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Abstract—The general image relations of electromagnetic sources are
presented around a conductor sphere. The general transformations of
trigonometric functions and the unit vectors between two coordinates
depart from a distance are obtained. The second scattering field
for a target is derived in detail. The complex scattering field and
the complex RCS are gained respectively. Results show that the
electromagnetic interaction of the targets must be calculated as the
distance between two targets is small. The second scattering field
is small to three order in magnitude to its first scattering field as
the distance becomes large. The phase shift of the second field is
mainly determined by the target size and the observing position and
not affected greatly by its surrounding target and the distance apart.
The distortion of a pulse wave is mainly induced by the phase shift of
the second scattering field from the particles as the wave propagating
through the random discrete medium.
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1. INTRODUCTION

The Radar Cross Section is a very important quantity in describing
the electromagnetic scattering characteristics for a target. The RCS
is an essential parameter in the fields such as target detection etc.,
which has been studied at large by the schoolars and engineers in
the world [2–18]. Before the naissance of radar, the RCS of several
typical targets irradiated by a homochromous plane electromagnetic
wave in free space has been presented such as a conducting sphere,
a coating medium sphere, a coating cylinders and an ellipsoid. The
scattering property of complex isolated targets in electromagnetic
field have been also researched with the digital method and modern
algorithms [19–24]. In practice, the isolated target in electromagnetic
field is an ideal model, it is always electromagnetic interacting with
the bodies around it. Obtaining the Complex RCS not only has the
theory significance, moreover has the application value in engineering
such as electromagnetic wave propagation and target identification in
complex E. M. environment. Based on the literatures, this paper
first presents briefly general image relation of E. M. sources around
a conductor sphere, then investigates the E. M. interaction between
spheres utilizing the E. M. images method. The complex RCS for the
sphere is presented. Simulations of the effects induced by the target
distance, target size and frequency are obtained. The results offer a
support for the theoretical modeling such as target complex scattering,
E. M. compatibility and multipath effect in communication channel etc.

2. ELECTROMAGNETIC INTERACTION BETWEEN
TWO CONDUCTOR SPHERE

2.1. The Image Relations of Time-harmonic
Electromagnetic Sources

In the time-harmonic electromagnetic field, the electric field for a point
is written as

E = −jωA −∇ψ − 1
ε
∇× Am

where A, ψ, Am are the vector magnetic potential, scalar electric
potential and the vector electric potential respectively. They are
induced respectively by the electric current, electric charge and
magnetic current. As shown in Figure 1, a point electric charge q(t)
be put at the point depart a distance a from the conductor sphere
center. Its radius is R0. The inductive charge on the spherical surface
produces an electric field in the space which equal that produced by
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Figure 1. Image relation for a charge.

the image charge q′ inside the sphere. This image charge should locate
in the line from the center to the point and depart that a distance b.
Their retarded potentials can be written as [1]

φ (r, t) =
q0e

jωt−jkr

4πε0r
φ′ (r′, t) =

q′0e
jωt−jk′r′

4πε0r′

Speaking to perfect conductor, the transit time is about
10−17 second [2] from a non-equilibrium state to a equilibrium state.
This time correspond to the operating frequency of 1017 Hz. We thus
think that the conductor surface is an equipotential plane as being
irradiated by the E. M. wave, namely

q0e
jωt−jkr

4πε0r
+

q′0e
jωt−jk′r′

4πε0r′
= C

The followings are obtained after being the first differential to the both
side to above expression

q′0 = −R0

a
q0 k′ =

a

R0
k b =

R2
0

a
(1)

(1) states that on the case of time harmonic E. M. filed, the position
of image change is same with that in static electric field, only the
propagating speed has changed. On the surface of the sphere we obtain
k′r′ = kr, which ensures the potential is a constant on surface. The
image relation in static electric field is the a special case of the above
as k → 0.

As shown in Figure 2, at the point outside the sphere, following
expressions are valid both for the sources parallel to line a and vertical
to line a.

Aτ = −µ0Idl

4πr
e−jkr cos θ, A′

τ = −µ0I
′dl′

4πr′
e−jk′r′ cos θ
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Figure 2. Image relation of electromagnetic sources.

Therefore, we obtain the following result using −jω (Aτ + A′
τ ) = 0

and that in (1)

I ′dl′ = −R0

a
Idl (2)

The electric field resulted by magnetic current is written as

Em =
Im

4π

(
1
r

+ jk

)
e−jkr

r
ûr × dl̂, E′

m =
I ′m
4π

(
1
r′

+ jk′
)
e−jk′r′

r′
ûr′ × dl̂′

We first express the position vectors in above with coordinates and
then sum them, finally using the term that the tangential field is zero,
the image relations are respectively obtained as

I ′mdl⊥ = −R0

a
Imdl⊥ I ′mdl// = −R3

0

a3
Imdl//

Generally speaking a � R0, thus we conclude that the parallel
component is higher order one and can be neglect. Therefore it is
written as

I ′mdl⊥ = −R0

a
Imdl⊥ (3)

Expressions (1) ∼ (3) are the image relation. We can use them to
investigate the target E. M. interaction.

2.2. The Scattering Field from Target 1

As shown in Figure 3, the sphere with radius R1 and that with
radius R2 form a scattering system. The plane E. M. wave casts the
system. For target 1, its scattering field has two parts, namely the first
scattering field and multi-scattering. In this multi scattering field, the
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Figure 3. Position of two conductors.

later one’s magnitude to that of the former one is R/(8d). In order to
briefness, we only consider the second scattering field from target 1.
Symbolically [1]

Esθ = Esθ1 + Esθ2, Esφ = Esφ1 + Esφ2 (4)
Esθ1 = f(kr)S2(θ) cosφ (5)
Esφ1 = −f(kr)S1(θ) sinφ (6)

Esr1 = j
E0 cosφ
k2r2

∞∑
n=1

j−nancnn(n + 1)Ĥ(2)
n (kr)P 1

n(cos θ) (7)

Hsθ1 = −Esφ1

η
Hsφ1 =

Esθ1

η
(8)

where

f(kr) = j
E0

kr
,

S2(θ) =
∞∑

n=1

j−nan

[
cnĤ

(2)′
n (kr)

dP 1
n(cos θ)
dθ

− jdnĤ
(2)
n (kr)

P 1
n(cos θ)
sin θ

]

S1(θ) =
∞∑

n=1

j−nan

[
cnĤ

(2)′
n (kr)

P 1
n(cos θ)
sin θ

− jdnĤ
(2)
n (kr)

dP 1
n(cos θ)
dθ

]
,

η =
√

µ0

ε0

where an, cn, dn can be seen in the literature [2], Esθ2, Esφ2 are
respectively the second scattering field from target1 irradiating by the
first scattering field from the target 2.
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2.3. The Calculation of the Second Scattering Field

2.3.1. The Calculation of Electromagnetic Sources on Target 2’
Surface

If we use Hs2, Es2 respectively to denote the scattering field from target
2, then the equivalent electromagnetic sources’ density is written as

Js = r̂ × Hs2|r=R2
, Jms = r̂ × Es2|r=R2

, σ = ε0r̂ · Es2|r=R2

The exact expressions are

Js = ϕ̂′ f (kR2)
η

S21 sinφ′ − θ̂′
f (kR2)

η
S22 cosφ′

Jms = −ϕ̂′f (kR2)S22 cosφ′ − θ̂′f (kR2)S21 sinφ′
(9)

σ = j
ε0E0 cosφ′

k2R2
2

∞∑
n=1

j−ncn(2n + 1)Ĥ(2)
n (kR2)P 1

n(cos θ′) (10)

f(kR2) = j
E0

kR2
,

S22(θ′)=
∞∑

n=1

j−nan

[
cnĤ

(2)′
n (kR2)

dP 1
n(cos θ′)
dθ′

− jdnĤ
(2)
n (kR2)

P 1
n(cos θ′)
sin θ′

]

S21(θ′)=
∞∑

n=1

j−nan

[
cnĤ

(2)′
n (kR2)

P 1
n(cos θ′)
sin θ′

− jdnĤ
(2)
n (kR2)

dP 1
n(cos θ′)
dθ′

]

In Figure 3, the position vector from the center of sphere 1 to the point
p in coordinate system x′-y′-z′ is expressed as

a =
(
R2 + d sin θ′ sinφ′) r̂′ + d cos θ′ sinφ′θ̂′ + d cosφ′φ̂′

The distance depart from center 1 for the image is b (R1, R2, θ
′, φ′) =

R2
1

|a| . It is approximately written as

b
(
R1, R2, θ

′, φ′) =
R2

1

d

(
1 − R2

d
sin θ′ sinφ′

)

The angle formed by b and y-axis is

β = arcsin

√
x′2 + z′2

a
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In general case d � R1, d � R2, thus we obtain

β ≈ R2

d
, b ≈ R2

1

d
, k′ ≈ k

d

R1
(11)

(11) states that we can approximately think the image locating in the
line from center 1 two center 2 and the depart distance is b. This
conclusion offers an good convenience for obtaining the radiating field
induced by the images.

2.3.2. The Calculation of the Second Scattering Field from Target 1

The second scattering field induced by the images at b has three parts,
namely

E = −∇ψ − jωA − 1
ε
∇× Am

The scalar potential resulted by the image charge is written as

ψ (r) =
1

4πε0

∫
b

e−jk′r′

r′
σ (b) ds (b)

We put (11) into above expression and consider that b is a function
of φ′, θ′. The integral area is on the surface at sphere 2. We put (10)
into above and integral

2π∫
π

cosφ′dφ′ = 0

It is obtained that ψ (r) = 0, thus the electric field is zeros, namely
E21 = 0.

The vector electric potential is written as

A (r) =
∫
b

µ0

4πr′
e−jkr′J(b)ds (b)

By putting the first one of (9) into above and using (2) and
2π∫
π

cosφ′dφ′ = 0, we obtain

A (r) ≈ 2jE0µ0R1R2c1e
−jk(r−b sin(θ+β))

4rdkη
φ̂′, c1 =

π∫
0

S21

(
θ′

)
sin θ′dθ′
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So that

E22 (r) ≈ 2E0R1R2c1e
−jk(r−b sin(θ+β))

4dr
φ̂′ (12)

The unit vector φ̂′ is defined in sphere 2 coordinates. We must express
it in sphere 1 coordinates.The following trigonometric functions are
easy obtained in Figure 3.

cos θ′ =
r cos θ
r′1

, sin θ′ =
r′2
r′1

sinφ′ =
r sin θ sinφ− d

r′2
, cosφ′ =

r sin θ cosφ
r′2

r′1 =
(
d2+r2−2dr sin θ sinφ

) 1
2 , r′2 =

(
d2+r2 sin2 θ−2dr sin θ sinφ

) 1
2

(13)

The inverse transformation is also presented by putting d into −d and
exchange the reciprocal quantities. The transformation between the
vectors of the spherical system and that of the rectangular system are
given as [2]

u = Pq u′ = P′q′ (14)

where

u =

[
ûx

ûy

ûz

]
, P =

[sin θ cosφ cos θ cosφ − sinφ
sin θ sinφ sinφ cos θ cosφ

cos θ − sin θ 0

]
, q =


r̂

θ̂

φ̂




From expression (14), we conclude that

q′ = P′−1Pq (15)

These expressions (13) (15) state that the unit vector of system 2 is
functions of that of system 1, namely

θ̂′ = −

(
r̂f1 + θ̂f2 − φ̂f3

)
r′1r

′
2

f
,

φ̂′ =
[
r̂d sin θ cosφ + θ̂d cos θ cosφ + φ̂ (r sin θ − d sinφ)

] 1
r′2

f1 = rd cos θ sin θ sinφ− d2 cos θ, f3 = rd cos θ cosφ
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f2 = r2 sin θ − 2dr sinφ + dr cos2 θ sinφ + d2 sin θ

f = r4 sin2 θ + d2 + 5r2d2 − 4r2d2 cos2 φ sin2 θ − 4d3r sin θ sinφ

+2r3d sin θ cos2 θ sinφ− 4r3d sin θ sinφ

The electric field induced by the magnetic vector potential is
written as

E23 (r) ≈
∫
b

1
4π

(
1
r′

+ jk

)
e−jkr

r′
r̂′ × J⊥m (b)ds (b)

By using
2π∫
π

cosφ′dφ′ = 0 and some calculated, we obtain the field

E23 (r)≈E0R2R1

4πd2

e−jk(r−b sin(θ+β))

r

(
c2πd

2
θ̂′×r̂+2R2c1r̂×φ̂′

)
(16)

where c2 =
π∫
0

S21 (θ′) sin2 θ′dθ′.

From (12) and (16) we can obtain the second scattering field from
sphere 1

E2θ (r)≈E0R2R1

4πd2

e−jk(r−b sin(θ+β))

r
F1,

E2φ (r)≈E0R2R1

4πd2

e−jk(r−b sin(θ+β))

r
F2

F1 =
2R1c1dcos θcosφ−2R2c1(rsin θ−dsinφ)

r′2
− πdc2r

′
1r

′
2f3

2f

F2 =
2R2c1dcos θcosφ+2R1c1(rsin θ−dsinφ)

r′2
− πdc2r

′
1r

′
2f2

2f

(17)

Expression (17) is the second scattering field of sphere 1. We know that
the locations both for sphere 1 and sphere 2 are symmetrical, so we can
easily get the second scattering field of sphere 2 by changing the d into
−d and mark 1 into mark 2 and mark 2 into mark 1 in above result.
We conclude from (17) that the band spread and distortion effect for
the pulse wave will be resulted as the wave propagating through the
discrete medium. This is caused by the fact that different particle in
size induces different phase shift, which is in agreement with that in the
literature [7]. When r � d, the two coefficients in (17) are simplified
as

F1 ≈ −2R1c1 F2 ≈ πdc2/2
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The above two provide a great convenience for researching the target’
scattering characteristics.

2.4. The Effect on RCS of a Target Induced by
Electromagnetic Interaction

The scattering cross section for target is defined as

σ =
P

Siπa2

In which P is average power scattered by a target and a, Si are the
radius of target and incident average power density respectively. We
use the expressions of (4)–(6), (17) and the orthogonality of legendre
functions, namely

1∫
−1

Pm
n (x)Pm

l (x) dx = 0 n 
= l

1∫
−1

Pm
n (x)P l

n (x) dx = 0 m 
= l

π∫
0

[P 1
n

d

dθ
P 1

n′ + P 1
n′

d

dθ
P 1

n ]dθ = 0 n 
= n′

π∫
0

[
d

dθ
Pm

n

d

dθ
Pm

n′ +
m2

sin2 θ
Pm

n′ Pm
n

]
sin θdθ=

{
2

2n+1
(n+m)!
(n−m)!n (n + 1) n=n′

0 n 
=n′

when r � d, the RCS is obtained

σ1 = σ01 + σi1 (18)

where

σ01 =
2

(kR1)
2

∞∑
n=1

(2n + 1)
(
|cn|2 + |dn|2

)

σi1 =
R2

2

4π2d4

(
4R2

2c1c
∗
1 +

c2c
∗
2π

2d2

4

)
+

R2

2πkdR1∫∫
Re

{
jc2e

−jk(b sin(θ+β))
∞∑

n=1

an

[
cn

P 1
n

sin θ
+ dn

dP 1
n

dθ

]}
sin θdθ
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where the coefficients cn, dn are defined with sphere 1. The above
expression states that the second term, relative to electromagnetic
interaction, is very complex and trying to obtain its analytic formula is
not available. However we can get the result with computer simulation.
Following parameters are used, f = 100 MHz, R1 = 1 m, R2 = 2 m in
the simulations. The wave length and target size have the same order
of magnitude. The scattering effect is remarkable. The second order
scattered power ratio to the first order scattered power varies with the
distance of two spheres is shown in Figure 4. It implies that the second
scattering power decreases greatly as the distance increasing. When
d ≈ 10Ri, the electromagnetic interaction can be neglected. As shown
in Figure 5, the second scattered power does not vary greatly versus
the observing point. It is determined by the targets property, target
shape and the distance apart etc. and not relative to how measure the
field. This interaction is about at the order of 10−2. The phase shift
is gotten from (17) as

ψ = k
R2

1

d
sin

(
θ +

R2

d

)

Figure 4. Second scattering
power versus distance.

Figure 5. Second scattering
power versus observing position.

Part simulations are shown in Figure 6 and Figure 7. It is
concluded that the phase shift change sensitively with the size of target
1 and not much change with that of target 2 when the observing
distance is given. When the target sizes are given, the phase shift varies
with the position greatly and not much does with the distance. We
so conclude that the wave distortion being measured at different point
will different when a pulse wave propagating through discrete random
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Figure 6. Phase shift versus
target size.

Figure 7. Phase shift versus
azimuth and distance.

Figure 8. Complex RCS versus
the distance.

Figure 9. Complex RCS versus
the distance.

medium. The changing of complex RCS for a target versus the distance
is demonstrated in Figure 8 and Figure 9. Both in communication wave
band or the K wave band, the RCS induced by the electromagnetic
interaction comparing with that in free space is about at the order of
10−3. This interaction will be enhanced as the operating frequency
increase. Also it is concluded that the interaction can be neglected as
the term d ≈ (9− 10)R. The results in above have a definite reference
value for researching the complex polarization and complex scattering
reconnaissance. More we obtain that the distortion of a wave is mainly
determined by the phase shift as the wave passing the discrete medium.
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3. CONCLUSION

The E. M. interaction between two sphere targets is researched. The
image relations of E. M. sources for a conductor sphere is first presented
using the boundary condition. The general transformations of
trigonometric functions and the unit vectors between two coordinates
depart from a distance are obtained. Based on these relations, the
formula of second scattering field from a target is derived in detail. The
complex RCS are thus gained. The obtained formulae are simulated.
Results show that in K wave band as the distance between two spheres
is small, the electromagnetic interaction must be considered. When the
distance d = (8 ∼ 10)R, this interaction is neglected, the additional
RCS compare with that in free space is at the order 10−4. The phase
shift induced by the interaction is mainly determined by the target size
and the observing point. Other objects around the target and their
distance depart not effect it greatly. We so confirm that the distortion
of a pulse wave is mainly induced by the phase shift of the second
scattering filed from the particles as the wave propagating through the
random discrete medium. The used method and the results provide a
theoretical reference in the area of electromagnetic compatibility and
the electric system design.
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