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Abstract—A detailed study on the influence of an external magnetic
field on a symmetrical gyrotropic slab in terms of Goos-Hänchen (GH)
phase shifts is presented. The GH phase shifts at both boundaries
of the slab are calculated, and the guidance condition is explained by
means of them. It is found that the external magnetic field destroys
the spatial symmetry of the field distribution, and we use the concepts
of ‘penetration’ distance as well as effective thickness to illustrate the
phenomenon. In term of the GH phase shifts, the spatial distribution
of the time-average Poynting power is also derived. We find that
influenced by the external magnetic field, the positive and negative
time-average Poynting power along the waveguide direction can exist
simultaneously in the gyrotropic medium, depending on the transverse
position.
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1. INTRODUCTION

The characteristics of the propagation of electromagnetic radiation
in gyrotropic plasmas have been theoretically investigated in many
literatures. The magnetoplasma modes in Voigt, perpendicular,
and Faraday configurations have been studied by Kushwaha and
Halevi [1–3]. Gillies and Hlawiczka have done some researches on
gyrotropic waveguide in detail [4–8], and dyadic Green’s functions
for gyrotropic medium have been investigated by Eroglu as well
as Li [9–11]. There are also some studies focusing upon the
effects of magnetic field on semiconducting plasma slab [12], and
on negatively refracting surfaces [13]. Furthermore, propagation and
scattering characteristics in gyrotropic systems [14–19], surface modes
at the interface of a special gyrotropic medium [20], applications
of gyrotropic material to microwave technologies [21, 22], bilateral
coplanar waveguides [23], finite layered structures [24–26], guided
devices [27, 28], and manipulation of terahertz surface plasmons [29]
have been investigated extensively. Moreover, Sarid mentioned that
external magnetic field can destroy the spatial symmetry of the guided
modes in a thin metal film [30].

In this paper, we will study the Goos-Hänchen (GH) phase shifts
on both sides of the symmetrical gyrotropic slab, and derive the
guidance condition. The distribution of the magnetic and electric
fields for the waveguide modes and surface modes will be presented
in terms of the GH phase shifts. Furthermore, to get deeper insight
into the physics of such waves, we also calculate the time-average
Poynting vector along the waveguide and show its spatial distribution.
For the first time, we find that influenced by the external magnetic
field, the positive and negative time-average Poynting power along
the waveguide direction can exist simultaneously in the gyrotropic
medium, depending on the transverse position.

2. GUIDED MODE DISPERSION LAWS

We consider a homogeneous infinite gyrotropic slab of thickness d in
the Voigt configuration. i.e., the external magnetic field B̄0 is parallel
to the interfaces and perpendicular to the wave propagating direction,
as shown in Fig. 1. The media in region 1 and region 3 are the same
and are isotropic, with permeability µ1 and permittivity ε1. Region 2
is gyrotropic medium with permeability µ2 and permittivity tensor ε2,
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Figure 1. Symmetrical gyrotropic slab waveguide of thickness d in
an isotropic medium. Region 1 and Region 3 are the same isotropic
medium, with permittivity ε1 and permeability µ1. Region 2 is
a gyrotropic medium. The wave propagates in y direction. And
an applied magnetic field B̄0 is in the z direction, parallel to the
interfaces and perpendicular to the wave propagating direction (Voigt
configuration).

which takes the following form:

ε2 =

[
εxx iεg 0
−iεg εyy 0

0 0 εzz

]
, (1)

where elements are given by

εxx = εyy = ε∞

(
1 −

ω2
p

ω2 − ω2
c

)
, (2a)

εzz = ε∞

(
1 −

ω2
p

ω2

)
, (2b)

εg = ε∞

[
−

ω2
pωc

ω (ω2 − ω2
c )

]
. (2c)

Here, the off-diagonal element εg is a direct manifestation of the
applied magnetic field. The quantities ωp =

√
Nq2

e/(m∗ε∞) and
ωc = qeB0/m

∗ are the plasma and cyclotron frequencies, corresponding
to the characteristics of the medium and the external magnetic field
respectively, ε∞ is the background permittivity, N is the electron
density, m∗ is the effective mass, and qe is the electron charge.
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It is known that in the Voigt configuration, the TE mode is not
coupled to the TM mode and only the TM mode is affected by the
gyrotropy [12, 13]. Hence we only focus on the TM wave in this paper.
For TM waves, with wave vectors ±x̂kx+ŷky in the gyrotropic medium
and ±x̂iα1 + ŷky in the isotropic medium, the dispersion relations can
be expressed as

k2
y + k2

x = ω2µ2εV , (3)

k2
y − α2

1 = ω2µ1ε1, (4)

where ky and kx are wave numbers in gyrotropic medium in the y
and x directions respectively, and α1 is a positive real number that
corresponds to the evanescent waves in the isotropic medium. Noting
that kx can be either purely real (corresponding to waveguide modes)
or purely imaginary (corresponding to the surface modes decaying
exponentially away from both interfaces), we assume kx to be positive
or with the positive imaginary part kxI . And εV , defined as εV =
(ε2

xx − ε2
g)/εxx, is the equivalent permittivity of the gyrotropic medium

in the Voigt configuration for the waves being studied.
To find the guidance condition, we consider the reflection

coefficient when total reflection occurs on each side of the slab. Using
the Maxwell equations and matching the boundary conditions, which
enforce the tangential component of magnetic and electric fields to be
continuous, we can get the reflection coefficients R0 (corresponding to
the boundary at x = 0) and Rd (corresponding to the boundary at
x = d) at total reflection:

R0 =
1 − i(p− q)
1 + i(p− q)

= e−i2 tan−1(p−q) = ei2φ0 , (5)

Rd =
1 − i(p + q)
1 + i(p + q)

ei2kxd = e−i2 tan−1(p+q)ei2kxd = ei2φdei2kxd, (6)

where the phase shift 2φ0 and 2φd are the GH phase shifts at the two
boundaries and can be expressed as

2φ0 = −2 tan−1(p− q), (7)
2φd = −2 tan−1(p + q), (8)

where the parameters p and q are defined as

p =
εV α1

ε1kx
and q =

εgky

εxxkx
. (9)

It is clear that, influenced by the applied magnetic field, these two
shifts are not the same for guided wave components traveling in the
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+x and −x directions. When there is no external magnetic field, i.e.,
εg = 0, and the parameter q in Eqs. (7) and (8) is zero, hence the GH
phase shifts on both sides are the same. When the magnetic field is
applied, the element εg in the permittivity tensor arises, making the
medium nonreciprocal, and q is no longer zero, which results in the
different GH phase shifts.

The guidance condition states that R0Rd = 1, which gives
ei2(φ0+φd)ei2kxd = 1. The condition of waveguide modes can be
rewritten as

kxd + φ0 + φd = mπ, m = 0, 1, 2 . . . (10)

When kx is imaginary (corresponding to the surface modes), i.e.,
kx = ikxI , according to Eq. (9), parameters p and q are also imaginary:
p = ipI and q = iqI , where pI and qI are imaginary parts, defined as
pI = −εV α1/(ε1kxI) and qI = −εgky/(εxxkxI). Hence the GH phase
shifts are also imaginary, i.e., 2φ0 = i2φ(1)

0I , 2φd = i2φ(1)
dI , where the

imaginary parts can be given by

φ
(1)
0I = − tanh−1(pI − qI), (11)

φ
(1)
dI = − tanh−1(pI + qI). (12)

Eqs. (11) and (12) are used when |pI − qI | ≤ 1 and |pI + qI | ≤ 1.
Furthermore, there is another solution for imaginary kx when |pI−qI | ≥
1 and |pI + qI | ≥ 1:

φ
(2)
0I = − tanh−1 [1/(pI − qI)] , (13)

φ
(2)
dI = − tanh−1 [1/(pI + qI)] . (14)

For both of the solutions for imaginary kx, according to
e−2[φ

(n)
0I +φ

(n)
dI ]e−2kxId = 1, the guidance condition can be rewritten as

kxId + φ
(n)
0I + φ

(n)
dI = 0, n = 1, 2. (15)

where the superscript n = 1, 2 denotes the two modes with imaginary
kx, corresponding to the surface magnetoplasmon polarition (SMP)
modes. The first is an even mode in the absence of the external
magnetic field, while the second is an odd one. In the presence of
the applied magnetic field, since the magnetic fields in the gyrotropic
medium become either cosh function or sinh function, to be shown in
Eq. (17), hence we call the first mode as “cosh mode” and the second
as “sinh mode”.
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For the symmetrical gyrotropic slab, according to the dispersion
relations of the two media and guidance conditions, i.e., Eqs. (3),
(4), and (10) or (15), we can get the numerical results for the
magnetoplasma waves in the symmetrical slab. The results of
dispersion relation in terms of dimensionless variables are illustrated
in Fig. 2. The frequencies are normalized to the plasma frequency
ωp, and the wave numbers are normalized to kp=ωp/c. The material
parameters used in the computation are: ε1 = ε0, ε∞ = 15.68ε0,
N = 2 × 1022 m−3, and m∗ = 0.014m0 = 0.12753 × 10−31 kg. Hence,
ωp = 1.7 × 1013 rad/s and ωc/ωp = 0.737B0. These parameters
correspond to an indium antimony (InSb) slab in free space.

When an external magnetic field is applied, there are two bands in
the dispersion curve, as shown in Fig. 2. In the lower region, below the
lower bulk solutions kx = 0, there are two SMP modes (corresponding
to cosh mode and sinh mode, shown in blue dashed lines and red dot
lines), both of which start from the origin and rise just over the optical
line which is plotted in dash-dot line. The cosh mode is continuous
with the conventional waveguide mode (corresponding to the real kx)
of m = 0. Moreover, two higher waveguide modes corresponding to
m=1 and 2 are also shown in Fig. 2. The waveguide modes are seen
to become asymptotic to the frequency ωH =

√
ω2

c + ω2
p [31]. Similar

phenomenon occurs in the upper frequency region except that there is
no asymptotic frequency for the waveguide modes.

3. DISTRIBUTION OF THE FIELDS

In order to calculate the power flow in all media, we analyze the
distribution of the fields in each region first. For TM waves, the
magnetic fields for region 1 (x < 0), region 2 (0 ≤ x ≤ d), and region
3 (x > d) can be written as

H̄1(x, y) = ẑH1e
α1xeikyy, (16)

H̄2(x, y) =




ẑH1
cos(kxx+φ0)

cos φ0
eikyy waveguide mode

ẑH1
cosh(kxIx+φ

(1)
0I )

cosh φ
(1)
0I

eikyy cosh mode

ẑH1
sinh(kxIx+φ

(2)
0I )∣∣∣sinh φ

(2)
0I

∣∣∣ eikyy sinh mode

, (17)
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Figure 2. Dispersion in the symmetrical gyrotropic slab with the
thickness of d in the Voigt configuration. The external magnetic field
B0 = 1.2T . The media are air-InSb-air, and the parameters are:
ε1 = ε0, ε∞ = 15.68ε0, ωp = 1.7 × 1013 rad/s, ωc/ωp = 0.737B0,
and d = 0.5λp = πc/ωp.

H̄3(x, y) =




ẑH1
(−1)m cos φd

cos φ0
e−α1(x−d)eikyy waveguide mode

ẑH1
cosh φ

(1)
dI

cosh φ
(1)
0I

e−α1(x−d)eikyy cosh mode

ẑH1
− sinh φ

(2)
dI∣∣∣sinh φ

(2)
0I

∣∣∣ e−α1(x−d)eikyy sinh mode

. (18)

Taking a look at Eqs. (16), (17), and (18), one discovers that
when an external magnetic field is applied, because of the difference of
the two GH phase shifts at each boundary,

∣∣H̄2(0, y)
∣∣ �= ∣∣H̄2(d, y)

∣∣. It
means that influenced by the external magnetic field, the distribution
of the magnetic field is asymmetrical although the slab configuration
is a symmetrical one.

The asymmetrical field distribution is more intuitively recog-
nized by the inverted ‘penetration’ distance and effective guided thick-
ness [32], as shown in Fig. 3. The effective guided thickness is not
equal to the physical thickness because of the GH phase shifts. De-
tailed calculation [33, 34] reveals that the distances x0 and xd between
the media interface and the effective interface can be approximately
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Figure 3. The effective guided thickness of the symmetrical gyrotropic
slab. Because of the different GH phase shifts φ0 and φd, the inverted
‘penetration’ distance x0 is not equal to xd, causing the distribution of
the field to be asymmetrical.

expressed by

x0 = − kx

2ky

∂2φ0(ky)
∂ky

∣∣∣∣
ky=kiy

=
1

1+(p−q)2

[
p−q

kx
+

kx

α2
1

p− kx

k2
y

q

]
,(19)

xd = − kx

2ky

∂2φd(ky)
∂ky

∣∣∣∣
ky=kiy

=
1

1+(p+q)2

[
p+q

kx
+

kx

α2
1

p +
kx

k2
y

q

]
.(20)

It is obvious to see that in the case of no external magnetic field,
q = 0 and the GH phase shifts on both interfaces are the same, then
the distance x0 is equal to xd, causing the center of the effective slab
overlaps that of the physical one, therefore the field is symmetrically
distributed in the slab. However, when there is an external magnetic
field, q is no longer zero and the GH phase shifts on both sides are
different, inducing the different extended distance x0 and xd. As a
result, the center of the effective thickness shifts away from that of the
physical one, causing the field asymmetrically distributed. We show
the distribution of the magnetic field and the effective boundaries in
Fig. 4. The center of the effective thickness and that of the magnetic
field are close to each other.

As for the electric fields, it is easy to verify that, no matter which
mode is concerned, the y components are all pure imaginary number,
which results in the power flow only in the propagating direction, i.e.,
y direction. So we only consider the x components of electric fields in
the three regions.

E1x(x, y) = − ky

ωε1
H1e

α1xeikyy, (21)
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Figure 4. The distribution of magnetic field and the effective
boundaries for the waveguide mode of m = 0. The vertical solid
lines in red are the physical interfaces of the slab, while the dashed
lines in green outside the slab are the effective guided boundaries. The
center of the effective thickness (dash-dot line in green) and that of the
magnetic field (dot line in blue) are shown in the slab. They are close
to each other. The field is normalized to the maximum value, while
the horizontal distances are normalized to the slab thickness d. The
parameters are the same as those of Fig. 2 and the working frequency
ω is 0.72 ωp.

E2x(x, y)=




− ky

ωεV
H1

cos(kxx+ξ+φ0)
cos φ0 cos ξ eikyy waveguide mode

− ky

ωεV
H1

sinh(kxIx+ξI+φ
(1)
0I )

cosh φ
(1)
0I |sinh ξI |

eikyy cosh mode

− ky

ωεV
H1

cosh(kxIx+ξI+φ
(2)
0I )∣∣∣sinh φ

(2)
0I

∣∣∣|sinh ξI |
eikyy sinh mode

, (22)

here ξ = tan−1 εgkx

εxxky
and ξI = tanh−1 εxxky

εgkxI
.

E3x(x, y)=




− ky

ωε1
H1

(−1)m cos φd

cos φ0
e−α1(x−d)eikyy waveguide mode

− ky

ωε1
H1

cosh φ
(1)
dI

cosh φ
(1)
0I

e−α1(x−d)eikyy cosh mode

ky

ωε1
H1

sinh φ
(2)
dI∣∣∣sinh φ
(2)
0I

∣∣∣e−α1(x−d)eikyy sinh mode

. (23)

From Eqs. (17) and (22), we can find that compared with the
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magnetic field in the gyrotropic medium, the x component of electric
field has another phase shift ξ or ξI , also arisen from the applied
magnetic field.

4. POYNTING VECTOR

In order to get deeper insight into the physics of guided waves, we
proceed with calculation of energy flow in each medium. The time-
averaged Poynting vectors in each region are

〈
S̄1

〉
=

1
2
Re

(
Ē1 × H̄∗

1

)
= ŷ

ky |H1|2
2ωε1

e2α1x, (24)

〈
S̄2

〉
=

1
2
Re

(
Ē2 × H̄∗

2

)

=




ŷ
ky |H1|2

4ωεV cos2 φ0

[
cos(2kxx+2φ0+ξ)

cos ξ + 1
]

waveguide mode

ŷ
ky |H1|2

4ωεV cosh2 φ
(1)
0I

[
sinh(2kxIx+2φ

(1)
0I +ξI)+sinh ξI

|sinh ξI |

]
cosh mode

ŷ
ky |H1|2

4ωεV sinh2 φ
(2)
0I

[
sinh(2kxIx+2φ

(2)
0I +ξI)−sinh ξI

|sinh ξI |

]
sinh mode

, (25)

〈
S̄3

〉
=

1
2
Re

(
Ē3 × H̄∗

3

)

=




ŷ
ky |H1|2
2ωε1

cos2 φd

cos2 φ0
e−2α1(x−d) waveguide mode

ŷ
ky |H1|2
2ωε1

cosh2 φ
(1)
dI

cosh2 φ
(1)
0I

e−2α1(x−d) cosh mode

ŷ
ky |H1|2
2ωε1

sinh2 φ
(2)
dI

sinh2 φ
(2)
0I

e−2α1(x−d) sinh mode

. (26)

From Eqs. (24), (25), and (26), we can see that in the isotropic
media outside the waveguide, the time-averaged Poynting vector is
always in the wave propagating direction, while it is not true for the
gyrotropic medium in the slab. We show the spatial distribution of the
time-averaged Poynting power and the corresponding magnetic and
electric fields at a certain working frequency in Fig. 5. It is obvious
to see that the y component of the Poynting power in the gyrotropic
medium varies with the transverse position, and may be either positive
or negative. This is because of the phase shift ξ or ξI between the
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magnetic and electric fields, which directly comes from the εg, the
influence of applied magnetic field. Hence this phenomenon cannot
occur in the absence of the external magnetic field.
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Figure 5. The spatial distribution of the time-average Poynting power
in propagating direction, and corresponding magnetic and electric
fields. Depending on the transverse position, < Sy > in the gyrotropic
medium may be either positive or negative while it is always positive
in the isotropic media outside the slab. All the fields and the Poynting
power are normalized to their maximum values respectively, while the
horizontal distances are normalized to the slab thickness d. All the
other parameters are the same as those of Fig. 4.

5. CONCLUSION

This paper investigates on the influence of an external magnetic field on
a symmetrical gyrotropic slab in terms of GH phase shifts. Considering
the nonreciprocity of the gyrotropic medium, we calculate the GH
shifts on both sides of the symmetrical gyrotropic slab and derive
the guidance conditions for both waveguide modes and surface modes.
For TM waves, because of the different GH shifts at each boundary,
the external magnetic field destroys the symmetry of spatial field
distribution, the concepts of ‘penetration’ distance as well as effective
thickness are used to illustrate the phenomenon. Moreover, the spatial
distribution of the time-average Poynting power is also derived in terms
of the GH phase shifts. It is found that influenced by the external
magnetic field, the Poynting power along the waveguide direction in
the slab varies with the transverse position, and may have positive or
negative value simultaneously.
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