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Abstract—Our scope in this paper is to provide a complete
analysis of CFAR detection of fluctuating targets when the radar
receiver incoherently integrates M returned pulses from a chi-squared
fluctuating targets with two and four degrees of freedom and operates
in a multitarget environment. Since the Swerling models of fluctuating
targets represent a large number of such type of radar targets, we
restrict our attention here to this interesting class of fluctuation
models. There are four categories of such representation; namely
SWI, SWII, SWIII, and SWIV. SWI and SWIII represent scan-
to-scan fluctuating targets, while SWII and SWIV represent fast
pulse-to-pulse fluctuation. Exact expressions are derived for the
probability of detection of all of these models. A simple and an
effective procedure for calculating the detection performance of both
fixed-threshold and adaptive-threshold algorithms is obtained. The
backbone of this procedure is the ω-domain representation of the
cumulative distribution function of the test statistic of the processor
under consideration. In the CFAR case, the estimation of the noise
power levels from the leading and the trailing reference windows is
based on the OS technique. The performance of this detector is
analyzed in the case where the operating environment is ideal and
where it includes some of extraneous targets along with the target
under test. The primary and the secondary outlying targets are
assumed to be fluctuating in accordance with the four Swerling’s
models cited above. The numerical results show that, for large SNR,
the processor detection performance is highest in the case of SWIV
model while it attains its minimum level of detection in the case of SWI
model. Moreover, SWII model has higher performance than the SWIII
representation of fluctuating targets. For low SNR, on the other hand,
the reverse of this behavior is occurred. This observation is common
either for fixed-threshold or for adaptive-threshold algorithm.
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1. INTRODUCTION

Target radar characteristics are the deriving force in the design and
performance analysis of all radar systems. The fluctuation rate of a
radar target may vary from essentially independent return amplitudes
from pulse-to-pulse to significant variation only on a scan-to-scan basis.
The Swerling models together with the non-fluctuating bracket the
behavior of fluctuating targets of practical interest.

Radar is basically a means of gathering information about distant
objects, or targets, by sending electromagnetic waves at them and
analyzing the echoes. There are two aspects to the radar statistical
problem. The first is concerned with the background noise, which
is random in character. In the absence of this background noise,
detection poses no difficulty which means that however small the
reflected signal from a target, it may be detected with sufficient gain in
the receiver. Background noise interference, however, imposes a limit
on the minimum detectable signal. The question of target existence
is, in fact, a choice of deciding between noise alone or signal-plus-
noise. Random noise interference arises from many sources including
radiation from the external environment and internal thermal noise.
Generally, this noise is wideband with a white or nearly flat spectral
density. In addition, there is another major background noise source,
which is referred to as a clutter. This type of noise represents the
aggregate radar return from a collection of many small scatterers, e.g.,
ground return, sea return, reflection from rain, chaff, and decay clouds.
Detection and estimation in a clutter environment is a major problem
in modern radar [1–5].

The second statistical aspect of the radar problem stems from
a reflective properties of radar targets. If the radar cross section
of an aircraft, or other complex target structures, is observed as a
function of aspect angle, the resulting pattern is characterized by rapid
fluctuations in amplitude with minute changes in aspect angle. In
a typical radar situation, the target is observed many times. The
aspect angle at a particular time will govern its observed radar cross
section. Since many targets have relative motion with respect to
the radar, aspect angle changes on successive observations alter the
radio frequency phase relationships, thereby modifying the radar cross
section. This change may be a slow variation and occur on a scan-
to-scan basis (on successive antenna scans across a target) or it may
be on a pulse-to-pulse basis (on successive sweeps). Because the exact
nature of the change is difficult to predict, a statistical description is
often adopted to characterize the target radar cross section [1, 6–8].

Three families of radar cross section fluctuation models have been
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used to characterize most target populations of interest; namely chi-
square family, Rice family, and the log-normal family. The χ2 models
are used to represent complex targets, such as aircraft, and have the
characteristics that the distribution is more concentrated about the
mean as the value of its defined parameter is increased. As special
cases of these models, Swerling’s versions are derived. This Swerling
representation of fluctuating targets brackets the majority of the actual
radar targets. In SWI case, the echo pulses received from a target on
any one scan are of constant amplitude throughout the entire scan,
but are independent (uncorrelated) from scan to scan. A target echo
fluctuation of this type is called scan-to-scan fluctuation. It is also
known as slow fluctuations. SWII case has the same behavior as SWI
except that the fluctuations are independent from pulse to pulse rather
than from scan to scan. It is sometimes called fast fluctuations. As
in case SWI, the radar cross section is assumed to be constant within
a scan and independent from scan to scan; but with a probability
density function different to that representing SWI. This probability
density function is representative of targets that can be modeled as
one scatterer together with a number of small scatterers. Finally,
SWIV is characterized by fluctuation from pulse to pulse with the
same probability density function as in SWIII [1, 4–6].

The major form of CFAR has been the CA technique. It uses the
maximum likelihood estimate of the noise power to set the adaptive
threshold. Although the presence of interferers inside the reference
window leads to an overestimate of the actual noise power and this
in turn gives rise to a masking of legitimate targets, it is still of
major importance because it is the optimum CFAR processor when
the background noise is homogeneous and the reference cells contain
independently, identically, and exponentially distributed observations
[7, 9–16].

Analysis of adaptive threshold setting algorithms has generally
relied on either Monte-Carlo simulation, or closed form techniques.
Monte-Carlo simulation has the drawbacks of both requiring
substantial computer time, and lacking precision. Closed-form
analysis, when mathematically tractable, is preferable because it yields
more precise results in much less computation time. Our object in this
paper is to obtain closed-form analysis for fixed threshold as well as CA
adaptive threshold schemes when they are used to detect χ2 models
of fluctuating targets, especially, the four different types of Swerling
(SWI, SWII, SWIII, and SWIV).

The organization of this paper is as follows: Section 2 describes
the system model, formulates the problem under consideration. and
computes the characteristic function of the postdetection integrator
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output for the case where the signal fluctuation obeys χ2 statistics.
In Section 3, the performance of the processors under consideration is
analyzed in nonhomogeneous background environment. Section 4 deals
with the numerical results, while Section 5 contains a brief discussion
along with our conclusions.

2. GENERAL STATISTICAL MODEL

Detection of signals is equivalent to deciding whether the receiver
output is due to noise alone or to signal-plus-noise. This is the
type of decision made by a human operator from the information
presented on a radar display. When the detection process is carried
out automatically by electronic means without the aid of an operator,
the detection criterion must be carefully specified and built into the
decision made device. The radar detection process was described in
terms of threshold detection. The level of this threshold divides the
output into a region of no detection (H0) and a region of detection (H1).
By raising or lowering this bias level, the number of times a noise pulse
surpasses the bias level either decreases or increases, respectively. The
setting of this level depends on the number of times that noise will be
permitted to exceed the bias level during a given period of time. To
mistake a noise pulse for a signal return is called a false alarm. To
mistake a signal return for a noise pulse is called miss detection. Miss
detection and false alarm, therefore, are subject to tradeoff.

An adaptive threshold detector is an algorithm which provides
a constant false alarm rate in a varying nonhomogeneous clutter
and noise interference environment by adaptively adjusting the
detection threshold. This procedure assumes that the general form
of the interference’s probability distribution is known except for a
small number of unknown parameters. These unknown parameters
are estimated on a cell-to-cell basis by examining reference cells
surrounding the cell under test. The resulting estimated interference
probability distribution function is then used in each cell to obtain a
threshold setting that provides the desired probability of false alarm.
Fig. 1 is a useful way of depicting the CFAR detection technique of a
radar target in the case of noncoherent integration of M-pulses.

Under certain conditions, usually met in practice, maximizing the
output peak signal-to-noise ratio (SNR) of a radar receiver maximizes
the detectability of a target. A linear network that does this is called
a matched filter. Thus, a matched filter is the basis for the design
of almost all radar receiver. The square-law device demodulates the
baseband signal and M consecutive sweeps are incoherently integrated
to represent the input of the adaptive technique. The box labeled



Progress In Electromagnetics Research C, Vol. 2, 2008 69

Figure 1. Block diagram of CFAR detection of radar target.

cell under test represents the radar range cell that is currently being
examined for the presence of a target. Buffer cells adjacent to the
cell under test can be used to avoid contamination with the edge of
the matched filter output from the target return. Two tapped delay
lines sample echo signals in a number of reference cells located on both
sides of the range cell of interest. The spacing between reference cells is
equal to the radar range resolution which is usually equal to the pulse
width. The statistic Z which is proportional to the estimate of total
noise power is constructed by processing the contents of N reference
cells surrounding the cell under investigation whose content is denoted
by ν. A target is declared to be detected if ν exceeds the threshold
ZT , where T is a constant scale factor used to achieve the required rate
of false alarm for a given window size when the background noise is
homogeneous. The processor configuration varies with different CFAR
algorithms.

Our approach in analyzing a CFAR processor is to evaluate its
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probability of detection which is defined as

Pd ∆− Pr{ν〉TZ|H1} (1)

This definition can be formulated in another simpler form as

Pd ∆= Pr{Z〈ν/T |H1} (2)

In term of the probability density functions (PDF’s) of ν and Z, Eq. (2)
can be formulated as

Pd =
∞∫
0

fν(ν)

ν/T∫
0

fz(x)dxdν (3)

It is important to note that the inner integration in the above
expression represents the cumulative distribution function (CDF) of
the random variable (RV) Z. Thus,

Pd =
∞∫
0

fν(ν)Fz(ν/T )dν (4)

Another important version of Eq. (4) has an expression given by

Pd = T

∞∫
0

fν(Tν)Fz(ν)dν (5)

From the definition of Laplace transformation, Pd can be put in a more
simpler form as

Pd = TGt(ω)
∣∣∣
ω=0

(6)

where Gt(ω) denotes the Laplace transformation of the integrand of
Eq. (5).

Gt(ω) ∆−

∞∫
0

fν(Tν)Fz(ν) exp(−ων)dν

=
1
T

Φν(ω/T ) ∗ Ψz(ω) (7)

In the previous expression, the * symbol represents the mathematical
convolution, Φν(.) denotes the characteristic function (CF) of the RV
ν, and Ψ(.) represents the Laplace transformation of the CDF of the
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RV Z. Finally, the detection probability takes the following analytical
form

Pd =
1

2πj

∮
C−

Φν(u/T )Ψz(ω − u)du
∣∣∣∣
ω=0

(8)

The contour of integration C− consists of a vertical path in the complex
u-plane crossing the negative real axis at the rightmost negative real
axis singularity of Φν(.) and closed in an infinite semicircle in the left
half plane.

From Eq. (8), it is evident that the CF of the RV that represents
the content of the cell under test plays an important role in determining
the processor detection performance. Let us now calculate this very
interesting function for the four cases of Swerling representation of
fluctuating targets.

In the analysis that follows, it is assumed that the clutter
background is homogeneous over the area encompassed by the delay
line. This means that the PDF of the output from any delay line tap
with no target return present is

fν(x) =
1
ψ
e−x/ψU(x) (9)

The unknown average noise power is denoted by ψ in the above
formula and the unit-step function is denoted by U(.). The delay
line outputs are assumed to be statistically independent RV’s. When
a nonfluctuating target return-plus-noise is present in any tap, on the
other hand, the output of this tap has a PDF given by [5]

fν(x) =
1
ψ
I0

(
2
√
xA

ψ

)
exp

(
−x+A

ψ

)
U(x) (10)

A/ψ denotes the signal-to-noise ratio (SNR) at the square-law detector
input and I0(.) represents the modified Bessel function of type 1 and
of order 0. When the target return present in one of the tap outputs
comprising the sum of M -pulses, which are noncoherently integrated,
i.e.,

Q ∆−
M∑

�=1

ν� (11)

has a PDF of the form [12]

fQ(x) =
1
ψ

(
x

A

)M−1
2

IM−1

(
2
√
xA

ψ

)
exp

(
−x+A

ψ

)
U(x) (12)
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The CF associated with this PDF can be easily calculated and the
result can be put as

ΦQ(ω/A) =
(

1
ψω + 1

)M

exp
(
− ωA

ψω + 1

)
(13)

The unconditional CF is now obtained by averaging the previous
expression over the target fluctuation distribution of A. For chi-square
family of target models, the RV A has a PDF given by [4]

fA(A
√
A) =

1
Γ(K)

(
K

A

)K

AK−1 exp
(
−KA

A

)
U(A) (14)

A denotes the average M -pulse SNR and K > 0 represents a
fluctuation parameter. The unconditional CF is then calculated as

ΦQ(ω/A) ∆−

∞∫
0

ΦQ(ω/A)fA(A
√
A)dA

=
(

1
ψω + 1

)M−K(
1

βω + 1

)K

, β ∆− ψ

(
1 +

A/ψ

K

)
(15)

Eq. (15) is the fundamental expression from which the Swerling models
are derived as special cases as we shall see in the next section.

3. CALCULATION OF PROBABILITY OF DETECTION
OF FLUCTUATING TARGETS

Now, we are going to evaluate the detection performance of the
adaptive threshold setting techniques for the fluctuating targets of
Swerling models.

1- Swerling I case (SWI):
In this case, the fluctuation parameter K has a unit value. Letting

K = 1 in Eq. (15) yields

ΦQ(ω) =
(

1/ψ
ω + 1/ψ

)M−1( 1/α
ω + 1/α

)
, α ∆−ψ(1 +A/ψ) = ψ(1 +MA1)

(16)
In the above expression, A1 represents the average per pulse SNR. The
substitution of this expression into Eq. (8) gives

Pd =
T

α

(
1/ψ

1/ψ − 1/α

)M−1

Ψz(T/α) +
(T/ψ)M−1

α
+

(
T

ψ

)M−1 (
T

α

)
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× 1
Γ(M − 1)

dM−2

duM−2

{(
1

u+ T/α

)
Ψz(−u)

} ∣∣∣∣∣
u=−T/ψ

(17)

2- Swerling II case (SWII):
This fluctuation model is characterized by K = M , the substi-

tution of which into Eq. (15) gives

ΦQ(ω) =
(

1/α
ω + 1/α

)M

, α ∆− ψ

(
1 +

A/ψ

M

)
= ψ(1 +A1) (18)

In this case, the processor detection performance takes the form

Pd =
(
T

α

)M (−1)M−1

Γ(M)
dM−1

duM−1
{Ψz(u)}

∣∣∣∣∣
u=T/α

(19)

3- Swerling III case (SWIII):
By letting K = 2 in the general expression of Eq. (15), the

resulting model is known as SWIII which has a CF of the form

ΦQ(ω) =
(

1/ψ
ω + 1/ψ

)M−2 (
1/α

ω + 1/α

)2

α ∆− ψ

(
1 +

A/ψ

M

)
= ψ

(
1 +M

A1

2

)
(20)

The probability of detecting a fluctuating target of SWIII model
becomes

Pd =
(
T

α

)2 (
T

ψ

)M−2
{
d

du

[(
1

u+ T/ψ

)M−2

Ψz(−u)
]∣∣∣∣∣

u=−T/α

+
1

Γ(M − 2)
dM−3

duM−3

[(
1

u+ T/α

)2

Ψz(−u)
]∣∣∣∣∣

u=−T/ψ


 (21)

4- Swerling IV case (SWIV):
The characterization of this fluctuation model is K = 2M . Thus,

the substitution of this value into Eq. (15) yields

ΦQ(ω) =
(

1/ψ
ω + 1/ψ

)−M (
1/α

ω + 1/α

)2M

α ∆− ψ

(
1 +

A/ψ

2M

)
= ψ

(
1 +

A1

2

)
(22)
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The detection performance of the adaptive processor for this type of
fluctuating targets is

Pd =
(
T

α

)2M(
T

ψ

)−M 1
Γ(2M)

d2M−1

du2M−1

{(
1

u+T/ψ

)−M

Ψz(−u)
}∣∣∣∣∣

u=−T/α

(23)
In the absence of the radar target (α = ψ), the CF of the cell under
test which represents the no target hypothesis (null hypothesis) takes
a very simplified expression of the form

ΦQ(ω) =
(

1
ψω + 1

)M

∆= Φc(ω) (24)

The detection probability in this case tends to the probability of false
alarm which becomes

Pfa =
(
T

ψ

)M 1
Γ(M)

dM−1

duM−1

{
ΨZf

(−u)
}∣∣∣∣∣

u=−T/ψ

(25)

Eqs. (17), (19), (21), (23), (25) are the basic analytical formulas
of our analysis in this manuscript. These expressions are general
for any CFAR detector. Our scope in the remaining part is to
evaluate the performance of the fixed-threshold as well as one of
the most important adaptive-threshold (CA) detectors to determine
their behavior against fluctuating targets of Swerling models. By
examining the above formulas, it is obvious that they rely on the
Laplace transformation of the CDF of the noise power level estimate
Z and its mathematical differentiation. Therefore, we are interested in
formulating this transformation when the detection scheme operates
in an environment that contains several extraneous targets along with
the target under investigation.

4. PROCESSOR DETECTION PERFORMANCE

Here, we are interested in applying the previously derived formulas
to the optimum detector, against which any proposed processor is
compared, and one of the most popular and efficient scheme in
maintaining a constant rate of false alarm against environmental
impairments which is known as ordered-statistics (OS) detector. We
are going to evaluate their performance against fluctuating targets of
Swerling models.
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4.1. Fixed-Threshold Detector

The useful procedure for establishing the decision threshold at the
output of the radar receiver is based on the classical statistical theory
of the Neyman-Pearson criterion which is described in terms of the two
types of errors that might be made in the detection decision process.
One type of these errors is to mistake noise for signal when only noise
is present. It occurs whenever the noise out of the receiver is large
enough to exceed the decision threshold level. In statistics, this is
called a false alarm. The other type of these errors occurs when a
signal is present but is erroneously considered to be noise. The radar
engineer would call such an error a missed detection. It might be
desired to minimize both errors, but they both cannot be minimized
independently. In the Neyman-Pearson theory, the probability of first
type error is fixed and the probability of the second type error is
minimized. Since the threshold level is set in such a way that a specified
probability of false alarm is not exceeded, this is equivalent to fixing
the probability of type one error and minimizing the type two error (or
maximizing the detection probability. This is the Neyman-Pearson test
used in statistics for determining the validity of a specified statistical
hypothesis. It is employed in most radars for making the detection
decision.

The optimum detector sets a fixed threshold to determine the
presence of a target under the assumption that the total homogeneous
noise power “ψ” is known a priori. In this case, the detection
probability is given by

Pd ∆= Pr{Q〉Q0|H1} =
∞∫

Q0

fQ(y)dy

=
∞∫
0

fQ(y)dy −
Q0∫
0

fQ(y)dy = 1 − FQ(Q0) (26)

From the above expression, it is obvious that the CDF of the content of
the cell under test is the backbone of the analysis of the fixed-threshold
detector, Once the CF of Q is calculated, the Laplace transformation
of its CDF is consequently obtained as [7]

ΨQ(ω) =
ΦQ(ω)
ω

(27)

Once the ω-domain representation of CDF of Q is computed, its t-
domain representation can be easily obtained through the Laplace
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inverse technique. For simplicity, we will consider in the following
ψ = 0. Thus,

FSW I(z) = 1− 1
(1−b)M−1

exp(−bz)+
M−2∑
j=0

ηj

Γ(M−j−1)
zM−j−2 exp(−z)

(28)
with

b ∆=
1

1 +MA
and ηj ∆=

(
1

1 − b

)j+1

− 1 (29)

FSW II(z) = 1 −
M−1∑
�=0

αM−�−1

Γ(M − &)
zM−�−1 exp(−a z) with α ∆=

1
1 +A

(30)

FSW III(z) = 1 +
1∑

�=0

β�

Γ(2 − &)
z2−�−1 exp(−cz)

+
M−3∑
λ=0

ζλ

Γ(M − λ− 2)
zM−λ−3 exp(−z) (31)

with

c ∆=

(
1 +M

A

2

)−1

(32a)

ζλ ∆=

(
1

1 − c

)λ+1

− c
(2)λ

(1 − c)λ
− 1 (32b)

β� ∆= −c1−� − (−1)�c2
M−3∑
k=0

(M − k − 2)
(1 − c)M+�−k−2

(32c)

The Pochhammer symbol (x)j is defined as:

(x)j ∆=

{
1 for j = 0
x(x+ 1)(x+ 2) . . . (x+ j − 1) for j > 0 (33)

and

FSW IV (z) =
M∑

�=0

(
M
&

)
(1 − ξ)�

×
{
ξM−� −

M+�−1∑
λ=0

ξ2M−λ−1

Γ(M + &− λ)
zM+�−λ−1 exp(−ξz)

}

(34)
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with

ξ ∆=

(
1 +

A

2

)−1

(35)

Consequently, the processor performance against SWI, SWII, SWIII,
and SWIV target fluctuation models is now completely determined.

4.2. Adaptive-Threshold Detector

Since the clutter plus noise power is not known at any given location,
a fixed-threshold detection scheme can not be applied to the radar
returns if the rate of false alarm is required to be controlled. Moreover,
radar performance is often degraded by the presence of false targets.
To reduce this effect, radar detection processing can use an algorithm
to estimate the clutter energy in the tested cell and then adjust the
constructed threshold to reflect changes in this energy at different
test cell positions. An attractive class of schemes that can be used
to overcome the problem of clutter is that of CFAR type which set
the threshold adaptively based on local information of total noise
power. In other words, the CFAR detection is one of the desirable
features for radar receivers. Since the OS based algorithm has an
immunity to the presence of extraneous targets amongst the contents of
reference samples, we are going to evaluate its performance in detecting
fluctuating radar targets.

As we have previously shown in Section 3, the detection
performance of an adaptive-threshold scheme depends mainly on the
calculation of the Laplace transformation of the CDF of its noise power
level estimate Z. Hence, all we need in the analysis of this type of
detection techniques is the computation of the CF of its background
noise level and this is our scope in the rest of this section.

The amplitude values taken from the reference window, of size N ,
are first rank-ordered according to their increasing magnitude. The
sequence thus achieved is

q(1) ≤ q(2) ≤ q(3) ≤ . . . ≤ q(K) ≤ . . . ≤ q(N) (36)

The indices in parentheses indicate the rank-order number. q(1) denotes
the minimum and q(N) the maximum value. The sequence given in
Eq. (36) is called an ordered-statistic. The central idea of an ordered
statistic CFAR processor is to select one certain value from the above
sequence and to use it as an estimate Z for the average clutter power
as observed in the reference window. Thus,

ZOS = q(K), K ∈ {1, 2, 3, . . . , N} (37)
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Since the nonhomogeneous situation is more general than the
homogeneous case, we are going to analyze the performance of
OS detector when the operating environment is of multiple-target
situation. The multiple target situation is frequently encountered in
practice in which the reference window contains nonuniform samples.
This may occur in a dense environment where two or more potential
targets appear in the range cells surrounding the cell under test. The
amplitudes of all the interfering target returns that may be present
amongst the candidates of the reference window are assumed to be of
the same strength and to fluctuate in accordance with Swerling models.
The interference-to-noise ratio (INR) for each of the spurious targets is
taken as a common parameter and is denoted by I. Thus, for reference
cells containing extraneous target returns, the total background noise
power is ψ(1 + I), while the remaining reference cells have identical
noise power of ψ value. Suppose that the reference set of size N
contains r cells from interfering target returns with background power
level of ψ(1 + I) and the remaining N − r cells from clear background
with noise power ψ. Thus, the noise power level of this set is estimated
as

FOS(z) =
N∑

i=K

min(i,N−r)∑
j=max(0,i−r)

(
N − r
j

) (
r

i− j

)

×[1 − Ft(z)]N−r−j{Ft(z)}j [1 − Fs(z)]r−i+j{Fs(z)}i−j (38)

where Ft(z) represents the CDF of the reference cell that contains
thermal noise only of power ψ, and Fs(z) denotes the CDF of the
reference cell that contains interfering target return. Therefore,

Ft(z) = 1 −
M−1∑
�=0

zM−�−1

Γ(M − &)
exp(−z)U(z) (39)

On the other hand, the CDF of the reference cell that contains a
spurious fluctuating target return was previously calculated for the
four Swerling fluctuating models which can be considered as special
cases from the general expression’s form [14]

Fs(z) = L−1

{
1
ω

M∏
�=1

1
1 + (1 + Iλ�)ω

}
= 1 −

M∑
�=1

γ�e
−c�z (40)

where L−1 denotes the Laplace inverse operator and

γ� ∆−
M∏

k=1
k �=�

1 + Iλ�

I(λ� − λk)
and c� ∆−

1
1 + Iλ�

(41)
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when this target fluctuates in accordance with χ2 with two degrees
of freedom. On the other hand, if the interfering target’s fluctuation
follows χ2 model with four degrees of freedom, Fs(z) takes the form
[15]

Fs(z) = L−1


 1
ω

M∏
j=1

ε2j
ω + 1

(ω + εj)2


 = 1−

M∑
j=1

(aj + ztj) exp(−εjz) (42)

with
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1
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and
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k �=j

ε2k
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(εk − εj)2
and εj ∆=

(
1 + I
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2

)−1

(44)

To calculate the Laplace transformation of Eq. (38), we rewrite it in
another simpler form as

FOS(z) =
N∑

i=K

min(i,N−r)∑
j=max(0,i−r)

(
N − r
j

) (
r
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)
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(
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) (
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&

)
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×{1 − Ft(z)}N−r−k{1 − Fs(z)}r−� (45)

The substitution of Eqs. (39) and (40) into Eq. (45) yields

FOS(z) =
N∑

i=K

min(i,N−r)∑
j=max(0,i−r)

(
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j

) (
r
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∗
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γne
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}r−�

(46)
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The Laplace transformation of the above equation gives

ΨOS(ω) =
N∑

i=K

min(i,N−r)∑
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(47)

By substituting Eqs. (39), (42) into Eq. (45) one obtains, for χ2 target
fluctuation with four degrees of freedom,

FOS(z) =
N∑

i=K

min(i,N−r)∑
j=max(0,i−r)

(
N − r
j

) (
r

i− j
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(48)

By using the binomial theorem, we can expand the bracketed quantities
as a binomial of z. In other words, the above formula can be rewritten
as

FOS(z) =
N∑

i=K

min(i,N−r)∑
j=max(0,i−r)

(
N − r
j

) (
r

i− j

)
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To determine the detection performance of the OS-CFAR processor,
it is important to calculate the Laplace transform for its test statistic,
where the false alarm and detection probabilities are completely
dependent on this transformation and its derivatives with respect to
ω. This transformation becomes
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where the definition of the term Ω(L; j1, j2, . . . , jM ) is as indicated in
[13]

Ω(L; i1, i2, . . . , iM ) ∆=




Γ(L+ 1)
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�=1

Γ(j� + 1)

for L =
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�=1

j�

0 for L 
=
M∑

�=1

j�

(51)

Again, the OS-CFAR processor performance is highly dependent upon
the value of K. For example, if a single extraneous target appears in
the reference window of appreciable magnitude, it occupies the highest
ranked cell with high probability. If K is chosen to be N , the estimate
will almost always set the threshold based on the value of interfering
target. This increases the overall threshold and may lead to a target
miss. If, on the other hand, K is chosen to be less than the maximum
value, the OS-CFAR scheme will be influenced only slightly for up to
N -K spurious targets.

5. PROCESSOR PERFORMANCE ASSESSMENT

We are interested here with the numerical results of the analytical
expressions that we are previously derived to take an idea about
the behavior of the selected CFAR detector, along with the well-
known optimum detector, in detecting χ2 fluctuating targets when the
operating environment is ideal; free of any impurities; as well as in the
case where the reference channels are contaminated with returns from
extraneous targets. The detection analytical formulas are programmed
on a PC digital system for some parameter values and the results
of these programs are presented in several categories of curves. The
reference window size is chosen to have 24 samples, the ordered-statistic
parameter is taken as 21; which is the optimum value for the selected
window size, and the design false alarm rate is suggested to be 10−6.
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Figure 2. M -sweeps detection performance of OS(21) along with fixed
threshold detectors for fluctuating targets of SWI model when N = 24,
and Pfa = 1.0E-6.
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Figure 3. M -sweeps detecti on performance of OS(21) al ong with fi
xed threshold detectors for fluctuati ng targets of SWII model when
N = 24, and Pfa = 1.0E-6.

The first category, Figs. 2–5, depicts the detection performance of the
CFAR detector, OS(21), when the primary target fluctuates following
SWI, SWII, SWIII, and SWIV, respectively. in the case where radar
receiver video integrates M-consecutive sweeps. The results of the
fixed-threshold detector for the same parameter values and for the same
type of target fluctuation are also incorporated in the corresponding
figures for the comparison to be an easy task. Moreover, the monopulse
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Figure 4. M -sweeps detection performance of OS(21) along with
fixed threshold detectors for fluctuating targets of SWIII model when
N = 24, and Pfa = 1.0E-6.
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Figure 5. M -sweeps detection performance of OS(21) along with
fixed threshold detectors for fluctuating targets of SWIV model when
N = 24, and Pfa = 1.0E-6.

detection performance of the same scheme, for the same parameter
values, is included in these families of curves to take an idea about to
what extend the noncoherent integration does improve the processor
performance. For low values of SNR, the detection performance for
SWI is higher than that for SWIII which in turn higher than that
for SWII and it attains its lowest value for SWIV. When the SNR
becomes stronger, on the other hand, the processor performance is
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Figure 6. M -sweeps detection performance of OS(21) along with fixed
threshold detectors for chi-square fluctuating targets with two-degrees
of freedom when N = 24, and Pfa = 1.0E-6.

reversed which means that it attains its highest value for SWIV which
in turn higher than that for SWII and the worst detection curve is
for SWI model. In the single sweep case, the detection processor
behaves the same behavior taking into account that SWII tends to
SWI and SWIV tends to SWIII for the case of monopulse detection.
It is important to note that for M = 2, the detection performance
of the processor under consideration for SWIII model is the same
as its behavior against SWII model. In addition, we note that the
curves of these families are functions of the number of postdetection
integrated sweeps and the detection processor. As predicted, these
figures illustrate the superiority of the fixed-threshold scheme over the
adaptive-threshold scheme in achieving the homogeneous detection of
fluctuating targets under the same parameter values and for the same
underling target model. After we took an idea about the detection
behavior of the fixed- and adaptive-threshold schemes against each
type of Swerling fluctuation models individually, let us now go to
compare their behaviors against each family of the same degree of
freedom of the chi-square distribution forms. The second category of
curves, which includes Figs. 6–7, displays a comparison between the
reactions of adaptive- and fixed-threshold procedures to the detection
of the four cited target fluctuation models when the radar receiver
noncoherently integrates 2 and 4 consecutive sweeps, respectively, in
homogeneous environment. The results of these figures confirm our
previous conclusion which is associated with the processor performance
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Figure 7. M -sweeps detection performance of OS(21) along with fixed
threshold detectors for chi-square fluctuating targets with four-degrees
of freedom when N = 24, and Pfa = 1.0E-6.

against χ2 fluctuation model with two-degrees of freedom when the
signal strength is weak versus the same processor performance under
the same fluctuation model of the same degree of freedom when
the target strength strong. In other words, the processor reaction
against SWI model is higher than its reaction against SWII model
for low SNR and this behavior is rapidly changed to its inverse
fashion as the SNR increases. For χ2 model with four-degrees of
freedom, the detection scheme behaves the same behavior and this
behavior is common either for fixed-threshold or for adaptive-threshold
technique. As predicted, these figures demonstrate the superiority of
the fixed-threshold scheme over the adaptive-threshold one in achieving
the homogeneous detection of fluctuating targets under the same
parameter values and for the same underling target model.

Now, let us turn our attention to the multiple-target situations and
what happens to the performance of the adaptive-threshold detector
when the reference channel, from which the noise power level is
estimated, is contaminated with returns from extraneous targets.
These effects are illustrated in the third category of curves which
includes Figs. 8–10 for the different fluctuation models of Swerling.
In obtaining the results of these figures, we assume that there are a
three cells amongst the contents of the reference channel which are
contaminated with interfering target returns (r = 3). It is important
to note that this is the maximum allowable value of spurious target
returns that may exist amongst the candidates of the reference window
before the processor performance becomes degraded [12]. Fig. 8
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Figure 9. Multitarget M -sweeps detection performance of OSD(21)
for Swerling fluctuating targets when the primary target fluctuates
according to SWIV model, N = 24, Pfa = 1.0E-6, and r = 3.

depicts the detection performance of OS(21) scheme in multiple-
target environments when the primary fluctuates following SWII
model and the secondary interfering targets fluctuate obeying all the
Swerling fluctuation models taking into account that the radar receiver
postdetection integrates M -consecutive pulses. It is to be noted that
the interfering target return is of the same strength as the primary
target. (INR=SNR). The curves of this family are characterized by
the number of integrated pulses as well as the target fluctuation
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Figure 10. M -sweeps false alarm rate performance of OSD(21) for
chi-square fluctuating targets when N = 24, and Pfa = 1.0E-6, and
r = 3.

model of the secondary outlying target. From the outlying results
of these figures, it is observed that the processor performance attains
its maximum behavior when the interfering target fluctuates following
SWI model while its worst behavior occurs when the extraneous target
fluctuation model becomes of SWIV type. This behavior is common
irrespective of the number of integrated pulses or the fluctuation model
according to which the secondary interfering target fluctuates. In
addition, there is an improvement in the probability of detection as the
number of noncoherently integrated pulses increases and this common
either in homogeneous or multitarget situation. To show the effect of
outlying target returns on the CFAR property of adaptive-threshold
detector, Figs. 10 shows the actual false alarm rate performance, as a
function of the strength of the level of interference, when the reference
cells are contaminated with interfering target returns and the designed
level of false alarm is of the order of 10−6. The candidates of this set
are labeled in the number of integrated pulses (M) and the fluctuation
model of the outlying target. The label (M = 2, SWIV) on a specified
curve means that it is plotted when the spurious target fluctuates in
accordance with SWIV model and for M = 2. The results of this
figure show that as the interference level increases, the rate of false
alarm decreases till a certain value after which it becomes of constant
value irrespective of the interference level. The rate of decreasing
increases as M increases while the level of interference at which the
false alarm rate attains its constant level decreases. In addition, the
rate of decreasing for χ2 distribution with four-degrees of freedom is
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higher than that for the same distribution with two-degrees of freedom.
Moreover, the steady-state level of false alarm increases as the number
of integrated pulses increases. From the CFAR property point of view,
the processor performance in the presence of SWI outlying targets
is the best one relative to the other fluctuation models of spurious
targets. In other words, the rate of decreasing of the false alarm in
the case of SWI fluctuation model is slower than that in the case of
SWII model which in turn slower than SWIII and SWIV model has
the worst behavior of false alarm rate which must be held constant.

Finally, the last category, Figs. 11–15, displays the required SNR,
to achieve an operating point of (Pfa, Pd) where the designed value of
Pfa is 10−6, of the procedure under consideration, as a function of the
detection probability, when this scheme operates in an ideal as well
as in multitarget environments and the radar receiver postdetection
integrates 2 and 4 consecutive pulses. For the sake of comparison, the
single pulse required SNR is also included in these figures under the
same fluctuation model of the primary and the secondary interfering
targets. Fig. 11 depicts the required SNR in “dB” of OS(21) scheme
when the operating environment is free of any target (homogeneous)
except that one under consideration (primary target) which fluctuates
following the four fundamental types of Swerling. The curves of this
figure are functions of M and fluctuation type. From the displayed
results in this figure, we show that the SNR required to achieve a
specified Pd increases as Pd increases and the rate of increasing is not
linear. In addition, for the same parameter values, the required SNR in
the case where the primary target fluctuates following χ2 distribution
with four degrees of freedom is lower than that required when the
underlined target fluctuates following χ2 distribution with two-degrees
of freedom. Moreover, the required SNR decreases as the number of
noncoherently integrated pulses increases. As expected, the SWIV
model requires the minimum SNR to attain the requested values, the
SWII comes in the second class, the SWIII model needs higher values
of SNR, and SWI case needs the highest values of SNR to arrive to
the same levels of detection and false alarm. This behavior is common
irrespective of the number of integrated pulses. To give an explicit idea
about the variation of the required SNR with the fluctuation model of
the target, Figs. 12–13 display this important parameter for the CFAR
detector under consideration when the target fluctuates following χ2

distribution with two and four degrees of freedom, respectively. These
figures demonstrate our previous conclusion. Similarly, Figs. 14–15
show the same response when the operating environment contains three
outlying targets (r = 3) along with the target under consideration in
the case where these targets fluctuate following χ2 distribution with
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Figure 11. M -sweeps required SNR as a function of the detection
probability of OSD(21) for chi-square fluctuating targets whenN = 24,
design Pfa = 1.0E-6.
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Figure 12. M -sweeps required SNR as a function of the detection
probability of OSD(21) processor, in ideal situation, for chi-square
fluctuating targets with two-degrees of freedom when N = 24, and
Pfa = 1.0E-6.

two and four degrees of freedom, respectively. The curves of these
families are characterized by M , fluctuation model of the primary
target, and fluctuation model of the secondary interfering target,
respectively. These figures illustrate that the required SNR depends
mainly on the fluctuation model of the primary target and then comes
the model of the spurious target. It is well known SWII requires lower
SNR for higher values of Pd than SWI for any number of integrated



Progress In Electromagnetics Research C, Vol. 2, 2008 91

0

5

10

15

20

25

0 0.2 0.4 0 .6 0.8 1

Probability of detection 'Pd'

R
eq

u
ir

ed
 s

ig
n

al
-t

o
-n

o
is

e 
ra

ti
o

 (
S

N
R

) 
'd

B
'  

M=1, SWIII, SWIV
M=2, SWIII
M=4, SWIII
M=2, SWIV
M=4, SWIV

Figure 13. M -sweeps required SNR as a function of the detection
probability of OSD(21) processor, in ideal situation, for chi-square
fluctuating targets with four-degrees of freedom when N = 24, and
Pfa = 1.0E-6.
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Figure 14. M -sweeps required signal-to-noise ratio of OSD(21)
detector to achieve an operating point of (1.0E-6, Pd) for chi-square
fluctuating targets with two-degrees of freedom when N = 24, and
r = 3.

pulses. This actually the case of our results when the primary target
fluctuation model follows SWII, as Fig. 14 shows. For the same
fluctuation model of the primary target, SWI model of the secondary
target gives lower SNR than SWII model for the parameter values.
This behavior is standard for our chosen parameter values cited here
and is independent on the number of integrated pulses. Fig. 15 depicts
the same thing for χ2 distribution with four degrees of freedom and
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Figure 15. M -sweeps required signal-to-noise ratio of OSD(21)
detector to achieve an operating point of (1.0E-6, Pd) for chi-square
fluctuating targets with four-degrees of freedom when N = 24, and
r = 3.

gives the same conclusion taking into account that SWIV model acts
the same behavior as SWII and SWIII behaves as SWI with lower
values of SNR required to achieve a specified operating point.

6. CONCLUSIONS

In this paper, we have given a detailed analysis of the detection
performance calculation of the fixed-threshold as well as the adaptive-
threshold procedures under the condition that the primary and the
secondary outlying targets fluctuate following χ2 fluctuation model
with two and four degrees of freedom. The fluctuation rate may
vary from essentially independent return amplitudes from pulse-to-
pulse to significant variation only on a scan-to-scan basis. A Swerling
fluctuating target is a model which describes the fluctuation in target
amplitude caused by changes in target aspect angle, rotation, or
vibration of target scattering sources or changes in radar wavelength.
This fluctuation model includes the classical models of target echo
fluctuation which are known as SWI, SWII, SWIII, and SWIV. The
correlation coefficient between the two consecutive echoes in the dwell-
time is equal to unity for SWI and SWIII models and is zero for SWII
and SWIV models. The adaptive-threshold processor is chosen to be
the ordered-statistic (OS) scheme owing to its immunity to interfering
targets that may be present amongst the candidates of the reference
window from which the noise power level is estimated to construct the
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detection threshold after multiplying it with a predetermined constant
scale factor. The analysis illustrates the utility of the contour-integral
approach in determining the CFAR processor performance in the
presence of interferers. The analytical results have been used to develop
a complete set of performance curves including detection probability
in homogeneous and multiple target situations, the variation of false
alarm rate with the strength of interfering targets, and the required
SNR to achieve a predetermined operating point of fixed levels for
detection and false alarm rates. As expected, lower threshold values
and consequently higher detection performance is obtained as the
number of postdetection integrated pulses increases. However, as the
number of integrated pulses increases, the probability of false alarm
becomes more sensitive to the bias level and the period of time taken
by the CFAR detector to decide if the target is present or not becomes
longer. On the other hand, as the signal correlation increases from
zero (SWII and SWIV) to unity (SWI and SWIII), more per pulse
SNR is required to achieve a prescribed probability of detection. In
addition, the processor performance for fluctuating targets of chi-
square model with four degrees of freedom is higher than that for
chi-square model with two degrees of freedom, given that the same
case of signal correlation is held unchanged. On the other hand, the
processor performance for SWIV model is higher than that for SWII
model and its behavior against SWIII model is higher than its reaction
against SWI model.
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