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Abstract—The retrieval of the surface profile of a reflector antenna
is an important task, mainly for radio-astronomical applications. The
microwave holography retrieves the reflector profile starting from a set
of measured far-field data. The main step of this technique is the
computation of the induced currents on the reflector surface. This
requires the solution of a linear inverse problem which is strongly ill-
conditioned. We propose a new technique, based on the Singular Value
Decomposition, for the solution of this linear inversion problem. This
technique supplies a flexible regularization scheme, able to take into
account also the noise level of the data. The proposed procedure has
been tested on a number of different cases, with field data generated
by a commercial software.

1. INTRODUCTION

The performances of reflector antennas strongly depend on the
accuracy of their surface. Therefore, the detection of the position
and amount of the surface distortions is a key step in the reflector
antenna test. Environmental causes, mechanical deformations due to
the antenna positioning, and the changing gravitational loads when the
elevation pointing direction of the antenna is modified, can degrade
the surface accuracy and, as a consequence, the antenna efficiency.
Therefore, the reflector surface must be periodically checked in order
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to preserve the antenna performances. This is even more important
for radio-astronomical reflector antennas [1–8]. Actually, some reflector
antennas of recent construction have been provided with active surfaces
(see e.g., the Noto Radiotelescope in Italy) to compensate for the
deformations. As a consequence, the panels displacements must be
evaluated and corrected by using an effective and accurate procedure.

Many different techniques have been proposed for the reflector
surface measurements. These techniques can be divided into direct and
inverse measurement methods. The former ones survey the reflector
surface by using mechanical and/or optical measurement systems
[9, 10]. The output of these technique gives the actual shape of the
main reflector. On the other side, the inverse methods, based on
microwave holographic measurement, examine the entire optics chain.
They obtain the current induced on the reflector surface, and then the
information about the surface misalignments, by using the antenna
far-field pattern which is measured by pointing the reflector towards a
satellite or a radio source [11]. The amplitude and phase of the far-field
can be measured by using a second antenna to obtain a stable phase
reference [11]. As an alternative, only the amplitude of the far-field can
be used as input data [12–14]. Both types of far-field measurements
allow to create an accurate map of the reflector surface. Of course,
they need a high signal-to-noise ratio (SNR). This is particularly true
for the phase retrieval methods [12–14], which require about the square
SNR of that needed when the phase can be directly measured.

In this paper we focus our attention on the use of microwave
holography for the computation of the induced current on the reflector
surface, by using both amplitude and phase information of the far-field.
This task requires the solution of an inverse problem, which is strongly
ill-conditioned. Moreover, only a limited amount of information on the
antenna pattern is available. As a consequence, the solution must be
sought by using some regularization procedure.

Up to now, this problem has been solved by using an extrapolation
procedure, based on a simple Fourier transform [11] inversion. This
is computationally efficient, but is limited to the paraxial case. As
required by the FFT algorithm, the far-field measurements must be
taken at the Nyquist rate and the current sampling rate is dictated by
the well-known FFT rule. This choice assures an implicit regularization
of the problem [15] but the amount of regularization is independent
from the noise level.

Aim of this paper is to introduce and investigate a new solution
technique for this linear inversion problem based on the Singular Value
Decomposition (SVD) [16]. The main advantages of this approach are:
i) it is based on the exact relation between field and current and does
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not require the paraxial approximation leading to the FFT inversion
approach. As a consequence, it can also be implemented starting from
different set of data, while FFT requires far-field paraxial data;
ii) it supplies a flexible regularization scheme, able to take into account
the noise level of the data and tie it to the actual resolution (i.e., the
amount of independent information);
iii) no constraint on the measurement and reconstruction points and,
consequently, the separation of the actual resolution of the solution
from its graphical resolution.

In order to assess the new holographic technique presented in this
paper, a number of surface distortions of arbitrary amount and position
have been considered on a test reflector. The far-field data have been
obtained by using a commercial software for the analysis of general
reflector antennas (GRASP 9 by TICRA).

2. PROBLEM FRAMEWORK

As it is well-known [17], the relationship between the radiated far-field
E(r, θ, φ) and the current J(r0) on the reflector surface is

E(r, θ, φ) = −jβξ e
−jβr

4πr
F (θ, φ) (1)

F (θ, φ) = [I − irir] ·
∫∫

S
J(r0)e

jβir·r0ds (2)

wherein β = 2π/λ, λ is the free-space wavelength and ξ = 120π is the
free-space impedance. Equation (2) gives the radiation pattern of the
reflector antenna; I is the identity matrix, ir is the unit vector that
points toward the direction (θ, φ), S is the surface of the parabolic
reflector (with diameter D and focal length f) and r0 is the vector
that points on the reflector surface element ds (see Fig. 1(a)).

We assume that the reflector antenna is illuminated by a feed,
located at the focal point (O in Fig. 1(a)), with an ideal linear
polarization. Since the reflector is axis-symmetric, we choose the x -
axis along the E-plane of the feed. Let be H i the incident magnetic
field generated by the feed. The induced electric current J(r0) on
the reflector depends on H i. The standard approximation to evaluate
J(r0) is the use of the physical optics (PO) currents J (PO)(r0) =
2in ×H i(r0) [17], wherein in is the normal to the reflector surface.

Letting the PO currents J (PO)(r0)=2H iij , the sought for induced
current direction is

ij =
in × iH
|in × iH | (3)
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Figure 1. (a) Reflector Geometry; (b) front view of the parabolic
reflector with subdivision into panels; the panel under test is
highlighted in grey; (c) GRASP modelization of a panel; (d) description
of the surface distortion.

where iH is the direction of the incident magnetic H i field.
Letting α(ρ) = 2 arctan[ρ/(2f)] the angle measured from the feed

boresight (see Fig. 1(a)), it follows that

iH =
− sin2 α sinϕ cosϕix + (1 − sin2 α sinϕ)iy − sinα cosα sinϕiz
| − sin2 α sinϕ cosϕix + (1 − sin2 α sinϕ)iy − sinα cosα sinϕiz|

(4)
and the unit normal in to the reflector surface is given by

in =
− ∂g
∂x′

ix −
∂g

∂y′
iy + iz∣∣∣∣− ∂g∂x′ ix − ∂g

∂y′
iy + iz

∣∣∣∣ (5)

wherein z′ = g(x′, y′) describes the surface of the parabolic reflector.
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The integral (2), can be written in terms of the aperture
coordinates (ρ, ϕ) (z′ = −z, x′ = x = ρ sinϕ, y′ = −y = ρ cosϕ)
by using the surface Jacobian transformation [17]:

F (θ, φ) = [I − irir] ·
∫∫

S′
J(ρ, ϕ)ejβir·r0Jsρdρdϕ (6)

wherein the Jacobian Js is given by

Js =

[(
∂g(x′, y′)
∂x′

)2

+
(
∂g(x′, y′)
∂y′

)2

+ 1

] 1
2

(7)

The new integration domain S′ in (6) is the projection of the reflector
surface S on the aperture plane, and therefore is defined in the following
range: ρ ∈ [RB, R], ϕ ∈ [0, 2π], wherein RB and R are, respectively,
the blocking and external radii of the reflector.

Let now define an equivalent current J̃ such that:

J̃ = J(ρ, ϕ)Js. (8)

This equivalent current has a direction ij given by (3) and will be
expressed in the following as J̃ = J̃ ij , where J̃ is the unknown current
to be retrieved by the far-field measurement data. Replacing ir and r0
by their spherical components we can finally write:

F (θ, φ) = [I − irir] · ij
∫ R

RB

∫ 2π

0

J̃ejβ(z
′
cos θ+ρ sin θcos(ϕ−φ))ρdρdϕ (9)

where z
′
(ρ) = [ρ2/(4f)] − f is the reflector nominal profile.

Now, since our attention is aimed at the reflector profile, i.e., at a
scalar quantity, only one component of the induced current is sufficient
to obtain the required information on the reflector surface. As a
consequence, only one component of the far-field can be considered,
and we choose the field co-polar component

Fc(θ, φ) = ic · [I − irir] · ij
∫ R

RB

∫ 2π

0

J̃ejβ(z
′
cos θ+ρ sin θcos(ϕ−φ))ρdρdϕ (10)

because it allows for the best SNR on the data. In (10) the vector

ic = [1 − cos2 φ(1 − cos θ)] ix − (1 − cos θ) sinφ cosφ iy − sin θ cosφ iz
(11)

is the field co-polar component direction (Ludwig’s third defini-
tion [18]), assuming that the radiated electric field is predominantly
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x -polarized. Note that for large and focusing reflectors, as radio-
astronomical ones, we can assume θ � 1 (radians) (cos θ ∼= 1 and
sin θ ∼= 0), and find an approximate expression for (11)

ic
∼= ix. (12)

It is worth noting that, contrarily to the FFT inversion [11], no
paraxial approximation has been made in the phase terms of (10). In
fact, the assumption θ � 1, only results in the approximation of the
amplitude and direction of the co-polar field component, as apparent
from (12).

Equation (10) is a linear Fredholm integral equation of the first
kind [16], where J̃(ρ, ϕ) is the unknown and Fc(θ, φ) the known term.
Its inversion is a severely ill-posed problem because of its very smooth
kernel and the limited integration domain S′ [16]. It follows that (10)
cannot be directly inverted, but it is necessary to apply a regularization
procedure, which generally needs also a different solution definition,
in view of the fact that the measured data Fc(θ, φ) will include an
unavoidable noise. Moreover, it must be pointed out that the far-field
pattern measurements are limited to a discrete number of points in the
region of the antenna main lobe and first few side lobes. Therefore, the
problem must be analyzed as a discrete data inverse problem [16]. Let
(θp, φp) be the set of field measurement points (with p = 1, . . . ,M) and
Lp the functional which supplies Fc(θp, φp). If the fp are the measured
values, then:

fp = Lp[J̃ ] + np = f tp + np (13)

where f tp is the field’s “ideal” value (i.e., without noise) and np is
the noise on the pth measure. In order to solve (13), the unknown
current must be discretized too, by choosing a suitable set of basis
function Iq(ρ, ϕ), q = 1, . . . , N . Therefore, the unknown current can
be expressed as J̃ =

∑N
q=1 JqIq(ρ, ϕ) and (13) can be rewritten as

fp =
N∑
q=1

JqLp[Iq(ρ, ϕ)] + np. (14)

If the functional Lp is not directly invertible, as in (10), the problem
must be formulated in the least-squares sense. Defining the numerical
vector f ∈ CM×1, having components fp, and the matrix L associated
with the functional Lp, we must seek for a solution J̃LS (having
component Jq) that minimizes the residual 2 -norm

min
J̃∈CN×1

‖L · J̃ − f‖2
2. (15)
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This solution is usually termed “least-squares solution” [16], and it
depends linearly on the data f , so that we can write

J̃LS = L† · f (16)

wherein L† is the so-called generalized inverse of the matrix L [16].
The main point is that, even though this discrete data problem is well-
posed, it turns out to be heavily ill-conditioned [16], because (10) is
ill-posed.

3. SOLUTION APPROACH

The approach described in this paper consists in finding the unknown
current J̃ on the reflector surface by using a formulation like
(16). Therefore, J̃ is discretized according to the required graphical
resolution and the least-squares solution is regularized by using the
SVD.

The SVD approach applied to the calculation of a large linear
system, as that deriving from the application of (16) to a large reflector
antenna, is computationally heavy. However, this problem can be
overcome by using some features of radio-astronomical reflectors. In
fact, they are axis-symmetric, so that both the surface current and the
radiation pattern are better represented as Fourier Series. Obviously,
for numerical computation, it is necessary to truncate the series to a
finite number of terms with suitable upper limits. These limits can be
determined by exploiting the fact that the radiation pattern is a quasi-
band-limited function [19]. This property suggests that the number of
the retained series terms can be obtained by the spatial bandwidth of
the scattered field, as widely discussed in [19]. For a large scattering
system, the effective bandwidth of the scattered field, measured on a
circular domain, can be identified as

w =
2P + 1

2 sin θmax
= χβR (17)

wherein R is the radius of the sphere which includes the scatterer
(we assume it equal to the radius of the reflector); χ is an excess
bandwidth factor and has to be chosen slightly larger than unity to
ensure a negligible representation error [19]; θmax is the maximum
value of the θ angle of the measured circular domain and 2P +1 is the
number of the Fourier harmonics. Solving (17) with respect to P , it
follows that the number of harmonics for each side of the series is

P ∼= χβR sin θmax. (18)
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Therefore, letting Ci(ρ) the ith harmonic of the current and ti(θ) the
ith harmonic of the field, the truncated Fourier series representation
for the current and the radiation pattern is

J̃(ρ, ϕ) =
P∑

i=−P
Ci(ρ)ej(iϕ), Fc(θ, φ) =

P∑
i=−P

ti(θ)ej(iφ) (19)

wherein each harmonic ti(θ) can be calculated as

2πti(θ) =
∫ 2π

0
Fc(θ, φ)e−j(iφ)dφ. (20)

Now, carrying out the scalar products in (10), substituting the
expressions (19) in (10), and using the approximated expression (12),
after calculating the integrals with respect to the variables ϕ and φ,
we get a set of 2P + 1 equations, one for each harmonic

ti(θ) ∼= (j)i2π
∫ R

RB

[
2 cos

(α
2

)
− sinα sin

(α
2

)]
Qi(ρ, θ)Ci(ρ)ρdρ

+(j)i
π

4

∫ R

RB

sinα sin
(α

2

)
Qi(ρ, θ)[Ci−2 + Ci+2](ρ)ρdρ (21)

with Qi(ρ, θ) = Ji(βρ sin θ)ejβz(ρ) cos θ, wherein Ji is the Bessel function
of the first kind. As it is apparent from (21), the series representation
of the current involves a coupling between different harmonics, so that
the ith harmonic of the field ti(θ) is weakly coupled with the (i-2)th
and (i+2)th harmonics of the current (Ci−2 and Ci+2). Actually, the
amplitude of the coupling terms, i.e., sin(α) sin(α/2), increases with
the angle α under which the feed subtends the reflector and so decreases
when the focal diameter ratio (f/D) increases. However, we found that
the magnitude of the coupling terms is small enough even for the small
f/D values typical for radio-astronomical antennas. Therefore, they
are neglected and we are left with a new set of 2P +1 equations which
are decoupled:

ti(θ) ∼= (j)i4π
∫ R

RB

cos
(α

2

)
Qi(ρ, θ)Ci(ρ)ρdρ. (22)

4. REGULARIZED SOLUTION

The Fredholm equation (22) can be transformed in a linear system
by representing the coefficient of the ith Fourier harmonic Ci(ρ)
in terms of a set of piecewise-constant basis functions Îq(ρ), q =
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1, . . . , N . Therefore, we subdivide the integration domain of (22) into
N subdomains such that:

∆ρ =
R−RB

N
. (23)

Then, we sample both sides of (22) at the measurement points. This
latter is not a direct task, since Fc(θ, ϕ) (and then ti(θ)) requires
the measurement points to be located on concentric circles (antenna
framework), while typical measured data are available in azimuth-
elevation coordinates (terrestrial framework). Therefore, a data
transformation is required, and can be performed in two steps:
i) the measured data are transformed from the terrestrial framework (a
regular lattice in azimuth-elevation) to the antenna framework, which
can be considered a regular lattice in (u, v) for small θ angles (wherein
u = sin θ cosφ, v = sin θ sinφ);
ii) the new data in the antenna framework are interpolated in a set of
points placed on concentric circles with equi-spaced values θp = p∆θ,
with p = 1, . . . ,M and ∆θ = θmax/M . This interpolation is performed
by using band-limited self-truncating functions [20, 21] and, for each
values of θp, the number of interpolating points nφ, with respect to the
φ coordinate, is determined by the constraint on the limited spatial
band of the reflector field [19], i.e., nφ(θp) = χβR sin θp. Therefore,
the sample spacing along each circle θp is ∆φp = 2π/[2nφ(θp) + 1].

The number of unknowns involved in the least-squares problems
is determined by the choice of N (23). Nevertheless, for each harmonic
we have a different linear system, with different matrix and data
vector. More precisely, a given circular ring, at a distance R0 from
the reflector axis (i.e., all the reflector point with ρ ∼= R0) produces,
in the measurements region, only field harmonics up to P̂ (R0) =
χβR0 sin θmax (see Equation (18)). Therefore, its current must be
retrieved by using only the harmonics in the range [−P̂ (R0), P̂ (R0)].
As a consequence, for the ith harmonic, only Ñi ≤ N unknowns are
involved in the ith linear system.

Furthermore, for each measurement point θp, the limited spatial
bandwidth of the scattered field is (2P̃ + 1)/2 sin θp = χβR. This
means that the maximum index of the Fourier harmonics P̃ (θp) is given
by P̃ (θp) = χβR sin θp. As a consequence, the number of equations
M̃i ≤M , in the linear system for the ith harmonic of the current, is a
decreasing function of i.

Then, let Ai be the vector whose components are the coefficients
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of the expansion of the harmonic Ci(ρ) in terms of the set {Îq(ρ)}

Ci(ρ) =
N∑

q=N−Ñi+1

A(i)
q Îq(ρ) (24)

and T i the vector with components ti(θp) with p = M−M̃i+1, . . . ,M .
Since the solution of each ith linear system can be found in the same
way, and independently from the others, we discuss here the solution
technique for the general form of such systems

L ·A = T (25)

wherein L ∈ CM̃×Ñ , A ∈ CÑ×1, T ∈ CM̃×1.
Equation (25) can be solved in the least-squares sense [16], by

using a regularization procedure based on the SVD of the matrix L:

L = U · Σ · V H (26)

wherein U , V ∈ CM̃×Ñ are matrices with orthonormal columns,
the apex H denotes the Hermitian matrix of V , and Σ =

diag(σ1, . . . , σÑ ) ∈ CÑ×Ñ is a diagonal matrix. The diagonal elements,
the so called singular values of matrix L, are non-negative and appear
in non-increasing order such as σ1 ≥ σ2 ≥ . . . σ

Ñ
. Moreover, the ratio

between the highest singular value σ1 and the lowest non-zero one σr,
is the condition number of the matrix L, i.e., cond(L) = σ1

σr
[16].

Roughly speaking, the condition number of L is the ratio between
the relative errors in the solution and in the data, and it is therefore
a measure of the robustness of the solution. Actually, all the diagonal
elements of the matrix Σ are different from zero only when M̃ ≥ Ñ = r,
where r is the rank [16] of matrix L. On the other hand, if Ñ > M̃ ,
(25) is an under-determined linear system and r ≤ Ñ . Therefore, if
Ñ ≤ M̃ the diagonal matrix Σ is diag(σ1, . . . , σr) ∈ CÑ×Ñ , whereas
if Ñ > M̃ the diagonal matrix Σ can be more correctly written as

diag(σ1, . . . , σr, 0, . . . , 0) ∈ CÑ×Ñ . In the following discussion, for the
sake of simplicity, we assume Ñ < M̃ . Nevertheless, the results of the
regularization procedure is exactly the same if Ñ ≥ M̃ , provided that
we use the diagonal matrix with zeroes in the positions r + 1, . . . , Ñ .

Once computed the SVD of the matrix L, for each ith harmonic,
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we seek for the least-squares solution ALS such that:

min
A∈ CÑ×1

∥∥∥L A− T
∥∥∥2

2
= min

A∈ CÑ×1

∥∥∥U Σ V HA− T
∥∥∥2

2
. (27)

After left-multipling (27) by UH , we can put x = V HA and
z = UHT . Then, (27) becomes

min
x∈ CÑ×1

∥∥∥Σ x− z
∥∥∥2

2
= min
x∈ CÑ×1

r∑
k=1

[σkxk − zk]2. (28)

Equation (28) is minimized with respect to the unknowns xk when
xk = zk/σk. Therefore, the vector solution set of (28) is

x =
(
uH1 T

σ1
, . . . ,

uHr T

σr

)T

(29)

wherein uk are the columns of the matrix U and the apex T denotes
the transpose operator. Finally, the minimum 2 -norm solution (or
least-squares solution) of (28) is

ALS = V ·
(
uH1 T

σ1
, . . . ,

uHr T

σr

)T

= L† · T (30)

wherein L† = V · diag(1/σ1, . . . , 1/σr) · UH is the generalized inverse
matrix of L.

If the matrix L were well-conditioned (i.e., with a small condition
number), the stability of the solution of the linear system (25) would
be ensured. Nevertheless the ill-posedness of (22) makes the matrix
L ill-conditioned. To better clarify this concept, we can express the
solution ALS in terms of components

ALS = L† · T =
r∑

k=1

uHk T

σk
vk (31)

wherein vk are the columns of the matrix V . The ill-conditioning
of the matrix L is usually due to several “small” (compared to the
norm of σ1) but non-zero singular values. As a result, ALS becomes
unstable, since the smallest σk increases the condition number and
then amplifies the noise in the solution. In other words, the ratio
|uHk T |/σk in (31) increases very quickly with k and, in presence of
noise on the known term T , the solution instability becomes more
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evident (see Fig. 2). As shown in Fig. 2(b) for a typical case, this
result is critical for the least-squares solution of the higher harmonics.
Actually, for example, in presence of noise, the contribution of the
harmonic ;10 is comparable to that of the harmonic ;0 for high values
of k, whereas the two contributions are still well apart for low values
of k as well as in the noiseless case.

-20

-10

0

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25 30 35 40 45 50 55 60 65

harm.#0 and #1

harm.#5
harm.#10

harm.#20

harm.#40

harm.#60

harm.#80

harm.#100

[d
B

]

k index

[d
B

]

-125

-100

-75

-50

-25

0

25

50

75

100

125

(a) (b)

(σ   )k1

u Tk
H

k

u T(k
H

k

n)p+

"1"
"2"

harm.#0

harm.#0

harm.#10

harm.#10

0 5 10 15 20 25 30 35 40 45 50 55 60 65
k index

σ σ

σ

Figure 2. (a) Typical step like behaviour of the singular values
for a number of selected harmonics; (b) typical behaviour of the
least-squares solution, for the harmonics ;0 and ;10, by using the
SVD approach applied to a test distortion. The curves “1” and “2”
show respectively the coefficients of the solution without noise and
with a Signal-Noise Ratio equal to 63 dB (zero-mean Gaussian noise
calculated with the respect to the maximum of the signal) for the
harmonic ;10. The coefficient of the solution for the harmonic ;0 are
virtually unaffected by the noise effect for a SNR of 63 dB.

The ill-conditioned system can be regularized by replacing the
matrix L by a new matrix L

G
, defined as

L
G

= U · diag(σ1, . . . , σG, 0, . . . , 0) · V H (32)

wherein we replace the small non-zero singular values σG+1, . . . , σr with
exact zeros [16]. Therefore, when L is replaced by LG, we obtain a
regularized solution

ALS = L†
G
· T =

G∑
k=1

uHk T

σk
vk (33)

wherein L†
G

= V · diag(1/σ1, . . . , 1/σG, 0, . . . , 0) ·UH is the generalized
inverse matrix of L

G
. In practise, since the ratio |uHk T |/σk has a step-

like behaviour for increasing values of the index k (see Fig. 2(b)), we
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choose the G value just before the knee of the curve representing the
singular value behaviour [16], in order that the condition number of
the solution (i.e., Nc = σ1/σG) remains bounded.

Of course, the choice of G must be repeated for each harmonic,
since the matrix L is different. In Fig. 2(a), we show the behaviour of
the singular values in a typical case for a number of selected harmonics
of the recovered surface current.

Once the least-squares solution A
(i)
LS is computed, for each ith

linear system, we can find the currents on the reflector as the sum of
Fourier harmonics:

JLS(ρ, ϕ) =
P∑

i=−P
Ci(ρ) exp[j(iϕ)] =

P∑
i=−P

N∑
q=N−Ñi+1

A(i)
q Îq(ρ) exp[j(iϕ)]

(34)
where the discretization of radial coordinate ρ depends on the sampling
points of the JLS(ρ, ϕ), whereas the angular coordinate ϕ is suitably
discretized according to the required graphical resolution.

The currents induced on the reflector surface (34) are related to
the surface profile, and the comparison between the calculated profile
and the nominal profile allows us to find the distortions of the reflector
surface. In order to extract the surface profile information from (34),
we assume that the phase center of the feed is placed at the focal point
and that the surface distortion is described by the function ε(x, y)
in the z direction, as shown in Fig. 1(d). After simple geometric
considerations the surface distortion is obtained as

ε(x, y) =
λ

2π(1 + cosα)
∆δ. (35)

wherein ∆δ = phase(Jref ) − phase(JLS) is the difference between the
phase of the reference current (induced on a reflector surface without
deformations) and the phase of the recovered current. Both phases
need to be unwrapped and a simple 2D unwrapping procedure has
been used [22].

5. RESULTS

In order to assess the proposed technique, many different tests have
been performed on a reflector with the same geometrical configuration
of the Noto (Italy) antenna. The reflector diameter is 32 m, the sub-
reflector diameter is 3.2 m and the focal length-diameter ratio is 0.32.
For the sake of simplicity, in our tests, we suppose to neglect the
blockage effects due to the sub-reflector and the quadripod. Since the
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surface distortions are detected as the difference of two phases (35),
these effects could be easily considered in the procedure just including
the quadripod and the sub-reflector both in the choice of reference
current and in the computation of recovered one.

The reflector far-field has been simulated with GRASP, at the
operating frequency of 11.42 GHz, on a grid of 65 × 65 measurement
points in the terrestrial framework (observation window between
−1.25◦ and 1.25◦) and then interpolated in the antenna framework
(observation window with θmax = 1.75◦) using the self-truncating
functions [20]. The reflector model, created with GRASP, subdivides
the reflector surface in a number of panels (Fig. 1(b) and 1(c)), whose
dimensions and possible displacements with respect to the ideal profile,
can be assigned arbitrarily. In our case the number and the location
of the panels have been chosen the same of the Noto antenna.

First of all, the phase of Jref (i.e., the surface current in the
reference case), is evaluated starting from the reference far-field, i.e.,
the far-field pattern generated by the nominal reflector, without any
surface deformation. Then, a far-field pattern is generated starting
from a surface profile with a test deformation obtained with a panel
displacement in the z direction. Finally, we get the estimation of this
surface deformation by applying the SVD approach, described in the
previous sections, to retrieve both Jref and JLS and by using (35).

In order to assess our procedure, in this section we consider in
detail a deformation generated by the displacement of a test panel.
The location of this panel (Fig. 1(b)) is identified by the following
coordinates ρ = [11.53 m, 13.8 m], ϕ = [45◦, 52.5◦].

In the GRASP modelling, each panel has up to four control points
(P1, P2, P3 and P4), i.e., the position of the panel vertexes (Fig. 1(c)).
For the sake of simplicity, we impose the panel misalignment by
modifying only the z coordinate of each control point of the same
amount ε for all the control points.

The regularization procedure requires a suitable choice of the
parameter G (the maximum number of singular values) for each
harmonic. According to Section 4, we choose the value G = G̃, for
each ith harmonic, just before the knee of the curve representing the
singular values behaviour (see Fig. 2(a)). From an accurate analysis of
the solution we found that this choice is the optimal one, since we found
that it minimizes the RMS error (we call it RMSU ), i.e., the phase
oscillations, in the zone of the reflector different from the displaced
panel and this result has shown to be independent from the distortion
amount. For G < G̃ there is a loss of information, which, of course,
becomes more significant as G becomes smaller. On the other hand,
for G > G̃, the numerical errors intrinsic with the procedure, give rise
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to a typical, unwanted and growing, oscillating behaviour even where
the surface profile is supposed to be undistorted.

Moreover, it has been observed that the harmonics requiring G̃ = 1
do not contribute to the solution. They only add numerical noise to
the result and therefore, in the following of this section, will be always
neglected. All other harmonics will be included in the solution for
noiseless far-field data whereas, in the case of noisy data, only those
harmonics with the components of T large enough with respect to the
noise will be retained. The quantitative criterion will be described
later in this section.

5.1. Results for Noiseless Far-Field Data

As a first step, a displacement of the panel highlighted in Fig. 1(b)
has been recovered in the case of noiseless far-field measurements. A
comparison with the results of the traditional FFT inversion has been
also performed.

In Fig. 3 the gray scale map of the reflector, obtained with the
SVD-based approach, with a recovered panel distortion of amount
0.2 mm (λ0/130 at 11.42 GHz), is shown. The same distortion has
been recovered with the iterative FFT-inversion proposed by Rahmat-
Samii [11], showing virtually no differences in terms of resolution and
amount of the recovered distortion.
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Figure 3. Gray scale map of the retrieved reflector surface for a
distortion of 0.2 mm of the panel under test.

On equal graphic resolutions (0.3 m), the FFT-inversion is
computationally faster (it takes about 1.5 sec on a “AMD Athlon
2500+” machine with 1 GB RAM) but with the same magnitude order
of our SVD approach (about 5 sec). This difference is not critical since
the time required for the far field measurement campaign is of the order
of a few hours.
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The actual spatial resolution in the retrieval of a surface distortion
is determined by the number of singular values used in the SVD
regularization procedure, which gives the degrees of freedom in the
retrieval of the reflector surface current. Therefore, the spatial
resolution can be evaluated by using RS =

√
Af/Nν , wherein Af is the

area of the projection of the reflector surface S on the aperture plane,
and Nv is the total number of singular values for all the harmonics
used in the procedure. In our case, for noiseless far-field data (with an
excess bandwidth factor χ = 1.203), we use 211 harmonics, Nv = 3371
and then Rs = 0.49 m.

5.2. Results for Noisy Far-Field Data

The regularization scheme considered up to now in this section has
been also extensively checked in the more realistic case of noisy far-
field data. Also in this case a comparison with the FFT inversion has
been performed showing virtually the same robustness to the noise.
On the other side, contrarily to the FFT-inversion, where the amount
of regularization is independent from the noise level, in this paragraph
we will show how our SVD approach allows to tie the noise level to the
actual resolution of the recovered distortion.

The results shown in the following have been obtained from far-
field data affected by a zero-mean additive complex Gaussian noise.
Therefore, the noisy samples, according to the interpolation described
in ii) of Section 4, for each k = 1, . . . , 2nφ(θp) + 1, can be written as:

Fc(θp, φk) = F t
c (θp, φk) + nR(θp, φk) + jnI(θp, φk); p = 1, . . . ,M (36)

wherein F t
c is the field’s “ideal” value, and nR and nI are independent

Gaussian distributions with mean zero and standard deviation σ =
maxp,k[Fc]/SNR. The definition of σ also fixes the SNR calculated
with respect to the maximum of the signal (so that the noise is
significantly higher in the external part of the measurement domain).

The noise on the far-field samples “propagates” to the known term
T i of the solution system (25) for each ith harmonic, and, from (20),
we can easily derive that the components of T i can be written as

ti(θp) = tti(θp) + xR(θp) + jxI(θp), p = M − M̃i + 1, . . . ,M (37)

wherein xR and xI are Gaussian distributions with mean zero and
standard deviation σp = σ/

√
2nφ(θp) + 1. Therefore, the standard

deviation σp has a different value for each component of the known
term T i. This means that the noise on the far-field data affects in a
different way each component of the known term for each harmonic.
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In order to filter the noise effect we choose to neglect, in the least-
squares solution, the contribution of the harmonics such that a certain
percentage of the components of the known term T i are too noisy, i.e.,
when

σi,p > |ti(θp)|. (38)

This is obtained by defining a suitable threshold for the percentage of
elements of T i, fulfilling the (38), which identifies a “noisy harmonic”
to be neglected.

Before defining a rule for the choice of the threshold for the “noisy
harmonics”, it is instructive to show an example of a retrieved reflector
distortion, in the case of noisy far-field data, but using the same
number of harmonics used in the noiseless case. This result is shown
in Fig. 4(a) for a 0.2 mm displacement of the test panel, with a SNR of
68 dB. The noise effect varies with the amplitude of taper illumination,
and it is higher where the amplitude of the current is smaller. In order
to test the accuracy of the edge current reconstruction, we have used
an x -polarized Hertzian dipole feed. As expected, the noise effect is
concentrated in the left/right edges of the reflector.

(a) (b) (c)

(d) SNR = 58 dB (e) SNR = 63 dB (f) SNR = 68 dB (g) SNR = 73 dB

0.20
0.15
0.10
0.05
-0.05
-0.10
-0.15

0.690
0.550
0.300
0.250
0.200
0.175
0.150
0.100
0.075
0.050
-0.05
-0.10
-0.30
-0.37

0.15

0.125

0.10

0.075

0.050

0.025

-0.025

-0.05

Figure 4. (a), (b), (c): gray scale map of the retrieved reflector surface
for a distortion of 0.2 mm of the panel under test, SNR = 68 dB:(a)
before noise filtering, (b) after noise filtering with, (c) all the distorted
points of each panel in map (b) have been replaced by their mean value;
(d), (e), (f), (g): gray scale maps of the retrieved reflector surface for a
distortion of 0.2 mm of the panel under test for different values of the
SNR.



184 Bolli et al.

In Fig. 4(a), the position of the displaced panel and the amount of
the distortion are both corrupted by the noise and, in particular, by the
relatively strong oscillations that rise out at the edge of the reflector
and propagate towards the inner region. It is reasonable that these
oscillations can be reduced by neglecting some “noisy harmonics”.
Therefore, the threshold that identifies these harmonics can be derived
by requiring to minimize the RMS error in the undistorted reflector
surface, provided that the consequent reduction of the number of
harmonics does not cause too much loss of information and then, the
vanishing of the deformation. Since the higher order harmonics are
responsible only for the current in border region of the reflector (18),
it is reasonable that the “cut” mainly concerns these harmonics.

At the end, we define s as the percentage of noisy components of
T according to (38) and we neglect all the harmonics with s greater
than a suitable threshold sr. Of course, the lower is sr, the higher is
the number of neglected harmonics.
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Figure 5. (a) Normalized QT (QTN = QT (sr = 100%)) and (b) mean
deformation of the test panel vs. sr.

Let us define the ratio QT between the RMS of the displaced panel
(RMSD) and the RMS error of the rest of the reflector (RMSU ).
As can be easily deduced from Fig. 5, the optimal value of sr is
between 60% and 70%. This choice ensures the maximum value of QT ,
without loosing information about the distorted panel. The choice of a
sr < 60% implies an excessive reduction of the harmonics. This allows
a strong reduction in the amplitude of the unwanted oscillations, but
also produces a strong loss of information. All the choices of sr > 70%
also allow an improvement with respect to the “unfiltered” results, but
the noise filtering is not effective.

Of course this discussion makes sense provided that QT is big
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enough to avoid that the distorted panel position and displacement
amount are completely hidden by noise. This happens when QT < 2.
In this case the choice of the threshold sr is worthless.

In Fig. 4(b) the map of a displacement of 0.2 mm of the test
panel is shown, after the noise effect has been filtered with a threshold
sr = 65%. As a consequence, the number of harmonics reduces, with
respect to the case of Fig. 4(a), from 211 to 93, and the number of
singular values from 3371 to 2365.

Since the reflector surface is subdivided into panels, a better
representation could be obtained by replacing all the distorted points
belonging to each panel with their mean value. In this way we obtain
the map in Fig. 4(c).

As pointed out in Section 4, the presented SVD regularization is
robust with request to noise and this is the main reason for the high
value of the optimal threshold sr. In other words, this means that
only highly noisy harmonics are to be neglected because a sort of noise
pre-filtering has been already taken into account in the choice of Gi.

It is also worth noting that the noise filtering due to the removal
of “noisy harmonics” explicitly leads to a reduction of the degrees of
freedom of our least-squares problem and, as expected, to a reduction
of total number of singular values and consequently of the actual
resolution. In Table 1 the results for different values of the SNR are
summarized and the corresponding maps are shown in Fig. 4(d)–4(g).

Table 1. Distortion of amount 0.2 mm of the panel under test for
different values of the SNR. PT is the displaced test panel. PU (U 
= T )
is the panel with the highest mean deformation. NH is the number of
harmonics used in the solution.

SNR sr Mean in Mean in QT RMSU NH Nv Fig.

[dB] % PT [mm] PU [mm] [mm]

53 − 0.089 − ∼= 1 0.215 − − Not shown

58 65 0.135 0.172 1.71 0.118 80 2119 Fig.4(d)

63 65 0.152 0.079 2.28 0.070 85 2248 Fig.4(e)

68 65 0.143 0.051 3.76 0.040 93 2365 Fig.4(f)

73 65 0.159 0.017 7.36 0.023 103 2547 Fig.4(g)

∞ - 0.164 0.002 61.2 0.0027 211 3371 Fig.3
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6. CONCLUSION

The surface profile reconstruction of large reflector antennas has been
faced with a new microwave holographic technique. This technique
is based on the SVD and it allows to formulate and solve the
problem without resorting to the usual “paraxial case” approximation.
As a consequence, a wider measurement interval can be allowed.
Moreover, contrarily to the FFT approach, the proposed procedure
could be implemented starting from a data set different from the far-
field pattern. A thorough analysis, using the well-assessed GRASP
commercial software, has shown both the accuracy of the technique,
and the relations between the measurement specification (e.g., the
noise on the data) and the reconstruction specification (e.g., the spatial
resolution).
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