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Abstract—Scattering of a spherical wave by a finite PEC and a finite
impedance cylinder is studied theoretically. Source of excitation is
spherical wave is produced by a dipole with arbitrary orientation.
First we derive surface fields induced on an infinite cylinder when it is
illuminated by an arbitrary oriented dipole. By the use of the currents
on the infinite cylinder excited by an arbitrarily oriented dipole,
approximate expressions for two components of the far-zone scattered
electric field of a finite PEC and a finite impedance cylinder are derived.
The validity of the approximation depends on the conditions that the
cylinder must be long compared to the wavelength. The theoretical
results are compared to the available results in the literature.

1. INTRODUCTION

Scattering of electromagnetic wave by a circular cylinder is a classical
problem and it has been studied by many workers. Much of the
information on the theoretical and numerical results is available [1–49].
The problem of scattering of a dipole field by a perfectly conducting
infinite cylinder has been of great importance in the past and as such
has received considerable attention. It was recognized, for instance,
that the directive properties of linear antennas could be improved
considerably by situating them in the vicinity of a conducting cylinder
of the proper radius. Even more directive patterns were obtained by
using arrays of such antennas fed with proper phase. Such patterns
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are given in the work of Carter [43]. His method consists of obtaining
the far field directly by means of reciprocity between the radiating
element and a passive receiving dipole situated in the far field of the
radiator. Luke [44] obtained essentially the same results using the
Green’s function method. Moullin [45] has related results in his book
and LePage, Harrington and Schlecht [46, 47] and Walsh [48] consider
similar problems. A radial dipole in a cylindrical wedge region is
considered by Wait [49] and theoretical and experimental radiation
patterns in the principal plane are compared. However, studies on the
scattering of a dipole wave by an impedance cylinder seems to be very
few, especially for the cylinder with finite length. This problem is a
simple model of radio hazard due to the higher building with circular
cross section and is important practically and theoretically.

The configuration of interest here is an asymmetrical structure;
the exciting dipole is not necessarily situated in the plane equidistant
from the two ends of the cylinder. Therefore, the radiation pattern is
not necessarily symmetrical about the mid plane of the system. We
divide our paper in six sections. In Section 2, we consider the scattering
of dipole field from infinite PEC cylinder. In Section 3, scattering of
dipole field from finite PEC cylinder is considered utilizing the results
of infinite PEC cylinder. In Section 4, we find the scattering of dipole
field from infinite impedance cylinder. In Section 5, the scattering of
dipole field from finite impedance cylinder is obtained. In Section 6,
the results and discussions are presented.

2. INFINITE PEC CIRCULAR CYLINDER

First we obtain the surface fields of an infinitely long PEC circular
cylinder which is excited by an arbitrarily oriented dipole. Later
these surface fields have been utilized to study the scattering from a
finite PEC and impedance cylinder. The source of excitation is small
electric dipole. Field produced by an isolated dipole has been termed
as primary field. Field produced due to the presence of cylinder is
termed as a secondary field.

The primary field created by the dipole is derived in Appendix A.
Our interest is to determine the unknown secondary field. Enforcement
of the boundary conditions on the surface of the cylinder yield the
secondary field contribution. As our interest is to consider the
orientation of dipole in all cylindrical coordinates directions, so first
consider the dipole is ρ-directed.

(I) ρ-Directed Dipole Field
The Fourier transform of the vector potential has been denoted
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by Ãρ and Ãφ. We decompose each transform into two parts

Ãρn = Ã0
ρn + Ã1

ρn, Ãφn = Ã0
φn + Ã1

φn (1a)

where Ã0
ρn and Ã0

φn are the functions associated with situation in the
absence of the cylinder. It may be noted that Ã�n are the coefficients
of Fourier series of the transformed function Ã�, where � = ρ, φ etc.
The expressions are given by (A7e) and (A7f). On the other hand
Ã1

ρn and Ã1
φn are associated with the secondary field contribution due

to the presence of circular cylinder. We may assume secondary field
contribution in the form of unknowns

Ã1
ρn =

µJρ

4j

{
anH(2)

n
′(χρ) + bn

n

χρ
H(2)

n (χρ)
}

(1b)

Ã1
φn =

µJρ

4

{
cnH(2)

n
′(χρ) + dn

n

χρ
H(2)

n (χρ)
}

(1c)

By enforcing the boundary conditions, on the surface of PEC circular
cylinder, given by

Eφ = 0, Ez = 0 at ρ = a (1d)

This condition is found to be satisfied if we set Ãφn =0 and ∂
∂ρ(ρÃρn)=0.

Hence we have

an = dn = −H(2)
n

′(χρ0)
Jn(χa)

H
(2)
n (χa)

bn = cn = − n

χρ0
H(2)

n (χρ0)
J ′

n(χa)

H
(2)
n

′(χa)

The vector potential is obtained as follows.

(i) ρ > ρ0:

Aρ =
µJρ

8πj

∞∑
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exp[jn(φ − φ0)]

×
∫ ∞

−∞
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(2a)
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Aφ =
µJρ

8π
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n=−∞
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+

{
Jn

′(χρ0)−H(2)
n

′(χρ0)
Jn(χa)

H
(2)
n (χa)

}
n

χρ
H(2)

n (χρ)
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(ii) ρ < ρ0:
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µJρ

8πj
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(II) φ-Directed Dipole Field

We can obtain the results quite similarly to the case of ρ-directed
dipole. These are given by

(i) ρ > ρ0:

Aρ = −µJφ

8π
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(ii) ρ < ρ0:
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(III) z-Directed Dipole Field
(i) ρ > ρ0
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µJz

8πj
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{
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(ii) ρ < ρ0

Az =
µJz

8πj

∞∑
n=−∞

exp[jn(φ − φ0)]
∫ ∞

−∞

{
Jn(χρ) − H(2)
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2.1. Magnetic Field on the Surface of Perfectly Conducting
Cylinder

The magnetic field on the surface is readily obtained from the vector
potential given in (3a), (3b), (5a), (5b) and (6b). The result is given
as follows.

(I) ρ- Directed Dipole Field

Hφ =
jJρ

4π2a
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∫ ∞
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(II) φ- Directed Dipole Field
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exp[jn(φ − φ0)]

×
∫ ∞

−∞

h

χ

{
n

χa

H
(2)
n

′(χρ0)

H
(2)
n

′(χa)
− n

χρ0

H
(2)
n (χρ0)

H
(2)
n (χa)

}
exp[−jh(z−z0)]dh

(8a)
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(III) z- Directed Dipole Field

Hφ = − Jz

4π2a

∞∑
n=−∞

exp[jn(φ − φ0)]
∫ ∞

−∞

H
(2)
n (χρ0)

H
(2)
n (χa)

exp[−jh(z−z0)]dh

(9a)
Hz = 0 (9b)

2.2. Far Field Scattered by an Infinitely Long Conducting
Cylinder

Interest is to evaluate the integral representation of the vector potential
when the observation point is far from the origin of the cylindrical
coordinate system. Consider a useful and simple integral of the form
given by

I =
∫ ∞

−∞
H(2)

n (χρ)H(2)
n (χρ0)

Jn(χa)

H
(2)
n (χa)

exp[−jh(z − z0)]dh (10a)

Hankel function H
(2)
n (χρ) is replaced by its asymptotic approximation

H(2)
n (χρ) �

√
2

πχρ
exp

[
−j

(
χρ − 2n + 1

4
π

)]
(10b)

Then integral I becomes

I =

√
2

πρ
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[
j

(
2n + 1

4
π

)]
×

∫ ∞

−∞

1√
χ

Jn(χa)

H
(2)
n (χa)

H(2)
n (χρ0) exp[−jχρ − jh(z − z0)]dh (10c)

Now we transform the variable by ρ = R sin θ, z − z0 = R cos θ;
h = k cos α and χ = k sin α, hence I becomes

I =

√
2

πρ
exp

[
j

(
2n + 1

4
π

)]
×

∫
C

Jn(ka sin α)

H
(2)
n (ka sin α)

H(2)
n (kρ0 sin α)

√
k sin α exp

[
−jkR cos(θ−α)

]
dα

(10d)

where C is the contour given by [−j∞, π + j∞]. Application of the
steepest descent method yields

I � 2
R

exp
[
−jkR + j

(n + 1)π
2

]
Jn(ka sin θ)

H
(2)
n (ka sin θ)

H(2)
n (kρ0 sin θ) (11a)



146 Illahi, Naqvi, and Hongo

When ρ0 � a, I is simplified to

I � 2
√

2√
πkRρρ0

exp
[
−jkR − jkρ0 sin θ + jnπ + j

3π

4

]
Jn(ka sin θ)

H
(2)
n (ka sin θ)

(11b)
Integral form considered in (10a) and its corresponding far-fields are
very useful in evaluation of the far-fields corresponding to (2), (4) and
(5).

Far field expressions corresponding to (2), (4) and (5) can be
obtained by comparing our expressions with (11a) and by substituting

χ = k sin θ, h = k cos θ; H(2)
n

′(χρ) � −jH(2)
n (kρ sin θ) (11c)

The results are given as follows.

(I) ρ-Directed Dipole Field

A0
ρ = µJρ

exp(−jkR)
4πR

cos(φ − φ0), A0
φ = µJρ

exp(−jkR)
4πR

sin(φ−φ0)

(12a)
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4πR
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n=−∞
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[
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(
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π

2
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×
{

n

kρ0 sin θ

n

kρ sin θ

J ′
n(ka sin θ)

H
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n
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H(2)
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− j
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H
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n
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}
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n=−∞
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[
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(
φ − φ0 +

π

2
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×
{

n
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H
(2)
n
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H(2)
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+
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Jn(ka sin θ)

H
(2)
n (ka sin θ)
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n

′(kρ0 sin θ)

}
(12c)

(II) φ-Directed Dipole Field

A0
ρ = µJφ

exp(−jkR)
4πR

sin(φ − φ0), A0
φ = µJφ

exp(−jkR)
4πR

cos(φ − φ0)

(13a)
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A1
ρ � µJφ
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exp [−jkR]
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n=−∞
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(
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π

2
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×
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n
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Jn(ka sin θ)

H
(2)
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+
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J ′
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H
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φ � µJφ
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n=−∞
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[
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π

2
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{
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H
(2)
n (ka sin θ)
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J ′
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H
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n
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}
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(III) z-Directed Dipole Field

A0
z = µJz

exp(−jkR)
4πR

(14a)

A1
z � − µJz

4πR
exp [−jkR]

∞∑
n=−∞

exp
[
jn

(
φ − φ0 +

π

2

)]
Jn(ka sin θ)

H
(2)
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H(2)
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(14b)

3. FINITE PEC CIRCULAR CYLINDER

The determination of the far-zone radiation from an arbitrarily
oriented dipole near a finite perfectly conducting cylinder is of interest
from both a theoretical and a practical point of view. From a
theoretical aspect, the problem presents a distinct mathematical
difficulty; the surface of the perfectly conducting cylinder cannot be
described by assigning a constant value to one of the coordinates. A
rigorous solution to the problem is, therefore, very difficult since the
boundary condition of zero tangential electric field must be imposed
over parts of two different coordinate surfaces. However, if the cylinder
is long compared to a radius and wavelength an approximate solution
to the problem is obtained [50].

In solving such a problem, the main issue is to determine the
current distribution induced on the cylinder, therefore, it is necessary
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in the approximate treatment of the long finite cylinder to have
available the expressions for the currents on the infinite cylinder. Using
a cylindrical coordinate system with the cylinder axis and the z-axis
coincident, and the dipole at ρ = ρ0, φ = φ0, the magnetic field at the
surface of the cylinder (ρ = a) has been shown in Eqs. (7)–(9). The
surface current densities on the cylinder are then

Jz = Hφ(ρ = a) Jφ = −Hz(ρ = a) (15)

and the currents on the cylinder are completely determined.

3.1. The Finite Cylinder Excited by an Arbitrarily Oriented
Dipole

The determination of the far-zone field of a finite cylinder, i.e., a
cylinder not of infinite extent in the ±z direction, when excited by an
arbitrarily electric dipole presents greater difficulty than the case of the
infinite cylinder. The case of the finite cylinder involves complicated
boundary conditions in that the tangential electric field must vanish
over parts of two different coordinate surfaces. As shown in Fig. 1,
the tangential field must vanish at ρ = a for −l1 < z < l2 and also
at z = l2, z = −l1 for ρ < a. These boundary conditions introduce
considerable complications and usually the solutions to problems of
this sort involve some method of approximation.

Frequently the far-zone field expres-sions for the infinite cylinder
are used as an approximation to the case of a finite cylinder. However,
this procedure yields poor results, as has been pointed out by [50],
especially near the axis of the cylinder where the expression for the
θ-component of the electric field of the infinite cylinder diverges. Also
the minor lobes which are found to exist for the finite cylinder of small
radius are not predicted in this approximation. In present work our
procedure does not yield these problems.

In order to carry out a more accurate approximate solution to this
problem the current distribution on the finite cylinder will be taken
identical to the distribution on the infinite cylinder. The procedure
is as follows: First the current distribution on the infinite cylinder is
determined. Then the portions of the infinite cylinder above z = l2
and below z = −l1 are removed with the assumption that the current
on the remaining portion of the cylinder is unchanged. The far zone
field of this unchanged portion of the current between −l1 and l2
is then computed and added to the field of the dipole to obtain an
expression for the total far-zone field of the configuration. A similar
approximation has been used by Meixner [51] in treating the radiation
from a slit in a finite plane.
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z=0

z=l

z=l

a

Arbitrar ily
oriented
dipole

1

2

Figure 1. Finite cylinder with arbitrarily oriented dipole.

Following two proportionalities hold for the surface current density
[50]:

Jzα
e−jkz

ln
(

kz

k2a2

)
Jφα

sin φe−jkz

(kz)2

where Jz and Jφ are the z- and φ-components of the surface current
densities on the cylinder. From above expressions, it is evident that at
large value of kz, contribution of Jz and Jφ goes to zero. So the major
portion of the radiation is then be produced by the central region of
the infinite cylinder i.e., −l1 ≤ z ≤ l2 and the approximation used is
justified for the conditions kl2 � 1 and kl1 � 1.

(I) ρ-Directed Dipole Field

The far-zone radiation field of a ρ-directed dipole near a finite
cylinder will now be derived using the approximation discussed above.
The physical configuration and coordinate system are shown in Fig. 2.
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az=l

z=l=
z=0

=0

0

2

1

z=0

Dipole
at

Z

z

P(r, , )θ

z R
R

ϕ

ρρ
ϕ

ϕ

ρ ρ

ϕ

θ

Figure 2. Finite cylinder with arbitrarily oriented dipole and
coordinate system.

The field is to be calculated at an arbitrary point P. The field due
to current on the cylinder will first be derived and the dipole field will
be added to give the total field. The far-zone φ-component of electric
field due to a surface current density J flowing over an area ds is [55]

Aφ =
µ0

4πr

∫ ∫
S
J(ρ′, φ′, z′).iφe−jkr′.ir (16)

where ir and iφ are unit vectors in the r- and φ-direction respectively.
For the cylinder of Fig. 1, (15) becomes

Eφ =
jω2µ0ae−jkr

4πr

∫ l2

−l1

×
∫ 2π

0
Hz(ρ′ = a) cos(φ′ − φ)ejka cos(φ′−φ) sin θ+z′ cos θdφ′dz′ (17)

where M is the dipole moment. Substituting Hz into (16), one obtains

Eφ =
Mω2µ0ae−jkr

8π3rρ0

∞∑
n=1

n

∫ 2π

0
sin nφ′ cos(φ′ − φ)ejka cos(φ′−φ) sin θdφ′
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×
∫ l2

−l1

∫
C

H
(2)
n (χρ0)

χaH
(2)
n

′(χa)
e−jkhz′ cos θejkz′ cos θdhdz′ (18)

It can be shown that first integral in (17) is given by∫ 2π

0
sin nφ′ cos(φ′ − φ)ejka cos(φ′−φ) sin θdφ′ = 2πjn−1 sin nφJ ′

n(ka sin θ)

(19)
Therefore (17) becomes

Eφ =
Mω2µ0ae−jkr

4π2rρ0

∞∑
n=1

njn−1 sin nφJ ′
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×
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n
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Performing the integration over z′ in (19) and making the substitution
h = kh′, one obtains

Eφ =
Mke−jkr

4π2ε0rρ0

∞∑
n=1

njn sin nφJ ′
n(ka sin θ)

×
∫

C′

H
(2)
n (kρ0

√
1 − h2)[eikl2(h′−cos θ) − e−ikl1(h′−cos θ)]

H
(2)
n

′(ka
√

1 − h′2)
√

1 − h′2(h − cos θ)
dh′ (21)

in adding the contribution to Eφ from the dipole alone, the total φ-
component of the far-zone field becomes

Eφtotal
=−Mke−jkr

4πε0r

×
[
k sin φejkρ0 sin θ cos φ− 1

kρ0

∞∑
n=1

njn sin nφJ ′
n(ka sin θ)Ψn

]
(22)

where

Ψn =
∫

C′

H
(2)
n (kρ0

√
1 − h′2)[ejkl2(h′−cos θ) − e−jkl1(h′−cos θ)]

H
(2)
n

′(ka
√

1 − h′2)
√

1 − h′2(h′ − cos θ)
dh′ (23)

The far-zone θ-component of electric field due to surface current density
J is

Eθ = −jωµ0e−jkr

4πr

∫
S
J.iθejkr′.irdS′ (24)
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where iθ and ir are unit vectors in the θ- and r-directions, respectively.
For the cylinder of Fig. 2, Eq. (23) becomes

Eθ =
jωµ0aejkr

4πr

∫ l2

−l1

∫ 2π

0
Hφ(ρ′ = a) sin θejk[a cos(φ′−φ) sin θ+z′ cos θ]dφ′dz′

(25)
Substituting Hφ into (24), one obtains

Eθ =
jMω2µ0a sin θe−jkr

16π3r

∞∑
n=0

εn

∫ 2π

0
cos nφ′ejka cos(φ′−φ) sin θdφ′

×
∫ l2

−l1

∫
C

h

χa

[
H

(2)
n

′(χρ0)

H
(2)
n (χa)

− n2

χ2aρ0

H
(2)
n (χρ0)

H
(2)
n

′(χa)

]
e−jhz′ejkz′ cos θdhdz′

(26)

It can be shown that the first integral in (25) is given by∫ 2π

0
cos nφ′e−jka cos(φ′−φ) sin θdφ′ = 2πjn cos nφJn(ka sin θ)

Thus (25) becomes

Eθ =
jMω2µ0a sin θe−jkr

8π2r

∞∑
n=0

εnjn cos nφJn(ka sin θ)

×
∫ l2

−l1

∫
C

h

χa

[
H

(2)
n

′(χρ0)

H
(2)
n (χa)

− n2

χ2aρ0

H
(2)
n (χρ0)

H
(2)
n

′(χa)

]
e−jhz′ejkz′ cos θdhdz′

(27)

Performing the integration over z′ and letting h = kh′, one obtains

Eθ =
Mk2 sin θejkr

8π2ε0r

∞∑
n=0

εnjn cos nφJn(ka sin θ)γn (28)

where

γn =
∫

C′

h′
√

1 − h′2

×
[

H
(2)
n

′(kρ0

√
1 − h′2)

H
(2)
n (ka

√
1 − h′2)

− n2

k2aρ0(1 − h′2)
H

(2)
n (kρ0

√
1 − h′2)

H
(2)
n

′(ka
√

1 − h′2)

]

× [ejkl2(h′−cos θ) − e−jkl1(h′−cos θ)]
(h′ − cos θ)

dh′ (29)
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Adding the contribution to Eθ due to the dipole alone, the total θ-
component of the far-zone electric field becomes

Eθtotal
=

Mk2e−jkr

4πε0r

×
[
cos θ cos φejkρ0 sin θ cos φ − sin θ

2π

∞∑
n=0

εnjn cos nφJn(ka sin θ)γn

]
(30)

(II) φ-Directed Dipole Field

We write only results.

Eφtotal
=−Mke−jkr

4πε0r

×
[
k cos φejkρ0 sin θ cos φ − 1

2π

∞∑
n=0

εnjn cos nφJ ′
n(ka sin θ)Ψn

]
(31)

where

Ψn =
∫

C′

H
(2)
n

′(kρ0

√
1 − h′2)[eikl2(h′−cos θ) − e−ikl1(h′−cos θ)]

H
(2)
n

′(ka
√

1 − h′2)(h′ − cos θ)
dh′ (32)

and

Eθtotal
=

Mk2e−jkr

4πε0r

×
[
cos θ sin φejkρ0 sin θ cos φ − sin θ

π

∞∑
n=1

jn sin nφJn(ka sin θ)γn

]
(33)

where

γn =
∫

C′

h′
√

1 − h′2

×
[

n

ka
√

1 − h2

H
(2)
n

′(kρ0

√
1 − h′2)

H
(2)
n

′(ka
√

1 − h′2)
− n

kρ0(1 − h′2)
H

(2)
n (kρ0

√
1 − h′2)

H
(2)
n (ka

√
1 − h′2)

]

× [ejkl2(h′−cos θ) − e−jkl1(h′−cos θ)]
(h′ − cos θ)

dh′ (34)
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(iii) z-Directed Dipole Field

Eθtotal
=

Mk2e−jkr

4πε0r

[
sin θ +

1
2π

∞∑
n=0

εnjn cos nφJn(ka sin θ)γn

]
(35)

where

γn =
∫

C′

H
(2)
n (kρ0

√
1 − h′2)

H
(2)
n (ka

√
1 − h′2)

[ejkl2(h′−cos θ) − e−jkl1(h′−cos θ)]
(h′ − cos θ)

dh′ (36)

4. INFINITE IMPEDANCE CIRCULAR CYLINDER

An arbitrarily oriented dipole current is placed in the vicinity of an
infinitely long circular cylinder with surface impedance. The boundary
conditions are given by

Ez = Z1Hφ, Eφ = −Z2Hz (37)

It is assumed that surface impedance is anisotropic. The analytical
procedure is quite similar to the case of perfectly conducting cylinder.
In this section we derive the expression of the scattered field and the
surface field of the cylinder.

4.1. Expressions for the Scattered Field

(I) ρ-Directed Dipole Field

To derive the field produced by ρ-directed dipole current, we need
two components of vector potential. In the presence of an impedance
cylinder, this situation does not change. The Fourier transform of the
vector potential is written as

Ãρn = Ã0
ρn + Ã1

ρn, Ãφn = Ã0
φn + Ã1

φn (38a)

where the superscripts “0” and “1” represent the primary and scattered
waves, respectively. These are given by

Ã0
ρn =

µJρ

4j

[
n

χρ0
H(2)

n (χρ0)
n

χρ
Jn(χρ) + H(2)

n
′(χρ0)J ′

n(χρ)
]

, (38b)

Ã1
ρn =

µJρ

4j

[
anH(2)

n
′(χρ) + bn

n

χρ
H(2)

n (χρ)
]

, (38c)

Ã0
φn =

µJρ

4

[
n

χρ0
H(2)

n (χρ0)J ′
n(χρ) + H(2)

n
′(χρ0)

n

χρ
Jn(χρ)

]
, (38d)

Ã1
φn =

µJρ

4

[
bnH(2)

n
′(χρ) + an

n

χρ
H(2)

n (χρ)
]

(38e)
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where an and bn are the expansion coefficients which are to be
determined from the boundary conditions (36). The Fourier transform
of the tangential components of the electromagnetic field is obtained
from (37) [52, 53].

Ẽzn =
Z0Jρ

4j

hχ

k

[
H(2)

n
′(χρ0)Jn(χρ) + anH(2)

n (χρ)
]

(39a)

H̃φn = −Jρ

4
h

{[
n

χρ0
H(2)

n (χρ0)
n

χρ
Jn(χρ) + H(2)

n
′(χρ0)J ′

n(χρ)
]

+
[
anH(2)

n
′(χρ) + bn

n

χρ
H(2)

n (χρ)
]}

(39b)

H̃zn = −Jρ

4
χ

[ n

χρ0
H(2)

n (χρ0)Jn(χρ) + bnH(2)
n (χρ)

]
(39c)

Ẽφn = −jkZ0Jρ

4

{[
n

χρ0
H(2)

n (χρ0)J ′
n(χρ) + bnH(2)

n
′(χρ)

]
+

h2

k2

n

χρ

[
H(2)

n
′(χρ0)Jn(χρ) + anH(2)

n (χρ)
]}

(39d)

Enforcement of the boundary conditions (36) yields the equations

jχ
[
H(2)

n
′(χρ0)Jn(χa) + anH(2)

n (χa)
]

= kζ1

{[
n

χρ0
H(2)

n (χρ0)
n

χa
Jn(χa) + H(2)

n
′(χρ0)J ′

n(χa)
]

+
[
anH(2)

n
′(χa) + bn

n

χa
H(2)

n (χa)
]}

k2
[

n

χρ0
H(2)

n (χρ0)J ′
n(χa) + bnH(2)

n
′(χa)

]
+h2

[
H(2)

n
′(χρ0)

n

χa
Jn(χa) + an

n

χa
H(2)

n (χa)
]

= jkχζ2

[ n

χρ0
H(2)

n (χρ0)Jn(χa) + bnH(2)
n (χa)

]
In the above equations, ζ1 and ζ2 are the normalized impedances
related by ζ1 = Z1

Z0
and ζ2 = Z2

Z0
with an intrinsic impedance Z0 in free

space, respectively. These equations are solved for an and bn resulting

an(χ) =
k

∆t(χ)

{[
kΨn(χ) − jχζ2

]
A(χa) + ζ1

n

χa
B(χa)

}
(40a)

bn(χ) =
1

∆t(χ)

{[
jχ − kζ1Ψn(χ)

]
B(χa) − h2 n

χa
A(χa)

}
(40b)
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∆t(χ) = k

{[
jχ−kζ1Ψn(χ)

][
kΨn(χ)−jχζ2

]
+h2ζ1

(
n

χa

)2
}

(40c)

A(χa) =
kζ1

H
(2)
n (χa)

[
n

χρ0
H(2)

n (χρ0)
n

χa
Jn(χa) + H(2)

n
′(χρ0)J ′

n(χa)
]

− jχ

H
(2)
n (χa)

H(2)
n

′(χρ0)Jn(χa) (40d)

B(χa) =
1

H
(2)
n (χa)

{
jkχζ2

n

χρ0
H(2)

n (χρ0)Jn(χa)

− k2 n

χρ0
H(2)

n (χρ0)J ′
n(χa)−h2H(2)

n
′(χρ0)

n

χa
Jn(χa)

}
(40e)

Ψn(χa) =
H

(2)
n

′(χa)

H
(2)
n (χa)

(40f)

(II) φ-Directed Dipole Field

When the dipole is oriented in φ-direction, two components Aρ

and Aφ are needed to express the electromagnetic field. The Fourier
transforms of the these components are written as

Ãρn = Ã0
ρn + Ã1

ρn, Ãφn = Ã0
φn + Ã1

φn (41a)

These are given by

Ã0
ρn = −µJφ

4

[
n

χρ0
H(2)

n (χρ0)J ′
n(χρ) + H(2)

n
′(χρ0)

n

χρ
Jn(χρ)

]
(41b)

Ã0
φn =

µJφ

4j

[
n

χρ0
H(2)

n (χρ0)
n

χρ
Jn(χρ) + H(2)

n
′(χρ0)J ′

n(χρ)
]

(41c)

Ã1
ρn = −µJφ

4

[
bnH(2)

n
′(χρ) + an

n

χρ
H(2)

n (χρ)
]

,

Ã1
φn =

µJφ

8j

[
anH(2)

n
′(χρ) + bn

n

χρ
H(2)

n (χρ)
]

,

(41d)

The Fourier transform of the tangential components of the
electromagnetic field is derived from (40) [52, 53].

Ẽzn = −Z0Jφ

4
hχ

k

[ n

χρ0
H(2)

n (χρ0)Jn(χρ) + bnH(2)
n (χρ)

]
(42a)

Ẽφn = −Z0Jφ

4k

{
k2

[
H(2)

n
′(χρ0)J ′

n(χρ) + anH(2)
n

′(χρ)
]

+ h2
[

n

χρ0
H(2)

n (χρ0)
n

χρ
Jn(χρ) + bn

n

χρ
H(2)

n (χρ)
]}
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(42b)

H̃φn =
jJφ

4
h

{[
n

χρ0
H(2)

n (χρ0)J ′
n(χρ) + H(2)

n
′(χρ0)

n

χρ
Jn(χρ)

]
+

[
bnH(2)

n
′(χρ) + an

n

χρ
H(2)

n (χρ)
]}

(42c)

H̃zn =
jJφ

4
χ

[
H(2)

n
′(χρ0)Jn(χρ) + anH(2)

n (χρ)
]

(42d)

From the boundary conditions (36) we obtain the following relations

k2
[
H(2)

n
′(χρ0)J ′

n(χa) + anH(2)
n

′(χa)
]

+h2
[

n

χρ0
H(2)

n (χρ0)
n

χa
Jn(χa) + bn

n

χa
H(2)

n (χa)
]

= jζ2kχ
[
H(2)

n
′(χρ0)Jn(χa) + anH(2)

n (χa)
]

(43a)

jχ
[ n

χρ0
H(2)

n (χρ0)Jn(χa) + bnH(2)
n (χa)

]
= kζ1

[
n

χρ0
H(2)

n (χρ0)J ′
n(χa) + H(2)

n
′(χρ0)

n

χa
Jn(χa)

+ bnH(2)
n

′(χa) + an
n

χa
H(2)

n (χa)
]

(43b)

From these relations, the expansion coefficients an and bn are
determined as

an(χ) =
1

∆t(χ)

{[
jχ − kζ1Ψn(χa)

]
A(χa) − h2 n

χa
B(χa)

}
(44a)

bn(χ) =
k

∆t(χ)

{[
kΨn(χa) − jζ2χ

]
B(χa) + ζ1

n

χa
A(χ)

}
(44b)

A(χa) =
1

H
(2)
n (χa)

{
−k2H(2)

n
′(χρ0)J ′

n(χa)

− h2 n

χρ0
H(2)

n (χρ0)
n

χa
Jn(χa) + jχkζ2H(2)

n
′(χρ0)Jn(χa)

}
(44c)

B(χ) =
1

H
(2)
n (χa)

{
−jχ

n

χρ0
H(2)

n (χρ0)Jn(χa)

+ kζ1

[
n

χρ0
H(2)

n (χρ0)J ′
n(χa)+H(2)

n
′(χρ0)

n

χa
Jn(χa)

]}
(44d)

(III) z-Directed Dipole Field
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When the dipole is oriented in z-direction, the primary field is
derived from only Az-component. But in the presence of the impedance
cylinder we need one more component. We use here z-component of
the vector potential Fz of the electric type. These are written as

Ãzn =
µJz

4j

[
H(2)

n (χρ0)Jn(χρ)+anH(2)
n (χρ)

]
, F̃zn =

ε0Z0Jz

4j
bnH(2)

n (χρ)

(45a)
The Fourier transform of the tangential components of the
electromagnetic field is given by [52, 53]

Ẽzn = −Z0Jz

4
χ2

k

[
H(2)

n (χρ0)Jn(χρ) + anH(2)
n (χρ)

]
(45b)

Ẽφn = −Z0Jz

4

{
nh

kρ

[
H(2)

n (χρ0)Jn(χρ)+anH(2)
n (χρ)

]
+jχbnH(2)

n
′(χρ)

}
(45c)

H̃φn =
jJz

4

{
χ

[
H(2)

n (χρ0)J ′
n(χρ) + anH(2)

n
′(χρ)

]
+ j

nh

kρ
bnH(2)

n (χρ)
}

(45d)

H̃zn = −Jz

4
χ2

k
bnH(2)

n (χρ) (45e)

It is noted that Hz component is not produced when the cylinder
is perfect conductor. Hence the contribution proportional to the
coefficient bn is due to the surface impedance. From the boundary
conditions (36), the equations for the expansion coefficients an and bn

are obtained by

−χ
[
H(2)

n (χρ0)Jn(χa) + anH(2)
n (χa)

]
= jζ1

{
k
[
H(2)

n (χρ0)J ′
n(χa) + anH(2)

n
′(χa)

]
+ j

nh

χa
bnH(2)

n (χa)
}

(46a)

−
{

nh

χa

[
H(2)

n (χρ0)Jn(χa) + anH(2)
n (χa)

]
+ jbnkH(2)

n
′(χa)

}
= ζ2χbnH(2)

n (χa) (46b)

an(χ) =
1

∆z(χ)

{
[χζ2 + jkΨn(χa)] A(χ) + ζ1

nh

χa
B(χ)

}
(47a)

bn(χ) =
1

∆z(χ)

{[
χ + jkζ1Ψn(χa)

]
B(χ) − nh

χa
A(χ)

}
(47b)

∆z(χa) =
[
χ + jkζ1Ψn(χa)

]
[χζ2 + jkΨn(χa)] + ζ1h2

(
n

χa

)2

(47c)
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A(χa) =
H

(2)
n (χρ0)

H
(2)
n (χa)

[
−jζ1kJ ′

n(χa) − χJn(χa)
]

(47d)

B(χa) = −nh

χa

H
(2)
n (χρ0)

H
(2)
n (χa)

Jn(χa) (47e)

4.2. Far Scattered Field

Once the unknown coefficients an(χ) and bn(χ) are determined, the
scattered field in the far region may be obtained by applying the
steepest descent method [54]. We write only the results.

(I) ρ-Directed Dipole Field

Aρ =
µJρ

8πj

∞∑
n=−∞

exp [jn (φ − φ0)]

×
∫ ∞

−∞

[
anH(2)

n
′(χρ) + bn

n

χρ
H(2)

n (χρ)
]
exp

[
−jh(z − z0)

]
dh

� µJρ

4π

exp(−jkR)
R

∞∑
n=−∞

an(k sin θ) exp
[
jn(φ−φ0)+j

nπ

2

]
(48a)

Aφ =
µJρ

8π

∞∑
n=−∞

exp [jn (φ − φ0)]

×
∫ ∞

−∞

[
bnH(2)

n
′(χρ) + an

n

χρ
H(2)

n (χρ)
]
exp

[
−jh(z − z0)

]
dh

� j
µJρ

4π

exp(−jkR)
R

∞∑
n=−∞

bn(k sin θ) exp
[
jn(φ−φ0)+j

nπ

2

]
(48b)

where we assume that kR sin θ � 1. an(ka sin θ) and bn(ka sin θ) mean
that we set χa = ka sin θ and ha = ka cos θ in the coefficients given
by (33a) and (33b). In the far region, electric field components are
obtained from Eθ � −jωAθ and Eφ � −jωAφ.

(II) φ-Directed Dipole Field

Aρ � −j
µJφ

4π

exp(−jkR)
R

∞∑
n=−∞

bn(k sin θ) exp
[
jn (φ−φ0)+j

nπ

2

]
(49a)

Aφ � µJφ

4π

exp(−jkR)
R

∞∑
n=−∞

an(k sin θ) exp
[
jn (φ − φ0) + j

nπ

2

]
(49b)

(III) z-Directed Dipole Field



160 Illahi, Naqvi, and Hongo

Az =
µJz

8πj

∞∑
n=−∞

exp [jn (φ − φ0)]
∫ ∞

−∞
anH(2)

n (χρ) exp
[
−jh(z − z0)

]
dh

� µJz

4π

exp(−jkR)
R

∞∑
n=−∞

an(k sin θ) exp
[
jn (φ − φ0) + j

nπ

2

]
(50a)

Fz � Y0
µJρ

4π

exp(−jkR)
R

∞∑
n=−∞

bn(k sin θ) exp
[
jn(φ − φ0)+j

nπ

2

]
(50b)

Electromagnetic field is obtained by the relation

Eθ � −jωAθ = −jω sin θAz, Hθ � −jωFθ = −jω sin θFz = −Z0Eφ

(50c)

4.3. Surface Field

Surface field can be used as the secondary sources which produce the
scattered fields.

(I) ρ-Directed Dipole

Ẽzn =
Z0Jρ

4j

hχ

k

k2ζ1

∆t(χa)

×
{
−

[
kΨn(χa) − jχζ2

]
H(2)

n
′(χρ0) + k

n

χa
· n

χρ0
H(2)

n (χρ0)
}

Wn(χa)

(51a)

H̃zn = −Jρ

4
kχ

∆t(χa)

×
{

k
[
jχ − kζ1Ψn(χa)

] n

χρ0
H(2)

n (χρ0)+h2kζ1
n

χa
H(2)

n
′(χρ0)

}
Wn(χa)

(51b)

(II) φ-Directed Dipole

Ẽzn = −Z0Jφ

4
khχζ1

∆t(χa)

×
{
−

[
kΨn(χa) − jχζ2

] n

χρ0
H(2)

n (χρ0) + k
n

χa
H(2)

n
′(χρ0)

}
Wn(χa)

(52a)

H̃zn =
jJφ

4
kχ

∆t(χa)
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×
{

k
[
jχ − kζ1Ψn(χa)

]
H(2)

n
′(χρ0) + h2ζ1

n

χa

n

χρ0
H(2)

n (χρ0)
}

Wn(χa)

(52b)

(III) z-Directed Dipole

Ẽzn = −jZ0Jz

4
χ2ζ1

∆z(χa)
[χζ2 + jkΨn(χa)] H(2)

n (χρ0)Wn(χa) (53a)

H̃zn =
jJz

4
χ2ζ1

∆z(χa)
nh

χa
H(2)

n (χρ0)Wn(χa) (53b)

In the above equations (50) ∼ (52),

Wn =
H

(2)
n

′(χa)

H
(2)
n (χa)

Jn(χa) − J ′
n(χa) = − j2

πχa
· 1

H
(2)
n (χa)

(54)

5. FINITE IMPEDANCE CIRCULAR CYLINDER

The determination of the far-zone radiation from an arbitrarily
oriented dipole near a finite impedance cylinder is done on the same
lines as for PEC cylinder. From a theoretical point of view, the
problem contains considerable mathematical complications so some
method of approximation is utilized. In order to carry out a more
accurate approximate solution to this problem the current distribution
on the finite cylinder will be taken identical to the distribution on the
infinite cylinder. In case of impedance cylinder, beside magnetic vector
potential, electric vector potential is also incorporated.

5.1. General Calculations

We consider the general calculations or procedure which will be
employed to calculate the arbitrary oriented dipole field scattered by
finite impedance cylinder. In the far zone, the electric field can be
written as [52].

Eθ = −jωAθ − jωZ0Fφ (55a)
Eφ = −jωAφ + jωZ0Fθ (55b)

where

Au =
µ0

4π

∫
A

J · iu
e−jkR

R
dA

Fu =
ε0

4π

∫
A

M · iu
e−jkR

R
dA (u = θ, φ)
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The far zone field of the unchanged portion of the current between the
length of the cylinder −l1 and l2 is then computed and added to the
field of the dipole to obtain an expression for the total far zone field of
the configuration. In the above relations, we need the surface current
densities on the cylinder, which are given by

Jφ = −Hz(ρ = a), Jz = Hφ(ρ = a)

Mφ = Ez(ρ = a), Mz = −Eφ(ρ = a)

which in turn can be obtained through

Hφ =
1
2π

∞∑
n=−∞

exp[jn(φ − φ0)]
∫ ∞

−∞
H̃φn exp[−jh(z − z0)]dh (56a)

Eφ =
1
2π

∞∑
n=−∞

exp[jn(φ − φ0)]
∫ ∞

−∞
Ẽφn exp[−jh(z − z0)]dh (56b)

Hz =
1
2π

∞∑
n=−∞

exp[jn(φ − φ0)]
∫ ∞

−∞
H̃zn exp[−jh(z − z0)]dh (56c)

Ez =
1
2π

∞∑
n=−∞

exp[jn(φ − φ0)]
∫ ∞

−∞
Ẽzn exp[−jh(z − z0)]dh (56d)

E and H fields are related through the boundary conditions (36).
Which can be obtained by using the results of previous section.

(a) 
 

(b) 

Figure 3. Surface field of a PEC cylinder for ρ-directed dipole.
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6. RESULTS AND DISCUSSIONS

Surface fields in the case of PEC infinite cylinder are shown in Figs. 3–
5, while far zone scattered field patters in the same case are given in
Figs. 6–8. Fig. 3(a) shows surface field plots due to incident plane wave
and ρ-directed dipole field with ka = 10, kρ0 = 500, θ = π

3 and φ0 = 0.
The patterns match those reported by [55] which indicates the validity
of this method. Having validation of the method the surface fields due
to all other orientations i.e, φ- and z-directed dipole are plotted which
are shown in Figs. 4–5. Similarly in Fig. 6(a), far zone scattered field
due to ρ-directed dipole are plotted which is similar to a well known far
zone scattered field plot due to plane wave incident on PEC cylinder

 
(a) (b) 

Figure 4. Surface field of a PEC cylinder for ϕ-directed dipole.

Figure 5. Surface field of a PEC cylinder for z-directed dipole.
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which is again in good agreement with the literature [55]. Therefore
the far zone scattered field due to all other orientations i.e., φ-, and
z-directed dipole are plotted which are shown in Figs. 7–8. Next is the
scattering of dipole field from finite PEC cylinder. For the case of the
dipole contiguous to the cylinder, Eθtotal

and Eφtotal
are plotted against

θ for kl1 = 5.236, kl2 = 10.472 and ka = 0.6317. Our’s and [50]’s
radiation patterns agree sufficiently to warrant comparison in Fig. 9. In
case of dipole field scattered from infinite impedance cylinder, surface
fields are shown in Figs. 10–12, while far zone scattered field patters
are given in Figs. 13–15. These patterns match with surface field
plots and far scattered field plots of dipole field scattered from infinite
PEC cylinder, which match those reported by Bowman, Seniour and
Uslenghi [55] which indicates the validity of this method. Next is the
case of finite impedance cylinder. For the case of the dipole contiguous

 
(a) (b) 

Figure 6. Far scattered field of a PEC cylinder for ρ-directed dipole.

(a) (b) 

Figure 7. Far scattered field of a PEC cylinder for ϕ-directed dipole.
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Figure 8. Far scattered field of a PEC cylinder for z-directed dipole.

(a) 
 

(b) 

Figure 9. Comparison between Kuehl work and our work.

to the cylinder, Eθtotal
and Eφtotal

are plotted against θ for kl1 = 5.236,
kl2 = 10.472 and ka = 0.6317, ka = 1. Our results are sufficiently
agreed to the case when the cylinder is of PEC and the results of
which are validated through [50]. Figs. 16–18. The exciting dipole is
not necessarily situated in the plane equidistant from the two ends
of the cylinder. Therefore the radiation pattern is not necessarily
symmetrical about the midplane of the system [50].
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(a) (b) 

Figure 10. Surface field of an impedance cylinder for ρ-directed
dipole.

 
(a) 

 
(b) 

Figure 11. Surface field of an impedance cylinder for ϕ-directed
dipole.

(a) (b) 

Figure 12. Surface field of an impedance cylinder for z-directed
dipole.
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(a) (b) 

Figure 13. Far scattered field of an impedance cylinder for ρ-directed
dipole.

 
(a) (b) 

Figure 14. Far scattered field of an impedance cylinder for ϕ-directed
dipole.

APPENDIX A. DIPOLE FIELD IN THE CIRCULAR
CYLINDRICAL COORDINATES

The dyadic Green’s functions for various configurations are collected
by Tai [56], but we present here a different derivation so that it is easily
applied to the present problem.

A small arbitrarily oriented dipole current is placed at r0 =
(ρ0, φ0, z0) and the problem is to derive the field at any point r =
(ρ, φ, z) produced by the dipole current. The field is given as the
solution of the Maxwell equations

∇× E = −jωµH, ∇× H = jωεE + Jδ(r − r0) (A1a)
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(a) (b) 

Figure 15. Far scattered field of an impedance cylinder for z-directed
dipole.

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 16. Comparison between PEC and impedance case (ρ-directed
dipole).
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(a) 

 
(b) 

 
(c) (d) 

Figure 17. Comparison between PEC and impedance case (ϕ-directed
dipole).

 
(a) (b) 

(c) (d) 

Figure 18. Comparison between PEC and impedance case (z-directed
dipole).
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where J is the current density and δ(r − r0) is the Dirac’s delta
function. Symbols r and r0 denote the vectors of observation and
source points, respectively. Parameters ε and µ are the permittivity
and permeability of the medium of the region of interest. In present
discussion, it is assumed that ε and µ are constants. We introduce the
vector potential A of magnetic type, which has the relationship with
the electromagnetic field [52, 53]

B = ∇× A, E = −jω

[
A +

1
k2

∇∇ · A
]

(A1b)

Substituting (A1b) into (A1a) yields the equations which the vector
potential A must satisfy

∇×∇× A −∇∇ · A − k2A = µuJuδ(r − r0) (A1c)

where k = ω
√

µε is the wave number, u is the unit vector representing
the direction of the dipole current density and Ju is the component of
the direction. Representing ∇ = ∇t + iz ∂

∂z , A = At + izAz, iz is the
unit vector directed to positive z direction and subscript “t” denotes
the transverse components. Above equation takes the following form

∇t×∇t×At−∇t∇t · At−
∂2At

∂z2
−k2At−

[
∇2

t Az+
∂2Az

∂z2
+k2Az

]
iz

= µJδ(r − r0) (A1d)

where ∇2
t is the two dimensional Laplacian in cylindrical coordinates.

Each component of the vector potential is expanded in terms of Fourier
transform with respect to z parameter, which is defined by

A�(ρ, φ, z) =
1
2π

∫ ∞

−∞
Ã�(ρ, φ, h) exp

[
−jh(z − z0)

]
dh (A2a)

Ã�(ρ, φ, h) =
∫ ∞

−∞
A�(ρ, φ, h) exp

[
jh(z − z0)

]
dz, � = ρ, φ, z (A2b)

where tilde means the transformed function. Any vector field, which
is finite, uniform, and continuous and which vanishes at infinity, may
also be expressed as the sum of a gradient of a scalar and curl of a
zero divergence vector [57]. The solution of the transverse component
of magnetic vector potential, used in (A1d), may be written for r �= r0

as
Ãt = ∇tΦ + ∇t × (izΨ) (A3)

where Φ and Ψ are the scalar functions satisfying two dimensional wave
equation ∇2

t F +χ2F = 0 with F = Φ or F = Ψ and χ2 = k2−h2. The
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solution of the z-component of (A1d) is given by Ãz = Φ for r �= r0.
The variation with respect to variable φ is expanded in terms of Fourier
series and the expansion of the Dirac’s delta function is given by

δ(φ − φ0) =
1
2π

∞∑
n=−∞

exp
[
jn(φ − φ0)

]
(A4)

Let the coefficients of Fourier series of the transformed function Ã� be
denoted by Ã�n. Thus the solution for each component of the vector
potential is obtained in the form

A�(ρ, φ, z) =
1
2π

∞∑
n=−∞

exp
[
jn(φ−φ0)

]∫ ∞

−∞̃
A�n(ρ, h) exp

[
−jh(z−z0)

]
dh,

� = ρ, φ, z (A5a)

The coefficients Ã�n(ρ, h) of Fourier series of transformed functions
Ã�(ρ, φ, h) must satisfy the following inhomogeneous differential
equations {

d

dρ

1
ρ

d

dρ
(ρÃρn) +

(
χ2 − n2

ρ2

)
Ãρn − j

2n

ρ2
Ãφn

}
iρ

+

{
d

dρ

1
ρ

d

dρ
(ρÃφn) +

(
χ2 − n2

ρ2

)
Ãφn + j

2n

ρ2
Ãρn

}
iφ

+

{
1
ρ

d

dρ

(
ρ

d

dρ
Ãzn

)
+

(
χ2 − n2

ρ2

)
Ãzn

}
iz = −µJuu

δ(ρ − ρ0)
2πρ

(A5b)

In next subsection, radiated field due to electric dipole has been
determined while specifying a particular direction of electric dipole.
That is three situation has been considered, ρ-directed dipole, φ-
directed dipole and z-directed dipole.

A.1. ρ-Directed Dipole Field

Let u = iρ in the right hand side of (A5b), the equations for Ãρn and
Ãφn become

d

dρ

1
ρ

d

dρ
(ρÃρn) +

(
χ2 − n2

ρ2

)
Ãρn − j

2n

ρ2
Ãφn = −µJρ

δ(ρ − ρ0)
2πρ

d

dρ

1
ρ

d

dρ
(ρÃφn) +

(
χ2 − n2

ρ2

)
Ãφn + j

2n

ρ2
Ãρn = 0 (A6a)
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It is obvious from (A5b), Ãzn satisfies homogeneous wave equation and
is independent from Ãρn and Ãφn. Set of equations (A6a) are coupled
differential equations for Ãρn and Ãφn. The solution of (A6a) can be
constructed from that of corresponding homogeneous equation which
is given in (A3), by applying the source conditions

Ãρn

∣∣∣∣ρ0+0

ρ0−0
= 0, Ãφn

∣∣∣∣ρ0+0

ρ0−0
= 0;

d

dρ
Ãρn

∣∣∣∣ρ0+0

ρ0−0
= − µJρ

2πρ0
,

d

dρ
Ãφn

∣∣∣∣ρ0+0

ρ0−0
= 0

(A6b)
The scalar functions Φ and Ψ of Ãt given by (A3) may be written as

Φ(ρ, φ, h) =
∞∑

n=−∞
exp[jn(φ − φ0)]Φ1(ρ)

Ψ(ρ, φ, h) =
∞∑

n=−∞
exp[jn(φ − φ0)]Ψ1(ρ)

The scalar functions Φ1 and Ψ1 of Ãtn given by (A3) are by Jn(χρ)
for ρ < ρ0 and H

(2)
n (χρ) for ρ > ρ0, respectively. Ãt may be obtained

using (A3), that is

Ãt(ρ, φ, h) = ∇tΦ(ρ, φ, h) + ∇t × (izΨ(ρ, φ, h))

Ãρ(ρ, φ, h) =
∞∑

n=−∞
exp[jn(φ − φ0)]

[
∂

∂ρ
Φ1(ρ) +

jn

ρ
Ψ1(ρ)

]

=
∞∑

n=−∞
exp[jn(φ − φ0)]Ãρn(ρ)

Ãφ(ρ, φ, h) =
∞∑

n=−∞
exp[jn(φ − φ0)]

[
jn

ρ
Φ1(ρ) − ∂

∂ρ
Ψ1(ρ)

]

=
∞∑

n=−∞
exp[jn(φ − φ0)]Ãφn(ρ)

where derivative with respect to φ has been employed to simplify the
expression.

Ãρn =

 P

[
χJ ′

n(χρ) + α1
jn

ρ
Jn(χρ)

]
, ρ < ρ0

Q

[
χH(2)

n
′(χρ) + α1

jn

ρ
H(2)

n (χρ)
]

, ρ > ρ0


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Ãφn =

 P

[
−χα1J ′

n(χρ) +
jn

ρ
Jn(χρ)

]
, ρ < ρ0

Q

[
χα1H(2)

n
′(χρ) +

jn

ρ
H(2)

n (χρ)
]

, ρ > ρ0


As Ãtn is continuous at ρ = ρ0, therefore by considering this fact, we
can set Ãtn in the form

Ãρn =



[
AnH(2)

n
′(χρ0)+Bn

n

χρ0
H(2)

n (χρ0)
][

J ′
n(χρ)+α

n

χρ
Jn(χρ)

]
ρ < ρ0[

AnJ ′
n(χρ0)+Bn

n

χρ0
Jn(χρ0)

][
H(2)

n
′(χρ)+α

n

χρ
H(2)

n (χρ)
]

ρ > ρ0



Ãφn = j



[
AnH(2)

n
′(χρ0)+Bn

n

χρ0
H(2)

n (χρ0)
][

αJ ′
n(χρ)+

n

χρ
Jn(χρ)

]
ρ < ρ0[

AnJ ′
n(χρ0)+Bn

n

χρ0
Jn(χρ0)

] [
αH(2)

n
′(χρ)+

n

χρ
H(2)

n (χρ)
]

ρ > ρ0


(A7a)

where α = jα1. Coefficients An, Bn and α may be determined from
the conditions given in (A6b). From the first two conditions of (A6b),
we have Anα = Bn for Ãρn and Bnα = An for Ãφn. Hence we have the
relation α = ±1. It follows that An = Bn for α = 1, and An = −Bn

for α = −1. That means that the solution of (A7a) must contain two
terms in order to satisfy these conditions given in (A6a) the solution
is given by a linear combination of these functions. Thus Ãρn and Ãφn

are written as

Ãρn = Cn

 H
(2)
n−1(χρ0)Jn−1(χρ)

Jn−1(χρ0)H
(2)
n−1(χρ)

 + Dn

 H
(2)
n+1(χρ0)Jn+1(χρ)

Jn+1(χρ0)H
(2)
n+1(χρ)


ρ < ρ0

ρ > ρ0

Ãφn = jCn

H
(2)
n−1(χρ0)Jn−1(χρ)

Jn−1(χρ0)H
(2)
n−1(χρ)

−jDn

 H
(2)
n+1(χρ0)Jn+1(χρ)

Jn+1(χρ0)H
(2)
n+1(χρ)


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ρ < ρ0

ρ > ρ0

(A7b)

From the last condition of (A6b) we have Cn = Dn and from the third
condition of (A6b) we obtain Cn = µJρ

j8 . Thus we finally obtain

Ãρn =
µJρ

8j

 H
(2)
n−1(χρ0)Jn−1(χρ) + H

(2)
n+1(χρ0)Jn+1(χρ)

Jn−1(χρ0)H
(2)
n−1(χρ) + Jn+1(χρ0)H

(2)
n+1(χρ)

 ρ < ρ0

ρ > ρ0

Ãφn =
µJρ

8

 H
(2)
n−1(χρ0)Jn−1(χρ) − H

(2)
n+1(χρ0)Jn+1(χρ)

Jn−1(χρ0)H
(2)
n−1(χρ) − Jn+1(χρ0)H

(2)
n+1(χρ)

 ρ < ρ0

ρ > ρ0

(A7c)

where we have used the Wronski’s relation for the Bessel functions

Jn(z)
d

dz
H(2)

n (z) − H(2)
n (z)

d

dz
Jn(z) = − 2j

πz
(A7d)

to simplify the solution. Consider the two relations

H
(2)
n−1(χρ0)Jn−1(χρ) =

[
H(2)

n
′(χρ0)+

n

χρ0
H(2)

n (χρ0)
][

J ′
n(χρ)+

n

χρ
Jn(χρ)

]
= H(2)

n
′(χρ0)J ′

n(χρ) +
n

χρ
Jn(χρ)H(2)

n
′(χρ0)

+
n

χρ0
H(2)

n (χρ0)J ′
n(χρ)+

n

χρ0

n

χρ
H(2)

n (χρ0)Jn(χρ)

H
(2)
n+1(χρ0)Jn+1(χρ) =

[
n

χρ
Jn(χρ)−J ′

n(χρ)
][

n

χρ0
H(2)

n (χρ0)−H(2)
n

′(χρ0)
]

=
n

χρ0

n

χρ
H(2)

n (χρ0)Jn(χρ)− n

χρ
Jn(χρ)H(2)

n
′(χρ0)

− n

χρ0
H(2)

n (χρ0)J ′
n(χρ) + H(2)

n
′(χρ0)J ′

n(χρ)

Adding, we get

H
(2)
n−1(χρ0)Jn−1(χρ) + H

(2)
n+1(χρ0)Jn+1(χρ)

= 2H(2)
n

′(χρ0)J ′
n(χρ) + 2

n

χρ0

n

χρ
H(2)

n (χρ0)Jn(χρ)

Therefore, a part of (A7c) may be written in a more appropriate form
as

Ãρn =
µJρ

4j

[
J ′

n(χρ)H(2)
n

′(χρ0) +
n

χρ
Jn(χρ)

n

χρ0
H(2)

n (χρ0)
]

, ρ < ρ0

(A7e)
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Similarly

Ãφn =
µJρ

4

[
n

χρ0
H(2)

n (χρ0)J ′
n(χρ) + H(2)

n
′(χρ0)

n

χρ
Jn(χρ)

]
, ρ < ρ0

(A7f)
Using (A7e) and (A7f), in combination with (A1b), the expression of
the electromagnetic field is given by

Eρ = −ωµJρ

8π

∫ ∞

−∞

∞∑
n=−∞

exp
[
jn(φ − φ0)

]
exp

[
−jh(z − z0)

]
dh

×


h2

k2
J ′

n(χρ)H(2)
n

′(χρ0) +
n

χρ
Jn(χρ)

n

χρ0
H(2)

n (χρ0)

h2

k2
J ′

n(χρ0)H(2)
n

′(χρ) +
n

χρ0
Jn(χρ0)

n

χρ
H(2)

n (χρ)

 (A8a)

Eφ =
ωµJρ

8πj

∫ ∞

−∞

∞∑
n=−∞

exp
[
jn(φ − φ0)

]
exp

[
−jh(z − z0)

]
dh

×


J ′

n(χρ)
n

χρ0
H(2)

n (χρ0) +
h2

k2

n

χρ
Jn(χρ)H(2)

n
′(χρ0)

n

χρ0
Jn(χρ0)H(2)

n
′(χρ) +

h2

k2
J ′

n(χρ0)
n

χρ
H(2)

n (χρ)

 (A8b)

Ez =
ωµJρ

8πj

∫ ∞

−∞

∞∑
n=−∞

exp
[
jn(φ − φ0)

]hχ

k2

(
Jn(χρ)H(2)

n
′(χρ0)

J ′
n(χρ0)H(2)

n (χρ)

)

× exp
[
−jh(z − z0)

]
dh (A8c)

Above results agree with the expression given by Tai [56, p. 96]. The
purpose to derive the field expressions in (A8) is just to verify the
expressions derived for magnetic vector potentials.

By substituting (A7c) into (A5a) and after simple mathematical
manipulations, the vector potential for ρ-directed dipole is obtained as

Aρ =
µJρ

8πj

∞∑
n=−∞

exp[jn(φ − φ0)]

×
∫ ∞

−∞

H
(2)
n−1(χρ0)Jn−1(χρ) + H

(2)
n+1(χρ0)Jn+1(χρ)

Jn−1(χρ0)H
(2)
n−1(χρ) + Jn+1(χρ0)H

(2)
n+1(χρ)

 exp[−jh(z−z0)]dh

=
µJρ

8πj

∞∑
n=−∞

exp[jn(φ − φ0)]
∫ ∞

−∞
exp[−jh(z − z0)]
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×

H
(2)
n (χρ0)Jn(χρ0)exp[j(φ−φ0)]+H

(2)
n (χρ0)Jn(χρ0)exp[−j(φ−φ0)]

Jn(χρ0)H
(2)
n (χρ) exp[j(φ−φ0)]+Jn(χρ0)H

(2)
n (χρ)exp[−j(φ−φ0)]

dh

=
µJρ

8πj

∞∑
n=−∞

exp[jn(φ − φ0)]

×
∫ ∞

−∞

Jn(χρ0)H
(2)
n (χρ)

H
(2)
n (χρ0)Jn(χρ)

 cos(φ−φ0) exp[−jh(z−z0)]dh,
ρ > ρ0

ρ < ρ0

(A9a)

Aφ = −µJρ

8πj

∞∑
n=−∞

exp[jn(φ − φ0)]

×
∫ ∞

−∞

Jn(χρ0)H
(2)
n (χρ)

H
(2)
n (χρ0)Jn(χρ)

sin(φ−φ0) exp[−jh(z−z0)]dh,
ρ > ρ0

ρ < ρ0
(A9b)

It may be noted that (A7e), (A9a), and (A9b) may be used when
appropriate.

Equations (A9a) and (A9b) may be written as

Aρ =
µJρ

8πj

∞∑
n=−∞

exp[jn(φ − φ0)]

×
∫ ∞

−∞

 Jn(χρ0)H
(2)
n (χρ)

H
(2)
n (χρ0)Jn(χρ)

 cos(φ − φ0) exp[−jh(z − z0)]dh,
ρ > ρ0

ρ < ρ0

=
µJρ

8πj

∫ ∞

−∞
H

(2)
0

(
χ

√
ρ2 − 2ρρ0 cos(φ − φ0) + ρ2

0

)
× cos(φ − φ0) exp[−jh(z − z0)]dh

Aφ = −µJρ

8πj

∫ ∞

−∞
H

(2)
0

(
χ

√
ρ2 − 2ρρ0 cos(φ − φ0) + ρ2

0

)
× sin(φ − φ0) exp[−jh(z − z0)]dh

Where we have used the addition theorem for the Hankel function given
by

H
(2)
0

(
χ

√
ρ2 − 2ρρ0 cos(φ − φ0) + ρ2

0

)
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=



∞∑
n=−∞

Jn(χρ0)H(2)
n (χρ) exp[jn(φ − φ0)], ρ > ρ0

∞∑
n=−∞

H(2)
n (χρ0)Jn(χρ) exp[jn(φ − φ0)], ρ0 > ρ

(A10a)

Using the formula [58, p. 731]

1
8πj

∫ ∞

−∞
dh exp[−jh(z − z0)]H

(2)
0 (χr) =

exp(−jkR)
4πR

,

r2 + (z − z0)2 = R2

χ2 + h2 = k2 (A10b)

Aρ and Aφ can be written as

Aρ = µJρ
exp(−jkR)

4πR
cos(φ−φ0), Aφ = −µJρ

exp(−jkR)
4πR

sin(φ−φ0)

(A10c)
where

R =
√

ρ2 − 2ρρ0 cos(φ − φ0) + ρ2
0 + (z − z0)2

Thus we can see that we need two components of the vector potential
to represent the ρ−directed dipole field.

A.2. φ-Directed Dipole Field

Let u = iφ in the right hand side of (A5b), the equations for Ãρn and
Ãφn become

d

dρ

1
ρ

d

dρ
(ρÃρn)+

(
χ2 − n2

ρ2

)
Ãρn−j

2n

ρ2
Ãφn = 0

d

dρ

1
ρ

d

dρ
(ρÃφn)+

(
χ2−n2

ρ2

)
Ãφn+j

2n

ρ2
Ãρn = −µJφ

δ(ρ−ρ0)
2πρ

(A11a)

These are coupled differential equations for Ãρn and Ãφn and the source
condition in this case is given by

Ãρn

∣∣∣∣ρ0+0

ρ0−0
= 0, Ãφn

∣∣∣∣ρ0+0

ρ0−0
= 0;

d

dρ
Ãρn

∣∣∣∣ρ0+0

ρ0−0
= 0,

d

dρ
Ãφn

∣∣∣∣ρ0+0

ρ0−0
= −µJρ

2πρ
(A11b)

We can also assume the solution (A7a) for φ directed dipole field and

same equations to (A7b) are satisfied. From the continuity of dÃρn

dρ
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we obtain Dn = −Cn and from the discontinuity of dÃφn

dρ , we obtain

Cn = −µJφ

8 . Then the result becomes

Ãρn = −µJρ

8

 H
(2)
n−1(χρ0)Jn−1(χρ) − H

(2)
n+1(χρ0)Jn+1(χρ)

Jn−1(χρ0)H
(2)
n−1(χρ) − Jn+1(χρ0)H

(2)
n+1(χρ)

 ,

ρ < ρ0

ρ > ρ0

Ãφn =
µJφ

8j

(
H

(2)
n−1(χρ0)Jn−1(χρ) + H

(2)
n+1(χρ0)Jn+1(χρ)

Jn−1(χρ0)H
(2)
n−1(χρ) + Jn+1(χρ0)H

(2)
n+1(χρ)

)
ρ < ρ0

ρ > ρ0
(A11c)

Using recursion relations for Bessel functions, we can obtain

Ãρn = −µJφ

4

[
n

χρ
Jn(χρ)H(2)

n
′(χρ0) + J ′

n(χρ)
n

χρ0
H(2)

n (χρ0)
]

, ρ < ρ0

Ãφn =
µJφ

4j

[
J ′

n(χρ)H(2)
n

′(χρ0) +
n

χρ
Jn(χρ)

n

χρ0
H(2)

n
′(χρ0)

]
, ρ < ρ0

Using (A11c) the electromagnetic field is given by

Eρ =
jωµJφ

8π

∫ ∞

−∞

∞∑
n=−∞

exp
[
jn(φ − φ0)

]
exp

[
−jh(z − z0)

]
dh

×


h2

k2
J ′

n(χρ)
n

χρ0
H(2)

n (χρ0) +
n

χρ
Jn(χρ)H(2)

n
′(χρ0)

h2

k2

n

χρ0
Jn(χρ0)H(2)

n
′(χρ) + J ′

n(χρ0)
n

χρ
H(2)

n (χρ)

 (A12a)

Eφ = −ωµJφ

8π

∫ ∞

−∞

∞∑
n=−∞

exp
[
jn(φ − φ0)

]
exp

[
−jh(z − z0)

]
dh

×


J ′

n(χρ)H(2)
n

′(χρ0) +
h2

k2

n

χρ
Jn(χρ)

n

χρ0
H(2)

n (χρ0)

J ′
n(χρ0)H(2)

n
′(χρ) +

h2

k2

n

χρ0
Jn(χρ0)

n

χρ
H(2)

n (χρ)

 (A12b)

Ez = −ωµJφ

8π

∫ ∞

−∞

∞∑
n=−∞

exp
[
jn(φ − φ0)

]hχ

k2

n

χρ0

×
(

Jn(χρ)H(2)
n (χρ0)

Jn(χρ0)H(2)
n (χρ)

)
exp

[
−jh(z − z0)

]
dh (A12c)
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Considering again (A11c), the vector potential is obtained by

Aρ =
µJφ

8πj

∞∑
n=−∞

exp[jn(φ − φ0)]

×
∫ ∞

−∞

 Jn(χρ0)H
(2)
n (χρ)

H
(2)
n (χρ0)Jn(χρ)

 sin(φ − φ0) exp[−jh(z − z0)]dh,
ρ > ρ0

ρ < ρ0

(A13a)

Aφ =
µJφ

8πj

∞∑
n=−∞

exp[jn(φ − φ0)]

×
∫ ∞

−∞

 Jn(χρ0)H
(2)
n (χρ)

H
(2)
n (χρ0)Jn(χρ)

 cos(φ − φ0) exp[−jh(z − z0)]dh,
ρ > ρ0

ρ < ρ0

(A13b)

The integration can be performed exactly and the result is given by

Aρ = µJφ
exp(−jkR)

4πR
sin(φ−φ0), Aφ = µJφ

exp(−jkR)
4πR

cos(φ−φ0)

(A13c)

A.3. z-Directed Dipole Field

In this case only the single component Az can represent the field. Let
u = iz in the right hand side of (A5b), the equation for Ãzn becomes

1
ρ

d

dρ
ρ

dÃzn

dρ
+

(
χ2 − n2

ρ2

)
Ãzn = −µJz

δ(ρ − ρ0)
2πρ

(A14a)

The source condition is given by

Ãzn

∣∣∣∣ρ0+0

ρ0−0
= 0,

d

dρ
Ãzn

∣∣∣∣ρ0+0

ρ0−0
= − µJz

2πρ0
(A14b)

The solution is readily derived and the result is given by

Ãzn =
µJz

4j

 Jn(χρ)H(2)
n (χρ0)

H
(2)
n (χρ)Jn(χρ0)

 ,
ρ < ρ0

ρ > ρ0
(A14c)

Thus the vector potential Az is obtained as

Az =
µJz

8πj

∞∑
n=−∞

exp[jn(φ − φ0)]
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×
∫ ∞

−∞

 Jn(χρ)H(2)
n (χρ0)

H
(2)
n (χρ)Jn(χρ0)

 exp[−jh(z − z0)]dh,
ρ < ρ0

ρ > ρ0

= µJz
exp(−jkR)

4πR
(A14d)

The electric field produced by current element Jzδ(r− r0) is obtained
by

Eρ =
jωµJz

8π

∞∑
n=−∞

exp[jn(φ − φ0)]

×
∫ ∞

−∞

hχ

k2

 J ′
n(χρ)H(2)

n (χρ0)

H
(2)
n

′(χρ)Jn(χρ0)

 exp[−jh(z − z0)]dh (A15a)

Eφ = −ωµJz

8π

∞∑
n=−∞

exp[jn(φ − φ0)]

×
∫ ∞

−∞

h

k2

n

ρ

 Jn(χρ)H(2)
n (χρ0)

H
(2)
n (χρ)Jn(χρ0)

 exp[−jh(z − z0)]dh (A15b)

Ez = −µJz

8π

∞∑
n=−∞

exp[jn(φ − φ0)]

×
∫ ∞

−∞

h2

k2

 Jn(χρ)H(2)
n (χρ0)

H
(2)
n (χρ)Jn(χρ0)

 exp[−jh(z − z0)]dh (A15c)
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