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Abstract—Diffraction of an electromagnetic plane wave from a slit
in an impedance plane has been presented. The method is based on
Maliuzhinets technique for impedance surfaces. Comparison of the field
patterns with different values of the face impedance are also presented.

1. INTRODUCTION

The double perfectly conducting wedge scattering was investigated
by Elsherbeni and Hamid [1]. They presented the solution for the
diffraction of an incident plane wave by a slit in a perfectly conducting
plane considering it as composed of two wedges. In recent years, high
frequency description of the scattering from edges in non perfectly
conducting surfaces has attracted the interest of many researchers
due to its practical applications. Impedance surfaces represent a
canonical approach for the coated conducting geometries. Moreover,
the application of geometrical theory of diffraction (GTD) to the
scattering from a wedge with impedance faces is applicable to the
analysis of practical structures involving edges in an impedance surface.
It may be noted that scattering from slits, half plane, impedance
surfaces and study of high frequency diffraction are topics of current
interest [2–13].

For a plane wave incidence in a plane perpendicular to the edge
of an impedance wedge, a method of formulation for arbitrary face
impedance and wedge angle, was developed by Maliuzhinets [14].
He expressed the total scattered field with a spectrum integral of
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plane waves, which contains an unknown weight function. The
weight function is found by considering boundary, radiation and edge
conditions.

The Maliuzhinets function [15, 16] plays a key role in the theory of
diffraction by wedges with imperfectly conducting surfaces. Nearly all
available exact solutions for nonmetallic wedges are expressed in terms
of Maliuzhinets function.

2. FORMULATION OF THE PROBLEM

A slit may be viewed as two coplanar wedges each with zero wedge
angle, separated by a certain width. The slit geometry and co-ordinates
of the problem are shown in Fig. 1. Width of the slit is 2d. A dual
cylindrical coordinate system is used for the slit geometry, because it
has been considered as combination of two wedges. We consider a two
dimensional case in which the edge is a straight line and the incident
rays all lie in planes normal to the edge. Then the diffracted rays are
also normal to the edge, and emanate from it in all directions. Let the
incident field is[
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z
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The uniform expression for the field diffracted from a wedge has
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Figure 1. Impedance slit.
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where p = 1
n = π

φω
is the parameter associated with the wedge angle

φω. The diffraction coefficient can be defined as [17]
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Ds and Dh are the diffraction coefficients of E and H polarizations
respectively with the same form except the definition of sin θ±
contained in the functions Ψ(α). Function F (x) is the Fresnel integral
defined as
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where ψφ(.) is the Maliuzhinets function.

For the half plane, n = 2, φω = 2π and Φ = π, therefore
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The Maliuzhinets function ψπ(α) for the half-plane is given by

Ψπ(α) = exp
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sin θ± = 1
ζ±

for E-polarization, sin θ± = ζ± for H-polarization. The
angles between the incident and diffracted rays and normal to the half
plane are φ and φ0 respectively.

For large argument, Fresnel integral can be given as
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3. ELECTROMAGNETIC FIELD DIFFRACTED FROM
THE SLIT

We shall apply (2) and (5) to determine the field diffracted by an
infinitely long slit of width “2d” in a thin impedance plane. Let the
edges of the slit are at x = ±d, y = 0. The singly diffracted field at an
observation point, Ed

1 is the sum of two terms of the form (5).

3.1. Field from Right Edge

The field diffracted from right edge is

Ed
r (ρ1, φ1) = Dr(ρ1, φ01, φ1)ρ

− 1
2

1 exp(−jkρ1)Ei (9)
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where
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In the far field of the slit (ρ� d)
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3.2. Field from Left Edge

The field diffracted from left edge is
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In the far field of the slit (ρ� d)
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The field diffracted from the slit can be calculated by taking the
linear combination of the two terms (9) and (12).

E(ρ, φ) = Er(ρ1, φ1) + El(ρ2, φ2) (15)

4. DISCUSSION

In this paper we have investigated the diffracted pattern of a slit in an
impedance plane using the Maliuzhinets function. We have derived a
simple and convenient expression for the field diffracted by an infinite
slit in an impedance plane when the wavelength is greater than or equal
to the slit width. The principal result is that this field can be accurately
calculated everywhere by considering each half plane composing the
slit, to be excited by the incident plane wave. It may be noted that
the results are valid for all incident angles. Comparison of E and H-
polarized fields are also made, as shown in Fig. 2. Furthermore, the
plots shown in Fig. 3. give a comparison of the field pattern with
different values of the face impedance.
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Figure 2. (a) E and H-polarizations for impedance 0.2–0.5j with slit
width kd = 4, (b) E and H-polarizations for impedance 0.2–0.5j with
slit width kd = 8.
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Figure 3. (a) Different values of impedance for slit width kd = 4, (b)
Different values of impedance for slit width kd = 8.
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