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Abstract—Feature extraction is a challenging problem in radar target
identification. In this paper we attempt to exploit the sparse property
of the scattering signature with a undercomplete dictionary for target
identification, and establish a feature extraction scheme based on
the undercomplete dictionary. Furthermore, as an application, we
present a feature vector, named as the atom dictionary feature, which
is extracted from the scattering signatures over a wide-angle sector.
Numerical simulation results show that the proposed atom dictionary
feature can improve the performance of radar target identification due
to the exploitation of the sparse property of the scattering signature.

1. INTRODUCTION

Radar target identification has been an active research area for over
half a century. Usually, a feature extraction process plays an essential
role for the success of target identification. Due to highly aspect-
dependent nature of the scattered signature, feature extraction for
target identification is an especially difficult problem. The complex
natural resonance frequency (CNRF), also called as target pole, is only
one aspect independent feature. It is theoretically well known that
shape, size and material properties of a target determine the values of
CNRF's and the target is uniquely characterized by the complete set
of its CNRFs. CNRFs-based target identification has been a highly
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attractive research area and many efforts have been attempted in the
last decade [1,2]. However, the precise extraction of these CNRFs
from scattered data is not usually an easy process, especially in the
presence of noise [3,4]. Therefore, some resonance features which are
indirectly related to the pole values of the target are extracted from the
natural response components of scattering signals in alternative ways.
Recently, Turhan-Sayan [5] attempted to use resonance mechanisms
to reduce the aspect angle sensitivity of the extracted feature. It is
partly proved that the late-time partitioned energy density vectors
constructed by computing the spectral distribution of scattering
signature energy of some non-overlapping subsequent time bands
can significantly reduce aspect sensitivity. However, although these
two features were proven useful under some situations, it is well
recognized that the resonance feature-based identification alone will
not be sufficient for most targets of interest due to the low resonance
energy problem [6].

Different from the resonance features, scattering center feature,
contained in the early-time response of target scattering signature, is
aspect-dependent and can yield insight into geometrical and physical
characters of the target. Extraction method of scattering centers was
investigated by several groups, such as Kim et al. [7] and Choi et
al. [8]. However, scattering centers are not robust to noise and aspect
change, which restricts the scattering center-based target identification
performance. For this reason, distinct frequency dependencies of
scattering centers were considered [9,10]. Although the sensitivities
to noise and aspect variations can be reduced to some extent by
theirs investigations, these approaches suffer from the particular
models. Considering the deficiencies, feature extraction without the
model restriction has received recently more intensive attention in the
radar target identification community [11-18]. The one-dimensional
scattering signature [11,12] and its all kinds of transformations [13—
18] were used to identify target. However, although the particular
model restriction is avoided, the extracted feature is still highly aspect-
dependent. Thus, for target identification, the scattering signatures of
each target at many aspect angles have to be stored, which amounts
to a significant storage retrieval problem.

In fact, except the electromagnetic features mentioned above,
the target scattering signature holds another property — sparse
property. Usually, the information underlying in the received high-
dimension discrete scattering signature disperses only over some low-
dimension space, not over whole high-dimension data space, and the
scattering signature can be represented with a few basis elements in
the particular transform domain. For example, the late-time and early-
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time components of scattering signals can be accurately reconstructed
by several main poles and stable scattering centers respectively, and
the scattering information over a wide-angle sector can be represented
by the scattering signatures from several observation angles. Since
traditional signal analysis tools, such as Fourier or wavelet transform
[19,20], always try to represent the signal with same-property basis
elements and cant be necessary to exploit the sparse diversity of
the scattering signatures from different targets. Therefore, in order
to extract the sparse diversity for target identification, the special
signal representation method must be adopted. Actually, the signal
representation can be classified into two categories according to the
atom number of the dictionary and the dimension of the signal vector,
i.e. complete, overcomplete and undercomplete dictionary cases.
In recent years, there has been great deal of interest in obtaining
sparse representation of the signal with complete and overcomplete
dictionaries [20,21]. Although a complete or overcomplete dictionary
is used nominally, only several atoms with the strongest relative
to the signal components are usually used to represent the signal.
That is to say, a undercomplete dictionary is used in essence.
Actually, a undercomplete dictionary can provide signals in signal
space with two quite distinct representations, sparseness and no
sparseness, which implies that the undercomplete dictionary is with
the classification ability to signals in signal space. The capability of the
undercomplete dictionary will be theoretically explained in the paper.
Therefore, compared with the complete and overcomplete dictionary,
the undercomplete dictionary is more suitable to the feature extraction
and classification for the sparse property exploitation of the scattering
signature. Inspired by the idea, in this paper we focus our attention
to the feature extraction for the exploitation of the sparse property
with the undercomplete dictionary. For this purpose, we define firstly
the signal representation with the undercomplete atom dictionary, and
explain theoretically the classification capability of the undercomplete
dictionary to signal space and give two important properties of
the undercomplete dictionary. Then, we derive the residual energy
bound of signal decomposition by matching pursuits (MP) with a
undercomplete dictionary, and present the solution procedure of the
undercomplete dictionary for signal classification. Furthermore, as an
application, a feature vector named as atom dictionary feature and its
construction algorithm are proposed for radar target identification.
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2. CLASSIFICATION WITH UNDERCOMPLETE
DICTIONARY

2.1. Definition and Property of Undercomplete Dictionary

The signal sparse representation with a complete or overcomplete
dictionary has been an active research area for numerous pattern
classification problems. However, to the author’s knowledge, very little
theoretical work has been put forward on a undercomplete dictionary
for the signal representation and classification. In this subsection, we
focus our attention on the signal representation and classification with
the undercomplete dictionary. In the following, the definition of the
signal representation with a undercomplete dictionary is firstly given.

Definition 1: Let RM be a M dimension signal space, we define
a undercomplete dictionary ® as a family including N atoms in
RM(N < M) and a undercomplete dictionary-based representation
of signal s € RM as

N
s=®a = Zaigoz- (1)
i=1

where the coefficient vector a € RN, If |aflp < N where |, =
Card{j : |a;| # 0} and Card(-) denote the cardinal number of set, we
say the representation is sparse. Furthermore, if & = arg min |||,
the expansion supported by the coefficient vector & is the sparsest
representation of the signal s.

According to the above definition, if let Span® be the closed linear
span of atoms in ®, the space Span® must be a subspace of the signal
spaceRM | which can be written as

Span® = {a1p1 + asp2 -+ anen|a, €k, @, € P} C RM (2)

where k denotes complex set.

Obviously, Span® is a complete subspace in signal spaceRM,
which means that any s € Span® C RM could be sparsely represented
by the dictionary ®; however, any s € Span® couldn’t be done.
Consequently, we can obtain two properties about the undercomplete
dictionary.

Property 1: Let ® = [p1,p2, - ,n] € RMXN be a
undercomplete dictionary. If G = {¢41, 2, - @ym} is the subspace
composed by any m atoms in ®, then

SpanG C Span® (3)
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Property 2: Let ® = [p1,p2,- - ,pN] € RMXN he a
undercomplete dictionary, for any s € Span® C RM there exists the
desired precision € such that

le|? <e, st Pa+e=s (4)

however, if s € Span®, Equation (4) can’t be held.

Clearly, Property 1 claims the relationship between subspaces
supported by the undercomplete dictionary with different dictionary
size. According to the property, it is concluded that with the increasing
of the atom number the signal subspace represented sparsely by the
undercomplete dictionary will be enlarged. Property 2 shows the
classification ability of the undercomplete dictionary to signal space.
From the property, we can conclude that the undercomplete dictionary
divides the signal space RM into two subspaces, i.e., Span® and
Span®. For these two subspaces, different representations, such as
sparseness and no sparseness, are presented by the undercomplete
dictionary. And furthermore, the difference in the representation can
be illuminated by the residue energy ||e|]2. Obviously, the signal
representation with a complete or overcomplete dictionary discussed
by Mallat and Zhang in [21] is a particular case of the representation
with a undercomplete dictionary.

2.2. Matching Pursuits with Undercomplete Dictionary

The MP algorithm proposed by Mallat and Zhang [21] is a nonlinear
iteration procedure for the linear decomposition. In general, an
overcomplete dictionary isn’t always necessary to the decomposition
procedure. The algorithm is also suitable to the linear representation
of signals with a undercomplete dictionary, but with some different
properties.

According to the definition in [21], let ® = (¢, (t))rer denote a
dictionary, where rdenotes a generalized index from the set I'. The
inner product between the signal s(t) and atom ¢, (t) is defined as

+oo
(5,0r) = / ()3 (1)t (5)

— 00

where superscript * denotes complex conjugate.  Assuming the
dictionary ® includes @ atoms and any atom ¢, (t) (i.e., for each
r € Tg) satisfies |or]|> = (@r,0r) = 1, the MP algorithm involves
the following iterative procedure.
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For any signal s(t), we project it onto each element ¢, (t) of the
dictionary ®. ¢,(t) is selected when

’<87907"0>’ > ’<S,(p7«>|, vTGFQ (6)
and obtain the decomposition
S(t) = <Sa <Pr0> Pro + RIS (7)

where R's denotes the residual after the first decomposition. Then
the atom ¢,o(t) is wiped off from the atom dictionary, and R's
is respectively projected onto the remaining () — 1 elements of the
dictionary. Repeating the projection process, after Q) iterative, s(t)
can be decomposed into

Q-1
s(t) = Z (R"S, 0rn) @rnt+R%s (8)

n=0

where R's = s(t), [(R"s, orn)| > |(R"s, or)|, Vr € Tg_n.
Mallat has proven that if ® is a complete or overcomplete
dictionary of the signal space

Q-1
s(t) = lim (R"S, ©rn) Prn (9)
Q—o0
n=0

If one utilizes a complete or overcomplete dictionary, the MP
algorithm can be used to represent any signal in the signal space with
any desired precision. Thus, the MP with a complete or overcomplete
dictionary provides all signals in signal space with a consistent
representation. However, as explained above, for signals in signal
space two different representations are presented by a undercomplete
dictionary in the space.

We define a undercomplete dictionary ® = [p1,92, " ,@N] €
RM*N(N < M), where I denotes the index set of atoms in ®. For
any signal s € Q2 C RM | two correlation ratios of signal s with respect
to ® are defined respectively as

Ng(s) = sup [l (10)
|

inf .
Aw (s) = Il vy (11)
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and two dictionary distribution ratios are defined respectively as

Buc(®) = inf R0] (12)
Boup(®) = HS|1|1£1 A7 (s)] (13)

where Bin¢(®) and Bgyp(®) represents the lower and upper bound
of the undercomplete dictionary distribution ratio for subspace (2
respectively.

So, for signal s € Q C RM | the decay of the residual through m
decompositions (m < N) is satisfied with

m/2 m/2

Isll (1 Bsup(®)?)

The proof to (14) is given in the following.
Proof: According to the MP procedure, we obtain the mth
decomposition which satisfies

[(R™!s, @r(m-1))| = sup [(R™ s, )| = AgP(R™'s) ||R™ s
Y

< [IR™s|| < I8l (1 = Bt (®)?) (14)

(15)
since
|R™s|? = ||[B™s||* = [(B™ s, @)
= ||R™s||* — NgP(R™1s)]? [ R s
— (1— PEPR™ 1)) ||[R™ s (16)

and hence, according to the definition of Bgu,(®) and Bine(®), for
N > m > 0 we can derive the relationship

(1= Baup(®)]/* | R™s|| < | R™sl| < [1- Buug(®)*]/* || R 5|

17
[1- Baup(®)*]"2 [|s]| < | R™s|| <[1 — Bint(®)*)™/* s "
According to previous conclusion in this paper, different
representations, such as sparseness and no sparseness, are presented
by the undercomplete dictionary @ to signal spaceRM. Therefore,
the norm HRN sH of signals in Span® is very different from that of
signals in Span®. In general, the former is higher than the latter after
N decompositions. The fact is intensely implies that undercomplete
dictionary with MP has an inherent ability to classify signals, which
has been applied by authors to radar target identification [14] as one
of numerous pattern classification problems.
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3. SOLUTION OF UNDERCOMPLETE DICTIONARY
FOR SIGNAL CLASSIFICATION

As shown above, undercomplete dictionary has an inherent ability
to classify signals, and the norm HRN sH of signals in Span® is
usually higher than that of signals in Span® after N decompositions.
Therefore, for a practical classification problem, the key issue is that
undercomplete dictionaries, as features, are established beforehand to
characterize the signals belonging to the different categories. According
to the classification procedure mentioned above, the solution of the
undercomplete dictionary for signal classification can be generalized
as: Let ® = [pp1, 2, , on] € RM*N be a undercomplete dictionary,
for a training signal set S = [s1,s,- - - ,sp] € RM*F the undercomplete
dictionary can be found by

min || E||?
HERM XN (18)

st. PA+E=S

Usually, the optimization in (18) is a NP-hard problem and the
global search is very time-consuming. However, it is worth emphasizing
that the expansion coefficient matrix A is entirely dependent on the
undercomplete dictionary ®. Once ® is known, the coefficient matrix A
can be found by matching pursuits [21]. Hereby, a two-step algorithm,
in a way similar text in [22], is presented for the optimization problem
in (18), which is generalized as follows:

1) ® and S are known. Find a sparse coefficient matrix A;

2) A and S are known. Find the best undercomplete dictionary
.

Clearly, the coefficient matrix A isn’t necessarily sparsest in
a single iteration and the found undercomplete dictionary & isn’t
optimal in the global search. Hence, in order to obtain the optimal
undercomplete dictionary ®, the above two-step algorithm must be
repeated until a stop-criterion is satisfied. Furthermore, from the above
two-step algorithm it is observed that the first part in the algorithm
is a simple decomposition process, which can be easily realized by
MP algorithm, but the second part is a complicated high-dimension
minimum process yet. The key of the solution for the optimization
undercomplete dictionary is to solve the minimum problem in the
second part.

Assuming that ® = {1,992, -+ ,oNn} € represents a
undercomplete dictionary, we obtain a expression of the training signal

RMXN
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set S, which can be expressed as

S 2 oA (19)
The corresponding residual is given
E=S-S (20)

In order to minimize the residual energy for the given coefficient
matrix A, in a way similar to the Method of Optimal Directions in [22],
we denote by A® the adjustment of the undercomplete dictionary ®:

d=0+AD (21)
and the new residual due to the residual E is given
E=E - AGPA (22)

So the residual energy after the adjustment is
12 9
HEH — |E - ADA||
= E'E - ATA®TE - ETADA + ATADTADA  (23)

112
Obviously, the minimization of the residual energy HEH is

equivalent to the maximization of the expression
J=ATAPTE + ETADA — ATADTADA (24)

After the differential operation, under the least mean square
(LMS) rule we get

AD = (ATA)'ATE (25)

Usually, for a given coefficient matrix A the adjustment A® of
the undercomplete dictionary ® is only an approximate solution under
the LMS rule, and the adjusted undercomplete dictionary @ is not
guaranteed to be optimal for the given signals S. Therefore, the
solution procedure must be repeated.

4. FEATURE EXTRACTION BASED ON
UNDERCOMPLETE DICTIONARY

As an application in pattern recognition problem, in this section
we present the feature extraction method with the undercomplete
dictionary for the sparse property exploitation of target scattering
signature. For completeness of the explanation, the 1-D range profile
feature and classification criterion are firstly analyzed.
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4.1. Range Profile Feature and Matching Score
Classification Criterion

The 1-D range profile is the scattering distribution of a target along
the radial distance and provides information about the position and
scattering strength of the target’s scattering centers at that aspect.
The range profile as feature vector for radar target identification has
been an active research area and many efforts have been attempted
in the last decade [11,12,15,16]. The matching score classification
criterion (MSCC) [11] is a fundamental criterion for the range profile-
based target recognition, with which a class of test data is determined
according to the maximum correlation coefficient between the received
range profile and all templates. Assuming that the waveform f(z) is a
measured range profile of an unknown target, g;;(z) is the restored
range profile feature template at aspect angle j of ith target, and
x € |a, b], the matching score can be generalized as

gz] ‘

o) da [ gy ()| do

C(fagij) =

‘ o (26)

If the range profile f(x) and range profile template g;(x) are
normalized to unit energy, a linear relation between the signature f(x)
and template g;;(x) is then given by

f(x) = Bijgij(z) + ey (27)

where e;; denotes the decomposition residual, By = f; f(@)gy(z)dz =
(f(z),gij(z)) is the projection of f(x) onto g;j(x). Obviously, the
linear relation in (27) can be thought as a single-stage decomposition
expression of f(z) on the undercomplete dictionary with the template
g4 (x) as atom, which means that MSCC might be thought as an
extreme case of the classification procedure of the undercomplete
dictionary with multiple atoms.

4.2. Feature Extraction Based on Undercomplete Dictionary
with Multiple Atoms

Actually, the classification based on a undercomplete dictionary with
multiple atoms is a MSCC-generalized procedure. The atoms in
the undercomplete dictionary can be the different feature vectors,
such as CNRFs, scattering centers, 1-D range profiles and its all
kinds of transformation, or other feature vectors. For the purpose
to demonstrate the effectiveness of the feature extraction based on
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undercomplete dictionary, in this paper the 1-D range profile as an
example is used to the feature extraction based on undercomplete
dictionary. The extracted feature is named as the atom dictionary
feature.

Assuming that matrix Y, = [ygl,yge, -, ¥y, ] is made up of
range profile vectors of the mth target from L different aspect sectors,
and yg' = [yp(0),yg (1), -, yg (N — 1)]” is the scattered vector
at kth aspect angle. Considering that a computationally expensive
search of all possible atom vectors must be performed completely for an
optimal dictionary selection, in order to simplify the solution procedure
the atom dictionary feature ®,, of mth target is initialized by @ (less
than L) range profile vectors using an equally spaced selection from
Y ,,, and then p range profile vectors selected with equal angle interval
from the remaining vectors are used to construct the training data
matrix S,,. In order to avoid the energy diversity of range profile vector
due to different range and aspect, all training vectors are normalized
to unit energy. Then, the atom dictionary feature ®,, to characterize
the mth target can be easily constructed after several iterations.

Furthermore, if the aspect angle sector supported by the atom
dictionary feature ®,, is equal to [-©/2,© /2], any normalized range
profile yy (6 € [-©/2,0/2]) can be represented as

ye:a(f(pl_|_..._|_aggpq--.—|—a%<pQ+eg (28)

and

2
< 2

max

where ag is the projection coefficient of the range profile yg on the atom

bq, eg is the residual vector after the Q decompositions, €2, is the
residual energy threshold value of all range profiles over [-0/2,0/2]
after the ) decompositions.

Obviously, the atom dictionary feature proposed in this subsection
is essentially a undercomplete dictionary extracted adaptively cross the
aspect angle, which could represent effectively scattering information
over the given aspect sector. According to Property 1, we can conclude
that the smallest signal space is supported by the undercomplete
dictionary with single atom. Therefore, for MSCC-based target
identification, a great number of templates from all target aspects must
be established, which is impractical because of its huge computation
burden and storage requirement. However, for the proposed atom
dictionary feature, the represented signal space can be enlarged by
multiple atoms, which implies that the wider target aspect sector
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can be supported by the undercomplete dictionary with multiple
atoms. Thus, if there exists an atom dictionary feature with multiple
atoms which characterizes any range profile on aspect angle sector
[—©/2,0/2], the size of the reference feature database could be reduced
to some degree.

5. SIMULATION RESULTS

To demonstrate the effectiveness of the feature extraction scheme based
on the undercomplete dictionary, several simulations are conducted
using simulated data, calculated scattering signatures of three thin
wires through a time-domain electric field integral equation, as well as
measured scattering signatures in a time-domain UWB chamber.

5.1. Simulations Using Calculated Scattering Signatures

In this experiment, three thin wire targets with different sizes are used.
The thin wires have the same length-width-ratio of 1/200 but with
different lengths (named as Target 1, 2, and 3 respectively). The far-
field scattering signals of three targets at the incident aspect angles
0 = 2.5°, 5°, ... 180° are calculated using time-domain electric field
integral equation with 25 ps sampling interval. The truncated far-field
scattering signatures with 128 valid sampling points are obtained in 72
aspect angles to build the raw database.

In order to test the effectiveness of the atom dictionary feature,
atom dictionary feature ®5 of target 2 is initialized by its scattering
signatures at angle index 20, 28 and 36, and scattering signatures
at angle index 10 and 50 are used to build the training data
matrix Sg. Once the initialization is finished, ®- is trained with
50 cycles by the corresponding data matrix Sy according to the
algorithm listed in Table 1. Then, all of scattering signatures of
three targets are decomposed on the extracted feature ®5 and the
atom dictionary feature with the single scattering signature as atom.
The decomposition residuals are respectively shown in Fig. 1 and
Fig. 2 (indices 1-72, 73-144, 145-217, corresponding to 72 aspect
angles of Target 1, Target 2, and Target 3 respectively). As shown
in Fig. 1 and Fig. 2, compared with the atom dictionary with single
scattering signature as atom, the extracted atom dictionary feature can
support obviously the wider aspect sector. The atom dictionaries with
single atom could support the scattering signatures only in adjacency
aspect angle of the atom. However, the target scattering signatures
over the aspect sector from 2.5° to 180° could be represented by the
extracted atom dictionary feature with three atoms, which implies
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a very important result that the template storage space for target
identification could be reduced significantly by the proposed dictionary
feature.
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Figure 1. The decomposition residual by atom dictionary feature
with the single scattering signature of Target 2 as atom (a) scattering
signature at index 20 as atom, (b) scattering signature at index 28 as
atom, (c) scattering signature at index 36 as atom.

Furthermore, in order to demonstrate the effectiveness of atom
dictionaries to characterize targets further, atom dictionary features
of another two targets are extracted according to the previous
procedure.  Test scattering signature is selected randomly from
scattering signatures of Target 2 at 72 different aspects. Then the
white Gaussian noise is added to the selected signal to product a
noisy signal. The noisy signal is decomposed on the extracted atom
dictionary features of three targets with the MP algorithm. The
averaged energy of the decomposition residuals of 1000 samples are
shown for different SNR in Fig. 3. In this figure, the averaged
decomposition residual on the atom dictionary feature of Target 2 is
obviously smaller than that corresponding to other two targets even
at a very low SNR, such as —10dB. From simulation results, we can
observe that accurate target identification could be carried out using
the atom dictionary feature in an almost aspect independent manner
without any prior parameterization model hypothesis, and the aspect
dependence of template for wide-angle target identification could be
reduced effectively by using the atom dictionary feature.

5.2. Simulations Using Measured Scattering Signatures

In this experiment, the measured scattering signatures in a time
domain UWB chamber system are used. The chamber used in this
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paper is 9.7-m long by 4.6-m wide by 3.3-m high and is lined with 46-
cm pyramid absorbers. The generator provides a periodic sequence of
ultrashort pulses of negative polarity with amplitude about 25V and
duration about 30 ps (for 0.5 levels) to a UWB coaxial horn antenna of
the ridge type. The operating band of the antenna is 1.0 ~ 10.0 GHz
at the voltage standing wave ratio < 2.0. The scattering signature
of a candidate target is received by an identical horn. A waveform
processing oscilloscope with 0 ~ 50 GHz operating band is used to
acquire the received signature.

Targets used in simulations are shown in Fig. 4. Target 1 is
a simple aluminum missile model with a 0.142m length fuselage,
Target 2 is an aluminum plan model with a same length body, and
Target 3 is a plastic model with same shape as Target 2. The
relative measurement aspect angle in the azimuth plane of each target
is varied from 0° to 180° with a 6.2° increment. Four dictionary
features for each target are extracted according to the initialization
configuration in Fig. 5, where the scattering signatures signed by the
“solid” line are used to initialize atom dictionary features, and the
signatures by the “dashed” line are applied to the training data. As
a result, four undercomplete dictionaries with four atoms, as features,
are used to characterize each of three targets. Subsequently, all of
measured scattering signatures of three targets are decomposed on
four atom dictionary features of Target 1, and the decomposition

residual energy HR45H2 is shown in Fig. 6. As seen in Fig. 6,
atom dictionary features of Target 1 provide scattering signatures
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of three targets with two distinctly different representations. After
completing the decompositions, residual energy of scattering signatures
from the region supported by every of atom dictionary features is
distinctly lower than that of scattering signatures away from the
supported region. Although for three target models the supported
region of the atom dictionary feature cannot be enlarged as same as
simulations using calculated scattering signatures due to the aspect-
sensitive nature of measured scattering signatures, the discriminable
ability to the different targets is enhanced by the fusion procedure of
decisions on multiple atoms, which is seen clearly in Fig. 7. Fig. 7
presents the results using the residual energy to identify three targets,
where “ADF” denotes the identification results of the extracted atom
dictionary feature with multiple atoms, and “MSCC” denotes the
results of the single scattering signature as atom with the matching
score classification criterion (the scattering signature vectors over the
measured angular region of 0°-180° with a 12.4° angular increment
are used as feature templates). In this experiment, the candidate
target is randomly selected from the target library with an equal
probability of being present. Once the target has been selected, a test
scattering signature is randomly selected from 28 measured signatures
of the selected target with an equal probability and contaminated
by additive white Gaussian noise with a specified level of signal to
noise ratio (SNR). The identification results are conducted by 1000
identification experiments using 1000 independent noisy test sequences.
As shown in Fig. 7, the “ADF” identification method outperforms
markedly the “MSCC” identification method from —10dB to 30dB in
our simulations, which demonstrates the effectiveness of the feature
extraction scheme based on the undercomplete dictionary further.

(l)o Featuge 1

(a) Target 1 (b) Target2 (c) Target3

Figure 4. Target models used in ~ Figure 5. Initialization configu-

simulations. ration for extracting atom dictio-
nary features to characterize the
target scattering.
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Figure 7. Correct identification results of the “ADF” and “MSCC”
methods with a varied SNR.
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6. CONCLUSION

In this paper, we carry out an in-depth study on the undercomplete
dictionary for signal classification. We explain the classification ability
of the undercomplete dictionary and establish a feature extraction
scheme based on the undercomplete dictionary. Furthermore, as an
application, we present a novel feature named as the atom dictionary
feature for radar target identification, which is applied in [23].
Numerical simulation results show that the proposed atom dictionary
feature can exploit sparse property in the scattering signature for
target identification. Compared with the MSCC, the proposed
feature extraction scheme can give a more promising identification
due to its inherent decision-fusion procedure. In addition, it is
worth paying attention that for some applications the complicated
scattering behaveriors of radar target over a wide-angle sector could
be represented by the proposed atom dictionary feature and the aspect
dependence of the feature could be reduced effectively.

Moreover, it should be noted that the atom dictionary feature
is extracted from the whole scattering signature without any prior
parameterization model hypothesis. Therefore, as compared with the
CNRF and scattering center features, the feature is with less limitation
to the target identification applications. In addition, in this paper
the time-domain scattering signatures are used to construct the atom
dictionary feature. However, the frequency spectrum of the scattering
signature can be also used to construct the dictionary, which can avoid
the problems in HRRP-based target recognition schemes, such as the
significant performance degeneration due to small time shift between
the measured and stored HRRP feature templates. Future work needs
to emphasize particularly on the problems faced by the atom dictionary
feature in practical applications, such as the best size of the atom
dictionary feature and design of the identification system.
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