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Abstract—Based on the theory about charge moment tensor and
the magnetic moment of a rotational charged body, and by means of
Eulor’s equation for a rotational rigid body in classic mechanics, the
Lagrangian and the dynamic equation of a charged dielectric rigid body
under a uniform magnetic field has been derived; Also two symmetric
simple cases have been solved or analyzed under condition of slow
rotation and no gravitation, the corresponding invariants have also
been found.

1. INTRODUCTION

A charged body rotating around a fixed axis has definite magnetic
moment, and an object with magnetic moment will sustain moment of
force imposed by an external magnetic field [1–6]. References [1–4] has
deduced a series of rules and given some examples about calculating
the magnetic moment of a rotational charged body based on a strict
and delicate analogue relation. Especially the interesting and useful
concepts such as charge moment tensor T̃ , scalar charge moment,
principal axis and principal-axis scalar charge moment introduced in
references [1, 2] make it very easy for us to compute the magnetic
moment of an arbitrary rotational charged body with respect to an



230 Zhou, Xiao, and Zhou

arbitrary given axis. Meanwhile, the relationship between the quadric
distributive law of scalar charge moment and the parameters of tensor
T̃ has also been discussed in detail, and conditions of zero magnetic
moment for an arbitrary rotational charged body have been formulated
explicitly in references [2].

On the other hand, to compute T̃ and magnetic moment �Pm
of a rotational charged body is only the first step to study its
dynamic and kinetic behaviors in electromagnetic fields. In view of
electromagnetism, cosmology and space technology, it is of special
meaning and extraordinary importance to derive a dynamic equation
for a rotational charged body under a given electromagnetic field.

Generally speaking, movement of a rigid body can be viewed as
superposition of the movement of its center of mass and the rotation
around the center, the latter is just the concerned theme of the present
paper. As to a rigid body with an arbitrary mass distribution rotating
around a fixed point, there are rarely several circumstances which can
be strictly solved [7, 8], such as Eulor-Poinsat case under zero moment
of force, Lagrange-Poisson case for a rigid body with a symmetry of
degree 4 (that is, Ix = Iy �= Iz), and a more special example — the
so-called Kovaleveskaya case. The rotation of a charged body under
vanishing magnetic moment or zero moment of force belongs to Eulor-
Poinsat case. Its solution can be expressed with the complicated Jacobi
function (a function related to elliptic integral) [9]. Then a question is
brought forth subsequently — how about a rotational charged body in
an electromagnetic field?

In the present paper, by means of Lagrange dynamical theory
and Eulor’s equation for a rotational rigid body, the Lagrangian and
dynamic equations of a rotational charged rigid body under a uniform
magnetic field has been successfully derived; Also two symmetric
simple cases have been solved and analyzed under conditions of
slow rotation and no gravitation. We limit our research object to
the dielectric rigid body under conditions of slow rotation and no
gravitation so that the damping effect of electromagnetic radiation
and the relativistic effects caused by rotation can all be ignorable.

2. FUNDAMENTAL CONCEPTS OF CHARGE
MOMENT TENSOR FOR A ROTATIONAL CHARGED
BODY

In an arbitrary body-coordinate system O-xyz which is rigidly linked
with a charged body of definite volume (area, line or discrete) charge
distribution, the so-called charge moment tensor with respect to
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the given origin O is defined as:

T̃ (O) =

(
Txx Txy Txz
Tyx Tyy Tyz
Tzx Tzy Tzz

)
=

(
T11 T12 T13

T21 T22 T23

T31 T32 T33

)
(1)

Under the case of disperse charge distribution, the tensor element
is

Tαβ(O) =
∑
i

Qi

[
r2
i δαβ − xiαxiβ

]
(α and β = 1, 2, 3) (2)

here ⇀
r i is the position vector of point charge Qi,

⇀
r i = (xi1, xi2, xi3) =

(xi, yi, zi), and for the case of continual charge distribution such as a
charged body with a volume charge density of ρe(x1, x2, x3),

Tαβ(O) =
∫
v

ρe (x1, x2, x3)
[
r2δαβ − xαxβ

]
dv (3)

here dv = dx1dx2dx3, r2 = x2
1 + x2

2 + x2
3.

Then the so-called scalar charge moment Tl with respect to the
same point O and arbitrary direction (provided its direction cosine is
⇀

l = (cos θ1, cos θ2, cos θ3)) is

Tl(O,
⇀

l ) =
⇀

l · T̃ ·
⇀

l = (cos θ1 cos θ2 cos θ3)

(
T11 T12 T13

T21 T22 T23

T31 T32 T33

) (cos θ1

cos θ2

cos θ3

)

= T11 cos2 θ1 + T22 cos2 θ2 + T33 cos2 θ3

+2T12 cos θ1 cos θ2+2T23 cos θ2 cos θ3+2T31 cos θ3 cos θ1 (4)

Then it can be immediately deduced that a rotational charged
body with an angular velocity of �ω with respect the same axis (O,

⇀

l ),
must has a scalar charge moment ( given �ω = ω

⇀

l ):

Tl =
⇀
ω

ω
· T̃ ·

⇀
ω

ω
(5)

And magnetic moment

⇀

Pm

(
O,

⇀

l
)

=
1
2
Tl�ω =

1
2

(
�ω

ω
· T̃ · �ω

ω

)
�ω =

1
2
liT̃ijlj�ω (6)

here the repeated indices represent summation from 1 to 3 according
to Einstein’s convention.
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Concepts of principal axes and corresponding principal scalar
charge moments have also been proposed in reference [1].

In the new Cartesian coordinate body system O-xyz spanned
with above three principal axes, the charge moment tensor can be
expressed as a diagonal form

T̃ (O) =

(
T1 0 0
0 T2 0
0 0 T3

)
(7)

Based on the concepts of principal axes and the three principal-
axis scalar charge moments, scalar charge moment Tl with respect to
an arbitrary direction

⇀

l = (cos θ1, cos θ2, cos θ3) and the given point
O is

Tl =
⇀

l · T̃ ·
⇀

l = T1 cos2 θ1 + T2 cos2 θ2 + T3 cos2 θ3 (8)

Then according to Equation (6),

⇀

Pm

(
O,

⇀

l
)

=
1
2

(
T1 cos2 θ1 + T2 cos2 θ2 + T3 cos2 θ3

)
�ω (9)

3. DYNAMIC EQUATION OF ROTATIONAL CHARGED
DIELECTRIC RIGID BODY IN A UNIFORM
MAGNETIC FIELD

We select Cartesian coordinate system O-xyz in the body reference
with the center-of-mass point O as its origin and the inertia principal
axes as its three axes. Therefore, according to formula (6), the moment
of force generated by the uniform magnetic field is

�M = �Pm×
⇀

B = Mx
�i+My

�j +Mz
�k

=
1
2
Tl

[
(ωyBz−ωzBy)

⇀

i+(ωzBx−ωxBz)
⇀

j+(ωxBy−ωyBx)
⇀

k
]
(10)

Thus the dynamic rotation equation of the rigid body is Euler’s
Equation 


Ixω̇x − (Iy − Iz)ωyωz = Mx

Iyω̇y − (Iz − Ix)ωzωx = My

Izω̇z − (Ix − Iy)ωxωy = Mz

(11)



Progress In Electromagnetics Research C, Vol. 1, 2008 233

Or concretely expressed as


Ixω̇x −
[(

Iyωz +
1
2
TlBz

)
ωy −

(
Izωy +

1
2
TlBy

)
ωz

]
= 0

Iyω̇y −
[(

Izωx +
1
2
TlBx

)
ωz −

(
Ixωz +

1
2
TlBz

)
ωx

]
= 0

Izω̇z −
[(

Ixωy +
1
2
TlBy

)
ωx −

(
Iyωx +

1
2
TlBx

)
ωy

]
= 0

(12)

here

Ĩ(O) =

(
Ix 0 0
0 Iy 0
0 0 Iz

)
(13)

is the principal-axes moment of inertia of the rigid body with respect
to point O.

Equation (12) is effective for an arbitrary rotational charged
dielectric rigid body in a gravitationless environment and a uniform
magnetic field.

4. THE LAGRANGIAN OF ROTATIONAL CHARGED
DIELECTRIC RIGID BODY IN AN UNIFORM
MAGNETIC FIELD

We can also make use of Lagrange’s dynamic theory to depict the
same rotation system. Suppose ωx, ωy, ωz are respectively the three
components of the angular velocity in the body reference system
and Cartesian coordinate frame O-xyz, also suppose the direction of
external uniform magnetic field is along the axisOζ of coordinate frame
O-ξηζ in a fixed reference system, and ϕ, θ, ψ respectively stand for
the angle of precession, nutation, and rotation, shown as Fig. 1.

Then the Eulor’s kinetic equation is

ωx = ϕ̇ sin θ sinψ + θ̇ cosψ

ωy = ϕ̇ sin θ cosψ − θ̇ sinψ

ωz = ϕ̇ cos θ + ψ̇

(14a)

It can be rewritten as a matrix form(
ωx
ωy
ωz

)
=

(sin θ sinψ cosψ 0
sin θ cosψ − sinψ 0

cos θ 0 1

)
ϕ̇

θ̇

ψ̇


 ≡ M̃


ϕ̇

θ̇

ψ̇


 (14b)
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Figure 1. Eulor’s angles describing the movement of a rigid body
around its center of mass.

Here

M̃ =

(sin θ sinψ cosψ 0
sin θ cosψ − sinψ 0

cos θ 0 1

)
(15)

We select the three Eulor’s angles ϕ, θ, ψ as the generalized coordinates
of the system, then the rotation kinetic energy of this system is

Ek(ϕ, θ, ψ; ϕ̇, θ̇, ψ̇) =
1
2

(ωx ωy ωz) Ĩ (ωx ωy ωz)
T

=
1
2

(
ϕ̇ θ̇ ψ̇

)
MT ĨM

(
ϕ̇ θ̇ ψ̇

)T (16)

Here the superscript “T” represents transposition of a matrix.
On the other hand,

�Pm =
1
2

(
�ω

ω
· Tl ·

�ω

ω

)
�ω

=
1
2

[(
ϕ̇ θ̇ ψ̇

)
MT T̃M

(
ϕ̇ θ̇ ψ̇

)T ] (
ϕ̇ θ̇ ψ̇

)
MT (17)

And the uniform magnetic field
⇀

B along with direction Oζ can be
expressed in terms of Eulor’s angles ϕ, θ, ψ and the value of

⇀

B

�B = B sin θ cosψ
⇀

i +B sin θ sinψ
⇀

j +B cos θ
⇀

k

= B (sin θ cosψ sin θ sinψ cos θ)T (18)

Then the potential energy of rotational charged dielectric rigid body
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in a uniform magnetic field is

Vm = −�Pm · �B
= − B

2ω2

[(
ϕ̇ θ̇ ψ̇

)
MT T̃M

(
ϕ̇ θ̇ ψ̇

)T ]
·(

ϕ̇ θ̇ ψ̇
)
MT (sin θ cosψ sin θ sinψ cos θ)T (19)

here

ω2 = θ̇2 + ϕ̇2 + ψ̇2 + 2ϕ̇ψ̇ cos θ (20)

Thus the Lagrangian of this system is

L(ϕ, θ, ψ; ϕ̇, θ̇, ψ̇) = Ek − Vm

=
1
2

(
ϕ̇ θ̇ ψ̇

)
MT ĨM

(
ϕ̇ θ̇ ψ̇

)T
+

B

2ω2

[(
ϕ̇ θ̇ ψ̇

)
MT T̃M

(
ϕ̇ θ̇ ψ̇

)T ]
·(

ϕ̇ θ̇ ψ̇
)
MT(sin θ cosψ sin θ sinψ cos θ)T(21)

Note that although Ĩ is diagonal in the principal-axes coordinate
system, generally the charge moment tensor T̃ isn’t definitely of a
diagonal form at the same time, but still expressed as formula (1).

Then the Lagrange dynamic equations of the conservative system
are

d

dt

(
∂L

∂ϕ̇

)
− ∂L

∂ϕ
= 0 (22)

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= 0 (23)

d

dt

(
∂L

∂ψ̇

)
− ∂L

∂ψ
= 0 (24)

The above equation determines the dynamic behaviors of this rotation
system. It is easy for us to recognize immediately that ϕ is the
ignorable variable (i.e., the cyclic coordinate) of the system and the
corresponding generalized momentum Pϕ is a invariant of this system
with

Pϕ =
∂L

∂ϕ̇
(25)

Ṗϕ =
∂L

∂ϕ
= 0 (26)
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Equations (20)–(24) is complete and actually equivalent to Equa-
tion (12), but just as that instructed in first section, there are rarely
several cases permit a strict solution. In the subsequent chapters, we
will give some conclusions and discussion about two simply or sym-
metric circumstances.

5. SIMPLE CONCLUSION ABOUT A SYMMETRIC
CASE

When the concerned dielectric rigid body is of a 4-degree symmetric
axis about the distribution of its mass and charge, that is, the center
of mass and center of charge is just the same point-origin O of body
reference system. The principal axes of inertia moment tensor Ĩ and
those of the charge moment tensor T̃ are therefore also collinear and
construct the above body Cartesian coordinate system, in which both
the inertia moment tensor Ĩ and the charge moment tensor T̃ are
diagonal, i.e., respectively expressed as formula (13) and (7). At the
same time, we have

Ix = Iy �= Iz, T1 = T2 �= T3 (27)

According to formula (6) and (7), the magnetic moment
corresponding to angular velocity ⇀

ω is

�Pm =
1
2

(
⇀
ω

ω
· T̃ ·

⇀
ω

ω

)
⇀
ω

=
1

2ω2

(
T1ω

2
x + T2ω

2
y + T3ω

2
z

)
�ω

=
1

2ω2

[
T1

(
θ̇2 + ϕ̇2 sin2 θ

)
+ T3

(
ψ̇ + ϕ̇ cos θ

)2
]
�ω (28)

then

Ek =
Ix
2

(
θ̇2 + ϕ̇2 sin2 θ

)
+
Iz
2

(
ψ̇ + ϕ̇ cos θ

)2
(29)

and

Vm = −�Pm · �B

= − B

2ω2

[
T1

(
θ̇2+ϕ̇2 sin2 θ

)
+T3

(
ϕ̇ cos θ+ψ̇

)2
](
ψ̇ cos θ+ϕ̇

)
(30)
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At last we attain the Lagrangian of above dielectric rigid body
with a 4-degree symmetric axis, that is

L
(
ϕ, θ, ψ; ϕ̇, θ̇, ψ̇

)
= Ek − Vm

=
Ix
2

(
θ̇2 + ϕ̇2 sin2 θ

)
+
Iz
2

(
ψ̇ + ϕ̇ cos θ

)2

+
B

2ω2

[
T1

(
θ̇2+ϕ̇2 sin2 θ

)
+T3

(
ϕ̇ cos θ+ψ̇

)2
](
ψ̇ cos θ+ϕ̇

)
(31)

Here ω2 is also given by formula (20). We can immediately
recognize that ϕ and ψ are the cyclic coordinates (i.e., the so-called
ignorable variables) of this system. According to Lagrange dynamic
Equations (22)–(24), it is easy to find that corresponding generalized
momentum Pϕ = ∂L

∂ϕ̇ and Pψ = ∂L
∂ψ̇

are all the invariants of the system.

6. AN EXAMPLE OF STRICT SOLUTION

If the rotational charged dielectric is made of the same particles with an
unique charge-mass ratio of qi/mi, (i = 1, 2, . . . , n), for the discrete
case, and we define that

γ ≡ qi/2mi, (i = 1, 2, . . . , n) (32a)

or under the continual case,

γ ≡ ρe(�r )/2ρm(�r ) (32b)

Take the case of continual distribution as reference, in a fixed inertial
reference system, the magnetic moment can be expressed as

�Pm =
1
2

∫
ρe(�r )(�r × �υ )d3�r (33)

And the total angular momentum can be formulized as

�J =
1
2

∫
ρm(�r )(�r × �υ )d3�r (34)

where ρm is the mass density of the rigid body. From (32a) or (32b)
and compare (33) with (34), we have

�Pm = γ �J (35)
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Then the moment of the force generated by the magnetic field is

�M = �Pm × �B = γ �J × �B

= −γ �B × �J (36)

According to angular momentum theorem, in a fixed inertial
reference system,

�M =
d

⇀

J

dt
= −γ

⇀

B ×
⇀

J

= ⇀
ω ×

⇀

J (37)

here
⇀
ω = −γ �B (38)

This is just accordance with the sufficient and necessary condition
for a vector to make a regular precession movement attained in
reference [10], therefore the angular momentum

⇀

J will precess with
a precession angular velocity of ⇀

ω. This is in fact equivalent to Larmor
precession which depicts the movement of a particle with magnetic
moment in a magnetic field. The different point is the rotational
charged dielectric rigid body is of an arbitrary shape and distribution
of charge and mass but the same charge-mass ratio.

7. CONCLUDING REMARKS

Research of a charged dielectric rigid body in a uniform magnetic field
is an important and valuable content involved in space technology,
cosmology, celestial physics, and electrical engineering. It is worthy of
mention that, even for a rotational rigid body under the background
without electromagnetic field, there are only several examples such as
Eulor-Poinsat case, Lagrange-Poisson case, Kovaleveskaya case that
can be strictly solved. In order to study the rotation problem of a
charged dielectric rigid body in a uniform field, we ignore the existence
of gravitation and induction electricity (for slow rotation and dielectric
medium).

Making use of existent theory about the relationship between
the charge moment tensor and the magnetic moment of a rotational
charged body, Eulor’s equation and Lagrange dynamic theory in
analytic mechanics, we successfully derived the Lagrangian of a
rotational charged dielectric rigid body in a uniform magnetic field,
give concrete and simple conclusion under two cases: i, a system with
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symmetric distribution of charge and mass. ii, a system consisting
of the same particle with an unique charge-mass ratio (qi/mi ≡ 2γ),
and recognize the ignorable variable and corresponding invariant. In a
subsequent paper, we will discuss in detail the dynamics of a rotational
charged dielectric rigid body in another kind of electromagnetic field.
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