupt
change in the boundary conditions. In [32] it was applied to 3D
problems so, it can be used for analyzing resonators too.

The method is easy to program and not expensive in the CPU
time. Indeed, all the numerical examples are considered with the same
placement of the source points and differ only by the positions of the
collocation points on the contour of the waveguide.

This technique is convenient for determining some first eigenvalues
of the system which are often of the most interest from the point of
view of engineering applications.

The method is presented mainly in the framework of the MFS but
any boundary or volume method can be used as the Helmholtz solver.
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