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Abstract—The electromagnetic resonances of a spherical cavity, with
a perfectly conducting wall and filled with a homogeneous isotropic
chiral medium, is studied using the spherical vector wavefunctions. The
characteristic equation and the expressions for the field components,
when chirality reaches its maximum value, are derived. The
characteristic equation is obtained by imposing the boundary condition
on the wall of the spherical cavity. The characteristic equation is solved
numerically and reported for the first five modes. These modes are
hybrid modes. They are classes as either hybrid electric (HE) modes
or hybrid magnetic (HM) modes. The explicit expressions for the
field components of the HE and HM modes are given, and the field
distributions of a few modes are shown. The chirality is observed to
have significant effects on the resonances and the field distributions of
a chiral filled spherical perfectly conducting cavity. The results show
interesting properties of the cavity, which could be applied to new
applications.
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1. INTRODUCTION

In recent years, many researchers have done work on special media
such as chiral media and left-handed media [1, 2] in both applications
and theories. The work in [3] presents a realization of a medium which
exhibits both chiral and left-handed properties. This suggests that
potential applications of chiral media to various practical problems
such as waveguides, polarization transformers, fibers, antennas, and
antenna radomes [4–10] could be realized. The problems of scattering
by chiral objects have been investigated with several methods [11–17].
Analytical solutions for canonical shaped objects are recently presented
by many researchers [18–24]. Several works [25–28] focus on chiral
objects. The resonant frequency and Q factor of a chiral sphere [25]
and a cylindrical cavity filled with a chiral medium [26] are examined.
The resonant frequency [27] and Q factor [28] of a spherical cavity filled
with a chiral medium are investigated. This paper is an extension of the
work in [27]. The characteristic equation and the expressions for the
field components for a chiral filled spherical perfectly conducting cavity
shown in Figure 1 are derived when the chirality parameter reaches
its maximum limit given in [29] or the absolute value of the relative
chirality, defined in [25], reaches one. In this study, the spherical vector
wavefunctions and the constitutive relations given in [25] are used.
The characteristic equation are derived by forming the solution for the
electromagnetic field inside the cavity in terms of the spherical vector
wavefunctions and enforcing the boundary condition on the tangential
components of the electric field on the surface of the sphere. The
characteristic equation is solved numerically and reported for the first
five modes. The explicit expressions for the field components of the HE
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Figure 1. Spherical cavity with radius r = a, having a perfectly
conducting wall and filled with a chiral medium.
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and HM modes are given, and the field distributions of a few modes are
shown. In this paper, a spherical cavity with a perfectly conducting
wall is assumed.

2. THE SPHERICAL SOLUTIONS FOR THE
ELECTROMAGNETIC FIELD IN A CHIRAL FILLED
SPHERICAL CAVITY

The constitutive relations for a chiral medium are expressed [25] as

D = εE − jξH (1)
B = µH + jξE (2)

where ξ is the chirality parameter and the relative chirality ξr is defined
by

ξr =
ξ√
µε

. (3)

The expressions for the electromagnetic field inside a chiral filled
spherical cavity (Echiral

mnr ,Hchiral
mnr ) are given as [25]

Echiral
{e,o}mnr = jc{e,o}mn

(
N{e,o}mn(k+r) + M{e,o}mn(k+r)

)

+d{e,o}mn

(
N{e,o}mn(k−r) − M{e,o}mn(k−r)

)
(4)

Hchiral
{e,o}mnr = −1

η

{
c{e,o}mn

(
N{e,o}mn(k+r) + M{e,o}mn(k+r)

)

+ jd{e,o}mn

(
N{e,o}mn(k−r) − M{e,o}mn(k−r)

)}
(5)

where the spherical vector wavefunctions M{e,o}mn and N{e,o}mn are
defined by [30, Appendix A]

M{e,o}mn(k±r) = aθ
Ĵn(k±r)

k±r

mPm
n (cos θ)
sin θ

{− sin(mφ), cos(mφ)}

+aφ
Ĵn(k±r)

k±r
sin θPm

n
′(cos θ){cos(mφ), sin(mφ)} (6)

N{e,o}mn(k±r) = arn(n + 1)
Ĵn(k±r)
(k±r)2

Pm
n (cos θ){cos(mφ), sin(mφ)}

−aθ
Ĵ ′

n(k±r)
k±r

sin θPm
n

′(cos θ){cos(mφ), sin(mφ)}

+aφ
Ĵ ′

n(k±r)
k±r

mPm
n (cos θ)
sin θ

{− sin(mφ), cos(mφ)} (7)
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where Pm
n is the associated Legendre polynomial of order m and degree

n and Ĵn is the alternative spherical Bessel function of the first kind
of order n given in [31]. In (6) and (7), the subscripts {e, o} pair with
either even function cos(mφ) or odd function sin(mφ). The subscript e
pairs with the first functions in curly brackets and the subscript o pairs
with the second functions in curly brackets. The wavenumbers for the
equivalent media k± are given in terms of the free space wavenumber
ko = ω

√
µoεo as

k± = ko
√

µrεr(1 ± ξr) (8)

where µ = µoµr and ε = εoεr. These wavenumbers are nonnegative
numbers when −1 ≤ ξr ≤ 1. In this paper, we assume that ξr is a
positive number.

3. ELECTROMAGNETIC RESONANCE OF A CHIRAL
FILLED SPHERICAL CAVITY

The electromagnetic resonances of a chiral filled spherical cavity occur
when the electric field in (4) vanishes at the surface of the perfectly
conducting sphere where r = a. That is

ar × Echiral
{e,o}mn

∣
∣
∣
r=a

= 0 (9)

where ar is the unit radial vector. Using (4), (6), and (7), and the
fact that the spherical vector wavefunctions are orthogonal, (9) can be
expanded into two equations given by

jc{e,o}mn
Ĵn(k+a)

k+a
− d{e,o}mn

Ĵn(k−a)
k−a

= 0 (10)

jc{e,o}mn
Ĵ ′

n(k+a)
k+a

+ d{e,o}mn
Ĵ ′

n(k−a)
k−a

= 0. (11)

Using x = koa
√

µrεr and assuming that ξr �= 1, the nontrivial solutions
for the unknown constants c{e,o}mn and d{e,o}mn of (10) and (11) exist
only when

Ĵn(x(1+ξr))Ĵ ′
n(x(1−ξr)) + Ĵn(x(1−ξr))Ĵ ′

n(x(1+ξr)) = 0. (12)

Equation (12) is called the characteristic equation for a chiral filled
spherical cavity which is similar to the one given in [27]. Equation (12)
is only valid for ξr �= 1. When ξr = 1, Ĵn(x(1− ξr)) and Ĵ ′

n(x(1− ξr))
are zero, nontrivial solutions for (12) do not exist. Therefore, the
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limiting value of Ĵn(z) and Ĵ ′
n(z) as z → 0 are used to derived the

characteristic equation when ξr = 1. These limiting value are [31]

Ĵn(z) =
zn+1

1 · 3 · 5 . . . (2n + 1)
(13)

Ĵ ′
n(z) =

(n + 1)zn

1 · 3 · 5 . . . (2n + 1)
. (14)

When ξr → 1, using (13) and (14), we obtain

Ĵn(x(1−ξr))
Ĵ ′

n(x(1−ξr))
=

x(1−ξr)
n + 1

. (15)

Dividing (12) with Ĵ ′
n(x(1−ξr)) and using the result from (15), (12)

can be rewritten for ξr → 1 as

Ĵn(x(1+ξr)) +
x(1−ξr)
n + 1

Ĵ ′
n(x(1+ξr)) = 0. (16)

Since the characteristic equation is continuous at ξr = 1, the solution
when ξr → 1 is the solution when ξr = 1. Letting the relative chirality
in (16) equal to one, the characteristic equation for ξr = 1 is given by

Ĵn(2x) = 0. (17)

The above equation is also true for ξr = −1. Once the root x of the
characteristic equation are obtained, the resonant frequency fr can be
computed by

fr =
x

2πa
√

µε
. (18)

When the medium is nonchiral so that ξr = 0, (12) reduces to

Ĵn(x)Ĵ ′
n(x) = 0. (19)

The roots of the first term of (19) give rise to TEmnr modes and the
roots of the second term of (19) give rise to TMmnr modes [31]. For
a TE mode, the radial component of electric field Er is zero. For a
TM mode, the radial component of magnetic field Hr is zero. The
modes {TMmnr, r = 1, 2, . . .} are ordered in the order of increasing
x and {TEmnr, r = 1, 2, . . .} are similarly ordered. Equations (4)
and (5) show that the electromagnetic field in a chiral filled spherical
cavity is neither TE nor TM because if either Er or Hr is identically
zero, then the electromagnetic field must be identically zero. In other
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words, the electromagnetic field in a chiral filled spherical cavity is
always a hybrid mode (HEM mode). The HEM mode which reduces
to the TMmnr mode when ξr = 0 is a hybrid magnetic mode called
the HMmnr mode. The HEM mode which reduces to the TEmnr mode
when ξr = 0 is a hybrid electric mode called the HEmnr mode.

A resonant electromagnetic field inside a chiral filled spherical
cavity (Echiral

mnr ,Hchiral
mnr ) can be obtained from (4) and (5) with the

coefficients c{e,o}mn and d{e,o}mn obtained from either (10) or (11).
The relation between c{e,o}mn and d{e,o}mn obtained from (11) is not
valid when the field is a TM mode because Ĵ ′

n(x) = 0 where x is a
root of the characteristic equation for the TM mode. For a small value
of ξr, it is difficult to compute the field of the HM mode because the
values of Ĵ ′

n(x(1± ξr)) are small. For this reason, the relation between
c{e,o}mn and d{e,o}mn obtained from (10) is used for the expressions for
the field of the HM mode and the one obtained from (11) is used for
the expressions for the field of the HE mode.

The relation between c{e,o}mn and d{e,o}mn obtained from (10) is
given as

d{e,o}mn = jc{e,o}mn

Ĵn

(
xHM

mnr(1+ξr)
)

(1−ξr)

Ĵn (xHM
mnr(1−ξr)) (1+ξr)

(20)

where xHM
mnr is the root of the characteristic equation for the HMmnr

mode. Substituting (20) into (4) and (5), using (6) and (7) and letting
c{e,o}mn = 1, the expressions for the resonant electromagnetid field of
the HMmnr modes are obtained as

ar · Echiral
{e,o}mnr = jn(n + 1)




Ĵn

(
rax

HM
mnr(1+ξr)

)

(raxHM
mnr(1+ξr))

2 +
Ĵn

(
xHM

mnr(1+ξr)
)

Ĵn (xHM
mnr(1−ξr))

Ĵn

(
rax

HM
mnr(1−ξr)

)

(raxHM
mnr(1−ξr))

2

(1−ξr)
(1+ξr)




Pm
n (cos θ){cos(mφ), sin(mφ)} (21)

aθ · Echiral
{e,o}mnr =

−j




Ĵ ′
n

(
rax

HM
mnr(1+ξr)

)

raxHM
mnr(1+ξr)

+
Ĵn

(
xHM

mnr(1+ξr)
)

Ĵn (xHM
mnr(1−ξr))

Ĵ ′
n

(
rax

HM
mnr(1−ξr)

)

raxHM
mnr(1−ξr)

(1−ξr)
(1+ξr)




sin θPm
n

′(cos θ){cos(mφ), sin(mφ)}
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+j




Ĵn

(
rax

HM
mnr(1+ξr)

)

raxHM
mnr(1+ξr)

−
Ĵn

(
xHM

mnr(1+ξr)
)

Ĵn (xHM
mnr(1−ξr))

Ĵn

(
rax

HM
mnr(1−ξr)

)

raxHM
mnr(1−ξr)

(1−ξr)
(1+ξr)




m
Pm

n (cos θ)
sin θ

{− sin(mφ), cos(mφ)} (22)

aφ · Echiral
{e,o}mnr =

j




Ĵ ′
n

(
rax

HM
mnr(1+ξr)

)

raxHM
mnr(1+ξr)

+
Ĵn

(
xHM

mnr(1+ξr)
)

Ĵn (xHM
mnr(1−ξr))

Ĵ ′
n

(
rax

HM
mnr(1−ξr)

)

raxHM
mnr(1−ξr)

(1−ξr)
(1+ξr)




m
Pm

n (cos θ)
sin θ

{− sin(mφ), cos(mφ)}

+j




Ĵn

(
rax

HM
mnr(1+ξr)

)

raxHM
mnr(1+ξr)

−
Ĵn

(
xHM

mnr(1+ξr)
)

Ĵn (xHM
mnr(1−ξr))

Ĵn

(
rax

HM
mnr(1−ξr)

)

raxHM
mnr(1−ξr)

(1−ξr)
(1+ξr)




sin θPm
n

′(cos θ){cos(mφ), sin(mφ)} (23)

ar · Hchiral
{e,o}mnr = −1

η
n(n + 1)




Ĵn

(
rax

HM
mnr(1+ξr)

)

(raxHM
mnr(1+ξr))

2 −
Ĵn

(
xHM

mnr(1+ξr)
)

Ĵn (xHM
mnr(1−ξr))

Ĵn

(
rax

HM
mnr(1−ξr)

)

(raxHM
mnr(1−ξr))

2

(1−ξr)
(1+ξr)




Pm
n (cos θ){cos(mφ), sin(mφ)} (24)

aθ · Hchiral
{e,o}mnr =

1
η




Ĵ ′
n

(
rax

HM
mnr(1+ξr)

)

raxHM
mnr(1+ξr)

−
Ĵn

(
xHM

mnr(1+ξr)
)

Ĵn (xHM
mnr(1−ξr))

Ĵ ′
n

(
rax

HM
mnr(1−ξr)

)

raxHM
mnr(1−ξr)

(1−ξr)
(1+ξr)




sin θPm
n

′(cos θ){cos(mφ), sin(mφ)}

−1
η




Ĵn

(
rax

HM
mnr(1+ξr)

)

raxHM
mnr(1+ξr)

+
Ĵn

(
xHM

mnr(1+ξr)
)

Ĵn(xHM
mnr(1−ξr))

Ĵn

(
rax

HM
mnr(1−ξr)

)

raxHM
mnr(1−ξr)

(1−ξr)
(1+ξr)




m
Pm

n (cos θ)
sin θ

{− sin(mφ), cos(mφ)} (25)

aφ · Hchiral
{e,o}mnr =

−1
η




Ĵ ′
n

(
rax

HM
mnr(1+ξr)

)

raxHM
mnr(1+ξr)

−
Ĵn

(
xHM

mnr(1+ξr)
)

Ĵn (xHM
mnr(1−ξr))

Ĵ ′
n

(
rax

HM
mnr(1−ξr)

)

raxHM
mnr(1−ξr)

(1−ξr)
(1+ξr)



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m
Pm

n (cos θ)
sin θ

{− sin(mφ), cos(mφ)}

−1
η




Ĵn

(
rax

HM
mnr(1+ξr)

)

raxHM
mnr(1+ξr)

+
Ĵn

(
xHM

mnr(1+ξr)
)

Ĵn (xHM
mnr(1−ξr))

Ĵn

(
rax

HM
mnr(1−ξr)

)

raxHM
mnr(1−ξr)

(1−ξr)
(1+ξr)




sin θPm
n

′(cos θ){cos(mφ), sin(mφ)} (26)

where ra = r/a. When the medium is nonchiral so that ξr =
0, ar · Hchiral

{e,o}mnr in (24) is zero and the above equations reduce to
the resonant electromagnetic field of the TMmnr modes.

The relation between c{e,o}mn and d{e,o}mn obtained from (11) is
given as

d{e,o}mn = −jc{e,o}mn

Ĵ ′
n

(
xHE

mnr(1+ξr)
)

(1−ξr)

Ĵ ′
n (xHE

mnr(1−ξr)) (1+ξr)
(27)

where xHE
mnr is the root of the characteristic equation for the HEmnr

mode. Substituting (27) into (4) and (5), using (6) and (7) and letting
c{e,o}mn = 1, the expressions for the resonant electromagnetic field of
the HEmnr modes are obtained as

ar · Echiral
{e,o}mnr = jn(n + 1)




Ĵn

(
rax

HE
mnr(1+ξr)

)

(raxHE
mnr(1+ξr))

2 −
Ĵ ′

n

(
xHE

mnr(1+ξr)
)

Ĵ ′
n (xHE

mnr(1−ξr))

Ĵn

(
rax

HE
mnr(1−ξr)

)

(raxHE
mnr(1−ξr))

2

(1−ξr)
(1+ξr)




Pm
n (cos θ){cos(mφ), sin(mφ)} (28)

aθ · Echiral
{e,o}mnr =

−j




Ĵ ′
n

(
rax

HE
mnr(1+ξr)

)

raxHE
mnr(1+ξr)

−
Ĵ ′

n

(
xHE

mnr(1+ξr)
)

Ĵ ′
n (xHE

mnr(1−ξr))

Ĵ ′
n

(
rax

HE
mnr(1−ξr)

)

raxHE
mnr(1−ξr)

(1−ξr)
(1+ξr)




sin θPm
n

′(cos θ){cos(mφ), sin(mφ)}

+j




Ĵn

(
rax

HE
mnr(1+ξr)

)

raxHE
mnr(1+ξr)

+
Ĵ ′

n

(
xHE

mnr(1+ξr)
)

Ĵ ′
n (xHE

mnr(1−ξr))

Ĵn

(
rax

HE
mnr(1−ξr)

)

raxHE
mnr(1−ξr)

(1−ξr)
(1+ξr)




m
Pm

n (cos θ)
sin θ

{− sin(mφ), cos(mφ)} (29)

aφ · Echiral
{e,o}mnr =

j




Ĵ ′
n

(
rax

HE
mnr(1+ξr)

)

raxHE
mnr(1+ξr)

−
Ĵ ′

n

(
xHE

mnr(1+ξr)
)

Ĵ ′
n (xHE

mnr(1−ξr))

Ĵ ′
n

(
rax

HE
mnr(1−ξr)

)

raxHE
mnr(1−ξr)

(1−ξr)
(1+ξr)



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m
Pm

n (cos θ)
sin θ

{− sin(mφ), cos(mφ)}

+j




Ĵn

(
rax

HE
mnr(1+ξr)

)

raxHE
mnr(1+ξr)

+
Ĵ ′

n

(
xHE

mnr(1+ξr)
)

Ĵ ′
n (xHE

mnr(1−ξr))

Ĵn

(
rax

HE
mnr(1−ξr)

)

raxHE
mnr(1−ξr)

(1−ξr)
(1+ξr)




sin θPm
n

′(cos θ){cos(mφ), sin(mφ)} (30)

ar · Hchiral
{e,o}mnr = −1

η
n(n + 1)




Ĵn

(
rax

HE
mnr(1+ξr)

)

(raxHE
mnr(1+ξr))

2 +
Ĵ ′

n

(
xHE

mnr(1+ξr)
)

Ĵ ′
n (xHE

mnr(1−ξr))

Ĵn

(
rax

HE
mnr(1−ξr)

)

(raxHE
mnr(1−ξr))

2

(1−ξr)
(1+ξr)




Pm
n (cos θ){cos(mφ), sin(mφ)} (31)

aθ · Hchiral
{e,o}mnr =

1
η




Ĵ ′
n

(
rax

HE
mnr(1+ξr)

)

raxHE
mnr(1+ξr)

+
Ĵ ′

n

(
xHE

mnr(1+ξr)
)

Ĵ ′
n (xHE

mnr(1−ξr))

Ĵ ′
n

(
rax

HE
mnr(1−ξr)

)

raxHE
mnr(1−ξr)

(1−ξr)
(1+ξr)




sin θPm
n

′(cos θ){cos(mφ), sin(mφ)}

−1
η




Ĵn

(
rax

HE
mnr(1+ξr)

)

raxHE
mnr(1+ξr)

−
Ĵ ′

n

(
xHE

mnr(1+ξr)
)

Ĵ ′
n(xHE

mnr(1−ξr))

Ĵn

(
rax

HE
mnr(1−ξr)

)

raxHE
mnr(1−ξr)

(1−ξr)
(1+ξr)




m
Pm

n (cos θ)
sin θ

{− sin(mφ), cos(mφ)} (32)

aφ · Hchiral
{e,o}mnr =

−1
η




Ĵ ′
n

(
rax

HE
mnr(1+ξr)

)

raxHE
mnr(1+ξr)

+
Ĵ ′

n

(
xHE

mnr(1+ξr)
)

Ĵ ′
n (xHE

mnr(1−ξr))

Ĵ ′
n

(
rax

HE
mnr(1−ξr)

)

raxHE
mnr(1−ξr)

(1−ξr)
(1+ξr)




m
Pm

n (cos θ)
sin θ

{− sin(mφ), cos(mφ)}

−1
η




Ĵn

(
rax

HE
mnr(1+ξr)

)

raxHE
mnr(1+ξr)

−
Ĵ ′

n

(
xHE

mnr(1+ξr)
)

Ĵ ′
n (xHE

mnr(1−ξr))

Ĵn

(
rax

HE
mnr(1−ξr)

)

raxHE
mnr(1−ξr)

(1−ξr)
(1+ξr)




sin θPm
n

′(cos θ){cos(mφ), sin(mφ)} (33)

When the medium is nonchiral so that ξr = 0, ar ·Echiral
{e,o}mnr in (28) is

zero and the above equations reduce to the resonant electromagnetic
field of the TEmnr modes. Equations (24) and (31) show that the radial
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component of the magnetic field does not vanish on the conducting
surface at ra = 1 when ξr 
= 0. Using (2), (21), and (24), one can
easily show that the radial component of the magnetic flux density
for the HMmnr mode is always vanish on the conducting surface. The
same result can be obtained for the HEmnr mode.

The field components of the HM and HE modes, given in the
above equations, become invalid when ξr = 1. The solutions for the
resonant electromagnetic field when ξr → 1 can be derived from either
(21)–(26) or (28)–(33) by using the limiting values of Ĵn(z) and Ĵ ′

n(z)
as z → 0. Since the solutions for the resonant electromagnetic field are
continuous at ξr = 1, the solutions when ξr → 1 are the solutions when
ξr = 1. Letting the relative chirality in the resulting equations equal
to one, the expressions for the resonant electromagnetic for ξr = 1 are
obtained as
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4. NUMERICAL RESULTS

The roots of the characteristic equation are solved numerically.
Equation (17) is used for the characteristic equation when ξr = 1. For
the dielectric filled spherical cavity, TE and TM solutions are computed
using (19). Each solution is in excellent agreement with that published
in [31] and is used as an initial value to obtain a solution for each hybrid
mode. We assume that each solution is a continuous function of ξr.
A previously computed solution for a value of ξr is used as an initial
value to obtain a solution for a larger ξr. The increment of ξr must be
small enough such that the solution does not jump to a different mode.
Figure 2 shows x for the first five modes as a function of the relative
chirality ξr. It can be observed that the HEm11 and the HMm31 modes
are degenerate modes whose x = 4.397 when ξr = 0.436. The resonant
frequencies of these two modes can be adjusted with the parameter ξr.
This shows a useful property for a design of a spherical cavity filter
[32].

Figures 3 and 6 show the magnetic field distributions on the
spherical conducting surface of the HEo111 mode and the HMo131 mode,
respectively. Figures 3(b) and 6(b) are the resonant magnetic fields of
the degenerate modes with ξr = 0.436. It is observed that the fields of
these two modes are not orthogonal and can easily couple. Figures 4
and 7 show the electric field distributions on the yz-plane of the HEo111
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Figure 2. Root x of the characteristic equation for the first five modes.
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Figure 3. Magnetic field distributions on the conducting surface of
HEo111 mode (a) ξr = 0 with x = 4.493 (b) ξr = 0.436 with x = 4.397
(c) ξr = 1 with x = 3.863.

mode and the HMo131 mode, respectively. Figures 5 and 8 show the
electric field distributions on the xz-plane of the HEo111 mode and the
HMo131 mode, respectively. Figures 3–8 show that the chirality has
significant effects on both electric and magnetic field distributions.

Figures 3(c) and 9(a) show that the resonant magnetic field on
the spherical conducting surface of the HEo111 mode when ξr = 1 is
similar to the field of the TEo112 mode. Figures 6(c) and 9(b) show
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Figure 4. Electric field distributions on the yz-plane of HEo111 mode
(a) ξr = 0 with x = 4.493 (b) ξr = 0.436 with x = 4.397 (c) ξr = 1
with x = 3.863.
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Figure 5. Electric field distributions on the xz-plane of HEo111 mode
(a) ξr = 0 with x = 4.493 (b) ξr = 0.436 with x = 4.397 (c) ξr = 1
with x = 3.863.
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Figure 6. Magnetic field distributions on the conducting surface of
HMo131 mode (a) ξr = 0 with x = 4.973 (b) ξr = 0.436 with x = 4.397
(c) ξr = 1 with x = 3.494.
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Figure 7. Electric field distributions on the yz-plane of HMo131 mode
(a) ξr = 0 with x = 4.973 (b) ξr = 0.436 with x = 4.397 (c) ξr = 1
with x = 3.494.
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Figure 8. Electric field distributions on the xz-plane of HMo131 mode
(a) ξr = 0 with x = 4.973 (b) ξr = 0.436 with x = 4.397 (c) ξr = 1
with x = 3.494.
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Figure 9. Magnetic field distributions on the conducting surface for
(a) TEo112 mode with x = 7.725 (b) TEo131 mode with x = 6.988.
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that the resonant magnetic field on the spherical conducting surface
of the HMo131 mode when ξr = 1 is similar to the field of the TEo131

mode. This shows that the resonant magnetic field for ξr = 1 on the
spherical conducting surface of either the HEo111 mode or the HMo131

mode is similar to the field for TE mode whose resonant frequency is
twice higher.

5. CONCLUSION

In this paper the characteristic equation for a chiral filled spherical
cavity is derived by using the spherical vector wavefunctions. The
detailed derivation for the characteristic equation is given when the
relative chirality reaches its maximum value. The expressions for the
field components of the HE and HM modes given in this paper are valid
for any values of the chirality. The roots of the characteristic equation
are numerically solved and shown for the first five modes. It shows
that the HEm11 and the HMm31 modes are degenerate at ξr = 0.436.
The field distributions of the HEo111 and HMo131 modes are shown
and compared with the field distributions of the TE modes. It shows
that the HEm11 and the HMm31 modes with ξr = 0.436 could easily
couple and the resonant magnetic field of each mode for ξr = 1 on the
spherical conducting surface is similar to the field of the associated TE
mode with a twice higher resonant frequency. These properties of a
chiral filled spherical cavity could give rise to new applications. It can
be observed that the chirality has significant effects on both electric
and magnetic field distributions.
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