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Abstract—Finite-Difference Time Domain (FDTD) is used to
calculate the input impedance of the cylindrical dielectric resonator
(DRA) antenna with different dimensions. A lumped- element circuit
model for the input impedance calculation is proposed. The genetic
algorithm is used to calculate the elements of the equivalent circuit.
The Model-Based Parameter Estimation (MBPE) technique is used to
find the variation of each element in the equivalent circuit with varying
the physical dimensions of the antenna. The use of this method reduces
the time required for calculating the input impedance of the cylindrical
DRA in each variation of the antenna dimension.

1. INTRODUCTION

Dielectric resonator antennas (DRAs) have been considered for
many applications at millimeter-wave frequency, since the systematic
experimental investigations on DRAs were carried out by Long et
al. [1]. DRAs share many of the advantages of microstrip antennas,
including small size, light weight, ease of coupling to many types of
transmission lines, and ease of integration with other active or passive
microwave components. In addition, DRAs exhibit a relatively large
bandwidth (≈10%), while the patch antenna has a typical bandwidth
of only 1–3%. This requires the characterization of the dielectric
resonator for its feed-point impedance at various frequencies in the
band of operation.

The dielectric resonator antenna can be analyzed using various
methods such as finite-difference time-domain (FDTD), finite element
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method, and method of moments (MoM) [2]. Though these methods
give accurate results for feed-point impedance, they are complex and
require large computational time. Such cumbersome computations can
be avoided by drawing the equivalent circuit of the dielectric resonator
and calculating its passive elements as discussed in [3–9]. Miller
[10–12] describes the Model-Based Parameter Estimation (MBPE)
technique and gives many examples to which it may be applied. The
modeling, sampling, and solution of MBPE problem for both spatial
and frequency domain problems, including the use of matrix inversion
techniques to solve for the interpolation coefficients, are described in
[13].

In this paper, input impedance of the cylindrical DRA is carried
out on the base of FDTD method. The input impedance of dielectric
resonator can be represented by a lumped-element equivalent circuit
that has L, C, and R elements whose values are only related to the
physical dimensions of the antenna such as height of the cylindrical
DRA antenna, radius, feed probe length and dielectric permittivity of
the dielectric resonator. The genetic algorithm is used to optimize the
values of the elements.

A hybrid method for combining a rational function fitting models
with a polynomial of physical dimensions of the antenna fitting model
for each element of the equivalent circuit is introduced in this chapter.
This hybrid method allows calculating the values of the elements of
the equivalent circuit according to physical dimensions of the antenna
then the input impedance as a function of frequency can be calculated
at these dimensions of the antenna.

The paper is organized as follows; Section 2 reports the
calculations of the equivalent circuit elements of the cylindrical
dielectric resonator antenna using the genetic algorithm. The
model based parameter estimation technique is used to construct the
variations of each element of the equivalent circuit with the physical
dimensions of the antenna. Section 3 illustrates and discusses some
numerical results for input impedance of the cylindrical dielectric
resonator antenna. Finally, conclusions are collected in Section 4.

2. THEORY

Consider cylindrical DRA located above an infinite size ground plane
as shown in Fig. 1. The antenna has height “H”, radius “a” and
relative dielectric constant “εr”. A coaxial probe of length “h” and
radius “r” at a distance “df” from the center of the antenna excites
the radiating element. The FDTD method [14] is used to determine
the input impedance of the cylindrical DRA. Stair-casing is used in
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Figure 1. Geometry of the cylindrical dielectric resonator antenna
H = 3 mm, mm a = 4.2 mm, df = 3.5 mm, εr = 12, and h = 2.4 mm.

modeling the curved structure of the antenna surface and Gaussian
pulse with “T” = 6.8 ps is used as the excitation signal.

The main steps for evaluating the equivalent circuit of cylindrical
DRA are as follows;

1. Obtaining the input impedance data from FDTD for cylindrical
DRA with fixed dimensions and varying the cylinder height as well
as the relative permittivity of the cylinder.

2. Obtaining the equivalent lumped- element circuit model at each
variation step by using GA with a fixed shape of equivalent circuit.

3. Using MBPE to obtain the relation between lumped-element
circuit model for cylindrical dielectric resonator and Antenna
Parameters.

4. Using this technique the values of the equivalent circuit model are
obtained at a wide range of dimensions.

The lumped-element circuit model of the cylindrical DRA is shown
in Fig. 2. The FDTD is used to determine the input impedance of
cylindrical DRA for different heights “H”, relative dielectric constant

defines the performance of each candidate s solution. One form of 
L1C1

L2
C2

R

Figure 2. Lumped-element equivalent circuit for cylindrical DRA.
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“εr” and keeping the other dimensions of the antenna with no change
as in Fig. 1. The values for equivalent circuit elements are calculated
by the use of a genetic algorithm for best impedance fidelity. This
problem requires optimizing five variables, R, L1, C1, L2, and C2 for
each length H and relative dielectric constant εr.

In the genetic algorithm (GA) each component parameter is
represented by 16 bits binary coded gene. Lower and upper
parameter limits for each component value are also set according
to the resonance frequency and the Q-factor of FDTD calculation.
The component parameter gene stung together end-to-end to form a
single chromosome representing the antenna equivalent circuit model.
In each optimization cycle or generation, the GA considers 100
different chromosomes (population size). Circuit analysis defines the
performance of each candidate’s solution. One form of the fitting model
which is commonly employed in MBPE is represented by the rational
function as

F (H, εr) =
N(H, εr)
D(H, εr)

=
N0(H) + N1(H)εr + N2(H)ε2

r + · · · + Nn(H)εn
r

D0(H)+D1(H)εr+D2(H)ε2
r+· · ·+Dd−1(H)εd−1

r +εd
r

(1)

where

N0(H) = N0
0 + N1

0 H + N2
0 H2 + · · · + Nk

0 Hk

N1(H) = N0
1 + N1

1 H + N2
1 H2 + · · · + Nk

1 Hk

...
...

Nn(H) = N0
n + N1

nH + N2
nH2 + · · · + Nk

nHk (2)

D0(H) = D0
0 + D1

0H + D2
0H

2 + · · · + Dk
0Hk

D1(H) = D0
1 + D1

1H + D2
1H

2 + · · · + Dk
1Hk

...
...

Dd−1(H) = D0
n + D1

d−1H + D2
d−1H

2 + · · · + Dk
d−1H

k (3)

where K represent the polynomial order. By sampling F (H, εr) at NH
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and Nr points a matrix of the form AX = B can be construed as

X =




N0

N1

· · ·
· · ·
Nn

D0

D1

· · ·
· · ·

Dd−1




(4)

B =




F (H1, εr1)εd
r1

F (H1, εr2)εd
r2

· · ·
F (H1, εrNr)εd

rNr

F (H2, εr1)εd
r1

F (H2, εr2)εd
r2

· · ·
F (H2, εrNr)εd

rNr

· · ·
F (HNH , εr1)εd

r1

F (HNH , εr2)εd
r2

· · ·
F (HNH , εrNr)εd

rNr




(5)

where

N i =
[
N0

i N1
i N2

i . . . . . . Nk
i

]T
i = 0, 1, . . . , n

Dj =
[
D0

j D1
j D2

j . . . . . . Dk
j

]T
j = 0, 1, . . . , d − 1

Solving this matrix equation yields the set of numerator and
denominator coefficients required by equation (1). In this paper
F (H, εr) is represented as the values of R, L1, C1, L2, and C2, for
different values of “H”, and “εr”. The unknown complex “X”, is
calculated by inverting the matrix A and multiplying it by the column
B as

X = A−1B (6)
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The matrix A can be written as

A =




1 H1 · · · Hk
1 εr1 H1εr1 · · · Hk

1 εr1 · · ·
1 H1 · · · Hk

1 εr2 H1εr2 · · · Hk
1 εr2 · · ·

· ·
· ·
1 H1 · · · Hk

1 εrNr H1εrNr · · · Hk
1 εrNr · · ·

1 H2 · · · Hk
2 εr1 H2εr1 · · · Hk

2 εr1 · · ·
1 H2 · · · Hk

2 εr2 H2εr2 · · · Hk
2 εr2 · · ·

· ·
· ·
1 H2 · · · Hk

2 εrNr H2εrNr · · · Hk
2 εrNr · · ·

· ·
· ·
1 HNH · · · Hk

NH εr1 HNHεr1 · · · Hk
NHεr1 · · ·

1 HNH · · · Hk
NH εr2 HNHεr2 · · · Hk

NHεr2 · · ·
· ·
· ·
1 HNH · · · Hk

NH εrNr HNHεrNr · · · Hk
NHεrNr · · ·

εn
r1 H1ε

n
r1 · · · Hk

1 εn
r1 −F (H1, εr1) · · ·

εn
r2 H1ε

n
r2 · · · Hk

1 εn
r2 −F (H1, εr2) · · ·

·
·

εn
rNr H1ε

n
rNr · · · Hk

1 εn
rNr −F (H1, εrNr) · · ·

εn
r1 H2ε

n
r1 · · · Hk

2 εn
r1 −F (H2, εr1) · · ·

εn
r2 H2ε

n
r2 · · · Hk

2 εn
r2 −F (H2, εr2) · · ·

·
·

εn
rNr H2ε

n
rNr · · · Hk

2 εn
rNr −F (H2, εrNr) · · ·

·
·

εn
r1 HNHεn

r1 · · · Hk
NHεn

r1 −F (HNH , εr1) · · ·
εn
r2 HNHεn

r2 · · · Hk
NHεn

r2 −F (HNH , εr2) · · ·
·
·

εn
rNr HNHεn

rNr · · · Hk
NHεn

rNr −F (HNH , εrNr) · · ·
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−F (H1, εr1)Hk
1 −F (H1, εr1)εr1 · · · −F (H1, εr1)Hk

1 εr1

−F (H1, εr2)Hk
1 −F (H1, εr2)εr2 · · · −F (H1, εr2)Hk

1 εr2

· ·
· ·

−F (H1, εrNr)Hk
1 −F (H1, εrNr)εrNr · · · −F (H1, εrNr)Hk

1 εrNr

−F (H2, εr1)Hk
2 −F (H2, εr1)εr1 · · · −F (H2, εr1)Hk

2 εr1

−F (H2, εr2)Hk
2 −F (H2, εr2)εr2 · · · −F (H2, εr2)Hk

2 εr2

· ·
· ·

−F (H2, εrNr)Hk
2 −F (H2, εrNr)εrNr · · · −F (H2, εrNr)Hk

2 εrNr

· ·
· ·

−F (HNH , εr1)Hk
NH −F (HNH , εr1)εr1 · · · −F (HNH , εr1)Hk

NHεr1

−F (HNH , εr2)Hk
NH −F (HNH , εr2)εr2 · · · −F (HNH , εr2)Hk

NHεr2

· ·
−F (HNH ,εrNr)Hk

NH −F (HNH ,εrNr)εrNr · · · −F (HNH ,εrNr)Hk
NHεrNr

· · · −F (H1, εr1)εd−1
r1 · · · −F (H1, εr1)Hk

1 εd−1
r1

· · · −F (H1, εr2)εd−1
r2 · · · −F (H1, εr2)Hk

1 εd−1
r2

·
·
· · · −F (H1, εrNr)εd−1

rNr · · · −F (H1, εrNr)Hk
1 εd−1

rNr

· · · −F (H2, εr1)εd−1
r1 · · · −F (H2, εr1)Hk

2 εd−1
r1

· · · −F (H2, εr2)εd−1
r2 · · · −F (H2, εr2)Hk

2 εd−1
r2

·
·
· · · −F (H2, εrNr)εd−1

rNr · · · −F (H2, εrNr)Hk
2 εd−1

rNr

·
·
· · · −F (HNH , εr1)εd−1

r1 · · · −F (HNH , εr1)Hk
NHεd−1

r1

· · · −F (HNH , εr2)εd−1
r2 · · · −F (HNH , εr2)Hk

NHεd−1
r2

·
· · · −F (HNH , εrNr)εd−1

rNr · · · −F (HNH , εrNr)Hk
NHεd−1

rNr




(7)
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3. NUMERICAL RESULTS

To verify the analysis, the FDTD results for the input impedance of
cylindrical DRA are compared with the results in [15]. The dimensions
of the structure are H = 3 mm, a = 4.2 mm, d = 3.5 mm, h = 2.4 mm,
εr = 12 and the probe radius 0.1 mm. The input impedance and the
corresponding |S11| of the cylindrical DRA are shown in Fig. 3 and
Fig. 4, respectively. Good agreement between the FDTD results and
the published ones is obtained.
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Figure 3. The input impedance of the CDRA vs. frequency.
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Figure 4. The amplitude of S11 of the CDRA vs. frequency.

The input impedance of the cylindrical DRA with different height
H and the relative dielectric constant εr. is calculated. The lumped-
element equivalent circuit for cylindrical DRA is shown in Fig. 2. The
Genetic algorithm is used to calculate the values of the elements of
the equivalent circuit for each H and εr. These values are shown in
Tables 1–4.
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Table 1. The equivalent circuit elements for εr = 20.

C2(pF)L2(pH)C1(pF)L1( pH)R(Ohms)
Height 
H(mm)

0.54 830 6.1847 61.61 65.171 3.5 

0.788 600 7.05 80.0 64.655 4.5 
0.988 500 7.525 83.44 60.88 5.5 

1.188 330 7.94 84.6 52.554 6.5 
1.308 130 9.73 71.2 44.077 7.5 

Table 2. The equivalent circuit elements for εr = 16.

C2(pF)L2(pH)C1(pF)L1( pH)R(Ohms)
Height 
H(mm)

0.48 750 5.539 66.416 55.448 3.5 

0.6 650 5.84 77 54.961 4.5 
0.68 550 6.325 80.61 50.696 5.5 
0.76 460 6.62 82.479 44.655 6.5 
0.87 370 6.8 83.03 36.637 7.5 

Table 3. The equivalent circuit elements for εr = 9.8.

C2(pF)L2(pH)C1(pF)L1( pH)R(Ohms)Height 
H(mm)

0.26435 879.3 3.12 76.4 40.406 3.5 

0.29359 859.3 3.43 83.0 39.673 4.5 

0.315 828.3 3.63 88 35.864 5.5 

0.335 780 3.82 90 31.532 6.5 

0.355 740 3.89 91.5 25.482 7.5 

Table 4. The equivalent circuit elements for εr = 12.

C2(pF)L2(pH)C1(pF)L1( pH)R(Ohms)
Height 
H(mm)

0.096522 2959 4.1027 71.0 46.622 3.5 

0.0920 3330 4.7 74.09 45.672 4.5 

0.08165 3795 5.127 75.3 40.87 5.5 

0.0716522 4395.9 5.358 77.022 37.026 6.5 

0.058085 5019.5 5.5528 78.02 29.32 7.5 
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The MBPE technique is used to find the relation between the
values of each element of the equivalent circuit with varying the height
H, and the relative dielectric constant, εr. of the antenna. Consider
n = 2 and d = 1 in equations (1) and (2). Each variable is expanded by
a polynomial of order K = 4 (the total number of unknowns is 20). By
varying the height H and relative dielectric constant εr, the elements
of the equivalent circuit are used to calculate the input impedance of
the antenna.

In general the rational function for any element in the equivalent
circuit can be written as

F (H, εr) =
N(H, εr)
D(H, εr)

=
N0(H) + N1(H)εr + N2(H)ε2

r

D0(H) + εr
(8)

where

N0(H) = N0
0 + N1

0 H + N2
0 H2 + N3

0 H3 + N4
0 H4

N1(H) = N0
1 + N1

1 H + N2
1 H2 + N3

1 H3 + N4
1 H4

N2(H) = N0
2 + N1

2 H + N2
2 H2 + N3

2 H3 + N4
2 H4

D0(H) = D0
0 + D1

0H + D2
0H

2 + D3
0H

3 + D4
0H

4

(9)

Using equation (6) to calculate the unknown coefficients for each
element of the equivalent circuit model,

For the resistor R

N0
0 = 3.5090 × 104, N1

0 = −2.8082 × 104, N2
0 = 0.8123 × 104

N3
0 = −0.1013 × 104 N4

0 = 0.0046 × 104, N0
1 = 0.1970 × 104

N1
1 = −0.1560 × 104, N2

1 = 0.0445 × 104, N3
1 = −0.0055 × 104

N4
1 = −0.1013 × 104, N0

2 = 0.0081 × 104, N1
2 = −0.0064 × 104

N2
2 = 0.0019 × 104, N3

2 = −0.0002 × 104, N4
2 = 0

D0
0 = 0.1701 × 104, D1

0 = −0.1360 × 104, D2
0 = 0.0392 × 104

D3
0 = −0.0049 × 104, D4

0 = −0.0002 × 104

For the inductor L1

N0
0 = −0.26 × 10−7, N1

0 = 0.1979 × 10−7, N2
0 = −0.0574 × 10−7

N3
0 = 0.0073 × 10−7, N4

0 = −0.0003 × 10−7, N0
1 = 0.338 × 10−8

N1
1 = −0.2523 × 10−8, N2

1 = 0.0715 × 10−8, N3
1 = −0.009 × 10−8

N4
1 = 0.0004 × 10−8, N0

2 = −0.1379 × 10−9, N1
2 = 0.1037 × 10−9,

N2
2 = −0.029 × 10−9, N3

2 = 0.0036 × 10−9, N4
2 = −0.0002 × 10−9
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D0
0 = −77.1972, D1

0 = 55.2580, D2
0 = −16.6960, D3

0 = 2.1986,

D4
0 = −0.1070

For the capacitor C1

N0
0 = −0.234 × 10−7, N1

0 = 0.1877 × 10−7, N2
0 = −0.0545 × 10−7

N3
0 = 0.0068 × 10−7, N4

0 = −0.0003 × 10−7, N0
1 = −0.3023 × 10−8

N1
1 = 0.2361 × 10−8, N2

1 = −0.0675 × 10−8, N3
1 = −0.0084 × 10−8

N4
1 = −0.0004 × 10−8, N0

2 = 0.5312 × 10−9, N1
2 = −0.4215 × 10−9

N2
2 = 0.1217 × 10−9, N3

2 = −0.0152 × 10−9, N4
2 = 0.0007 × 10−9

D0
0 = −644.52, D1

0 = 446.832, D2
0 = −117.27, D3

0 = 13.6074
D4

0 = −0.5894

For the inductor L2

N0
0 = 0.466 × 10−7, N1

0 = −0.4317 × 10−7, N2
0 = 0.1222 × 10−7

N3
0 = −0.0158 × 10−7, N4

0 = 0.0008 × 10−7, N0
1 = −0.2381 × 10−7

N1
1 = 0.1813 × 10−7, N2

1 = −0.0489 × 10−7, N3
1 = −0.0058 × 10−7

N4
1 = −0.0003 × 10−7, N0

2 = 0.1056 × 10−8, N1
2 = −0.0770 × 10−8

N2
2 = 0.0205 × 10−8, N3

2 = −0.0024 × 10−8, N4
2 = 0.0001 × 10−8

D0
0 = −100.3385, D1

0 = 63.1455, D2
0 = −16.33, D3

0 = 1.7817
D4

0 = −0.0690

For the capacitor C2

N0
0 = −0.6901 × 10−9, N1

0 = 0.5600 × 10−9, N2
0 = −0.1678 × 10−9

N3
0 = 0.0219 × 10−9, N4

0 = −0.0011 × 10−9, N0
1 = 0.9181 × 10−10

N1
1 = −0.7465 × 10−10, N2

1 = 0.2235 × 10−10, N3
1 = −0.0293 × 10−10

N4
1 = 0.0014 × 10−10, N0

2 = −0.7456 × 10−11, N1
2 = 0.6077 × 10−11

N2
2 = −0.1818 × 10−11, N3

2 = 0.0237 × 10−11, N4
2 = −0.0011

D0
0 = −1.5458 × 103, D1

0 = 1.2477 × 103, D2
0 = −0.3727 × 103

D3
0 = 0.0482 × 103, D4

0 = 0.0023 × 103

To verify our analysis, Fig. 5 shows the input impedance of the
cylindrical DRA antenna at H = 3.5 mm, and εr = 20, these values
are included in Table 1, compared with that calculated equation (8)
(MBPE). Excellent agreement is obtained.

Figures 6 to 9 gives a comparison between the calculated input
impedance by using the FDTD method and that obtained from MBPE
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Figure 5. The input impedance for cylindrical DRA for εr = 20 and
H = 6.5 mm.
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Figure 6. The input impedance for cylindrical DRA for εr = 16 and
H = 5 mm.

for different H and εr that are not included in Tables 1 to 4. Good
agreement between the two methods can be found. By using the MBPE
for the different elements of the equivalent circuit, the input impedance
of the cylindrical DRA can be determined for different dimensions of
H and εr in the ranges of Tables 1–4. There is no need to run the
FDTD in the above cases. The input impedance of the DRA can be
calculated directly from the equivalent circuit obtained by using MBPE
technique.
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Figure 7. The input impedance for cylindrical DRA for εr = 20 and
H = 6 mm.
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Figure 8. The input impedance for cylindrical DRA for εr = 14 and
H = 4.5 mm.
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Figure 9. The input impedance for cylindrical DRA for εr = 20 and
H = 4 mm.
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4. CONCLUSIONS

A lumped element equivalent circuit of cylindrical DRA is calculated
for different antenna dimensions. The FDTD method and the genetic
algorithm are used to calculate the values of the elements of the
equivalent circuit. MBPE is used to find the relation between
each element in the equivalent circuit and the antenna dimensions.
This method is used to reduce time required to calculate the input
impedance over a wide frequency range.
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